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Instanton effects in lattice models of bosonic symmetry-protected topological states
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Bosonic symmetry-protected topological (SPT) states are gapped disordered phases of matter possessing
symmetry-preserving boundary excitations. It has been proposed that, at long wavelengths, the universal properties
of an SPT system are captured by an effective nonlinear sigma model field theory in the presence of a quantized
topological θ term. By studying lattice models of bosonic SPT states, we are able to identify, in their Euclidean
path integral formulation, (discrete) Berry phases that hold relevant physical information on the nature of the
SPT ground states. These discrete Berry phases are given intuitive physical interpretation in terms of instanton
effects that capture the presence of a θ term on the microscopic scale.
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I. INTRODUCTION

Since the prediction and discovery of topological band
insulators [1–3], the relation between topology and symmetries
in the realization of new phases of matter has been the
focus of intense scrutiny in recent years. While the classifica-
tion of noninteracting symmetry-protected topological (SPT)
fermionic phases of matter appears to have been completely
formulated [4–7], the quest for interacting SPT phases is
actively being theoretically studied [8–27]. Moreover, it has
been recently proposed that bosonic SPT states could be
realized in periodically driven interacting systems [28], as
well as in other cold-atom platforms [29,30], thus opening the
interesting possibility to probe and manipulate SPT systems.

The simplest example of a bosonic SPT state is provided
by the S = 1 antiferromagnetic Heisenberg chain, whose
ground state is gapped, symmetry unbroken, and possesses
twofold degenerate edge states that behave as S = 1/2 low
energy excitations. Haldane has shown that the Euclidean path
integral of the S = 1 antiferromagnetic chain is described by
an Euclidean action that contains, in addition to a standard
nonlinear sigma model term, a topological θ -term action Sθ

with the coefficient θ quantized in multiples of 2π [31,32]

SD=1 = SNLSM + iSθ

=
∫

dx dτ

[
1

g
(∂μn̂)2 + i

θ

8π
εabcεμνn̂

a∂μn̂b∂νn̂
c

]
.

(1.1)

(n̂ is a three-component unit vector.) Whereas the presence of
the topological action does not change the partition function
when periodic boundary conditions are imposed on the system
[due to the fact that exp (i Sθ ) = exp (i 2π×integer) = 1], Sθ

is nevertheless directly responsible for the S = 1/2 excitation
in the presence of edges [33–38].

Recently, Bi et al. [24] proposed a classification of bosonic
SPT states in D-dimensional space via an extension of
Eq. (1.1), whereby the gapped symmetric state is assumed to be
described by an O(D + 2) nonlinear sigma model augmented
with a quantized θ -term action,

SD = SNLSM + iSθ =
∫

dDx dτ

[
1

g
(∂μn̂)2

+ i
2π

�D+1
εa1···aD+2 n̂

a1 ∂x1 n̂
a2 · · · ∂xD

n̂aD+1 ∂τ n̂
aD+2

]
, (1.2)

where �D+1 is the area of the (D + 1)-dimensional sphere
of unit radius. In the strong coupling limit g → ∞, the wave
function acquires the form [16]

|	〉 ∼
∫

Dn̂(x) e
i 2π
�D+1

∫
dDx

∫ 1
0 duW[n̂] |n̂(x)〉

W[n̂] = εa1···aD+2 n̂
a1 ∂x1 n̂

a2 · · · ∂xD
n̂aD+1 ∂un̂

aD+2 , (1.3)

where n̂(x,u) is an extension that satisfies n̂(x,0) =
(0,0, . . . ,0,1) and n̂(x,1) = n̂(x). The θ -term action then
endows the wave function with an amplitude given by a Wess-
Zumino-Witten term at level-1 [39,40]. Although the field
theory approach adopted in Ref. [24] gives a useful platform
for discriminating various classes of bosonic SPT states, there
remains the question of how the properties encoded by the
long wavelength description Eq. (1.2) are manifested at the
microscopic scale.

In this paper we investigate the effects of the θ term at the
microscopic level by studying the Euclidean partition function
of microscopic Hamiltonians of bosonic SPT states. According
to the work of Chen et al. [11], SPT phases can be characterized
by their “short-range entanglement,” in that an SPT ground
state can be connected to a trivial state by the action of a unitary
transformation that preserves the relevant global symmetry.
Recently, one of us [26], using ideas of entanglement spectrum,
has constructed explicit unitary transformations that give rise
to one-dimensional SPT chains with time-reversal andZn×Zn

symmetries, as well as two-dimensional SPT paramagnets
with Z2×Z2 symmetry, which are a generalization of the
Z2 paramagnet introduced by Levin and Gu in Ref. [13]. In
this paper, we shall then use the unitary mappings studied in
Ref. [26] to find an explicit form of the Euclidean partition
function for those classes of SPT states.

Expanding on the framework formulated by Chen and
coworkers [11], here we will investigate the structure of the
cocycles of 1D and 2D spin SPT phases using a path-integral
approach based on the standard mapping between quantum
and classical spin systems using transfer matrices [41,42]. A
recent treatment of 3D SPT phases has used a similarly inspired
approach [27]. Instead of a triangulation of the Euclidean
space-time, as used in Ref. [11], we will work with simple
stacked lattices in the Euclidean direction and show how
the resulting effective discrete Euclidean action embodies
the Berry phases of these SPT states. Thus, on our route
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to computing the partition function for the microscopic SPT
models considered here, we will be able to identify discrete
Berry phases that originate from quantum fluctuations of the
degrees of freedom, upon the evolution of the SPT system in
imaginary time. (For other studies on the role of Berry phase
in SPT systems, see Refs. [43–45].) To these discrete Berry
phases, which can be viewed as instanton effects, we will attach
a simple physical interpretation that will make the physics
of the long wavelength θ -term topological action manifest at
the microscopic scale in connection with the entanglement
properties of the SPT ground state [11,26]. More specifically,
after introducing our general approach in Sec. II, we derive
explicit forms in Sec. III for the 1D time-reversal invariant and
Zn×Zn invariant SPTs and for the 2D Levin-Gu model with
Z2 symmetry and present the resulting Berry phases for each
one of these cases.

II. GENERAL APPROACH

We are interested in evaluating the partition function

ZSPT = Tr (e− β HSPT ), (2.1)

where the spin Hamiltonian HSPT describes a bosonic SPT
phase in D-dimensional space. The partition function Eq. (2.1)
encodes (D + 1)-dimensional space-time quantum fluctua-
tions of the many-body system, with an Euclidean time
direction of length β = 1/T (inverse temperature) satisfying
periodic boundary conditions.

Our goal is to express the partition function Eq. (2.1)
in a local basis, in the process of which we will be able
to identify nontrivial discrete Berry phases originating from
quantum fluctuations of the local spins. These Berry phases
will establish a simple and intuitive picture of the SPT state
from the point of view of the space-time quantum fluctuations
of its microscopic degrees of freedom.

Important to our discussion is the fact that, if the D-
dimensional spatial manifold on which the SPT system lives
has no boundaries, the SPT Hamiltonian HSPT can be generated
from a trivial gapped paramagnetic Hamiltonian H0 via a
unitary, symmetry-preserving transformation W [11,26]:

HSPT = WH0 W
−1, (2.2)

where H0 describes a trivial paramagnet, i.e., a paramagnet
whose edge states can be gapped without symmetry violation.
In order to facilitate our obtaining of an explicit representation
of the partition function Eq. (2.1), we choose to work with
microscopic models in their zero correlation length limit [this
choice will not affect the Berry phases, which are the subject
of our attention in Eq. (2.1)]:

H0 = −h

N∑
i=1

Xi, [Xi,Xj ] = 0, ∀(i,j ). (2.3)

N is the number of lattice sites and h is a positive energy
scale. Xi is a Hermitian operator defined solely on site i. (In
its simplest form, Xi = σx

i is a Pauli matrix.) Due to the zero
correlation form assumed for H0, the Hamiltonian Eq. (2.2) is
a sum of mutually commuting operators,

HSPT = −h

N∑
i=1

Oi = −h

N∑
i=1

WXi W
−1. (2.4)

In order for the ground state of HSPT to possess nontrivial
entanglement, the transformation W cannot be reduced to a
product of on-site terms. As a consequence, the operator Oi

acts on site i and the neighborhood thereof.
Despite the distinct entanglement patterns encoded by

the ground states of H0 and HSPT, when expressed in the
same local basis, the unitary transformation Eq. (2.2) implies
that in a closed spatial manifold, both Hamiltonians have
the same spectra and, hence, the same partition function.
Nevertheless, the fundamental physics of the SPT system can
be unveiled by studying the quantum fluctuations of spins
between intermediate Euclidean “time slices” of Eq. (2.1).
These instanton events, as we will see by explicit computation,
give rise to nontrivial phase factors in Eq. (2.1), whereby spin
fluctuations in imaginary time are coupled to domain-wall-like
configurations in a way that is consistent with the underlying
global symmetry of the SPT state. We shall determine the
phase factors associated to these instanton events for some
cases of interest.

In order to carry out this program, we evaluate the trace in
Eq. (2.1) using the complete set of orthonormal many-body
basis states |σ 〉 = |σ1,σ2, . . . ,σN 〉, whereby the trivial, unique
ground state of H0 is represented as

|	0〉 = 1

D1/2

∑
σ

|σ 〉. (2.5)

D denotes the dimension of the Hilbert space and |	0〉 is a
product state expressed in the “ordered” basis |σ 〉 satisfying
Xj |	0〉 = |	0〉, for every j . In the ordered basis, all the
diagonal matrix elements of Xj vanish: 〈σ |Xj |σ 〉 = 0.

The advantage of working with the representation Eq. (2.5)
for the trivial ground state is that W is diagonal in the |σ 〉
basis: W |σ 〉 = ei W (σ ) |σ 〉. (See examples in Sec. III.) Hence,
the SPT ground state in the zero correlation limit reads

|	SPT〉 = 1

D1/2

∑
σ

ei W (σ ) |σ 〉. (2.6)

Normalization factors aside, ei W (σ ) is the SPT ground state
wave function in the |σ 〉 basis. Hence the phase factor eiW (σ )

in Eq. (2.6) plays the role of the WZW term in Eq. (1.3).
In order to explicitly capture the nontrivial quantum fluctua-

tions associated with the SPT Hamiltonian, we conventionally
represent the trace in Eq. (2.1) as:

ZSPT =
∑
σ (τ1)

· · ·
∑
σ (τM )

M∏
k=1

ZSPT[σ (τk),σ (τk+1)], (2.7a)

ZSPT[σ (τk),σ (τk+1)] = 〈σ (τk)| e− τ HSPT |σ (τk+1)〉 = ei [W (σ (τk))−W (σ (τk+1))] Z0[σ (τk),σ (τk+1)] ≡ ei � Wk,k+1 Z0[σ (τk),σ (τk+1)],

(2.7b)
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(a) (b)

FIG. 1. Figure 1(a) depicts the slicing of the partition function
into M intervals, as described by Eq. (2.7a). At each time slice,
we have an instantaneous representation of the D-dimensional SPT
system, which, without boundaries, is generically represented by a
circle. Figure 1(b) depicts the slicing of ZSPT[σ (τk),σ (τk+1)] into N

subintervals, as described by Eq. (2.10).

where, in Eq. (2.7a), we have introduced M time intervals
of length τk+1 − τk = τ = β/M with the periodic bound-
ary condition in imaginary time σ (τM+1) ≡ σ (τ1) implied.
[See Fig. 1(a).] Also, in Eq. (2.7b) we have used the unitary
transformation given in Eq. (2.2) to relate the imaginary time
evolution of the SPT Hamiltonian at each time slice with
Z0[σ (τk),σ (τk+1)] ≡ 〈σ (τk)| e− τ H0 |σ (τk+1)〉.

Since Z0[σ (τk),σ (τk+1)] > 0, all the nontrivial Berry
phases associated with quantum fluctuations of the SPT system
are given by the phase factor on the second line of Eq. (2.7b).
Moreover, this phase factor has the interpretation of a surface
term since it only depends on the configurations at the time
slices τk and τk+1.

While the phases appearing in Eq. (2.7b) account for
the space-time quantum fluctuation of the whole system
[recall that σ (τ ) refers to the many-body configuration
at time τ ], we can gain further information about the
nature of the SPT system by studying Berry phases picked
up by local spin fluctuations. In order to do this, we
divide each time interval (τk,τk+1) into N subintervals
(τk,τk + ε, . . . ,τk + jε, . . . ,τk + (N−1)ε,τk+1) ≡ (τk,0,τk,1,

. . . ,τk,j , . . . ,τk,N−1,τk,N ) of length ε = τ/N = β/(MN ) [see
Fig. 1(b)] and rewrite Eq. (2.7b) as

ZSPT[σ (τk),σ (τk+1)] =
∑

σ (τk,1)

∑
σ (τk,2)

· · ·
∑

σ (τk,N−1)

×
N∏

j=1

〈σ (τk,j−1)|ehεOj |σ (τk,j )〉.

(2.8)

In going from Eqs. (2.7b) to (2.8) we have used the fact that the
local operators Oj in Eq. (2.4) commute among themselves
and we have introduced the identity operator (N − 1) times in
the form of a complete summation over intermediate many-
body configurations σ (τk,1), . . . ,σ (τk,N−1).

We are now faced with the evaluation of the transfer
matrices between many-body configurations of local operators
ehεOj , which, straightforwardly, yields

〈σ (τk,j−1)|ehεOj |σ (τk,j )〉
= eiSj (τk,j−1,τk,j ) 〈σj (τk,j−1)|ehεXj |σj (τk,j )〉, (2.9a)

eiSj (τk,j−1,τk,j )

= ei[W (σ (τk,j−1))−W (σ (τk,j ))] �j (τk,j−1,τk,j ), (2.9b)

where �j (τk,j−1,τk,j ) ≡ ∏i 	=j

i δσi (τk,j−1),σi (τk,j ) enforces that all
spins at time slices τk,j−1 and τk,j be the same, except at site
j . Thus the phase eiSj (τk,j−1,τk,j ) in Eq. (2.9b) accounts for the
Berry phase contribution due to the quantum fluctuations of
a single spin at site j in the presence of an instantaneous
configuration of adjacent spins. Therefore, the contribution of
the partition function between time slices τk and τk+1, which
takes into account the Berry phases picked up by local spin
fluctuations, can be cast in the form

ZSPT[σ (τk),σ (τk+1)] =
∑

σ (τk,1)

∑
σ (τk,2)

· · ·
∑

σ (τk,N−1)

N∏
j=1

eiSj (τk,j−1,τk,j )

×〈σj (τk,j−1)|ehεXj |σj (τk,j )〉. (2.10)

It is worthwhile to remind the reader that, even though, by
construction, the right hand sides of Eqs. (2.7b) and (2.10)
are identical, the latter equation makes evident the Berry
phases due to local instanton effects while the former equation
captures the quantum fluctuations of the entire D-dimensional
system as it propagates in imaginary time.

III. EXAMPLES

A. D = 1, time-reversal symmetric SPT state

A one-dimensional periodic SPT chain, invariant under
time-reversal ZT

2 operation,

� =
⎛
⎝ N∏

j=1

σx
j

⎞
⎠ K, (3.1)

(K denotes complex conjugation) can be constructed using the
unitary transformation [26]

WTRS =
N∏

j=1

ei θi,i+1 (
1−σ

z
i

σ
z
i+1

2 ), θi,i+1 = π

2
, (3.2)

where at every site of the chain there is a spin-1/2 degree
of freedom represented by a Pauli operator σa

i with a =
1,2,3 = x,y,z. The unitary operator Eq. (3.2) endows a
many-body basis state |σ 〉 = |σ1,σ2, . . . ,σN 〉 with a phase
factor exp {i(π/2)Nd(σ )} = ±1, where Nd(σ ) denotes the
(even) number of domain walls in the state |σ 〉. Moreover,
this transformation commutes with the time-reversal operator
Eq. (3.1) and each local unitary piece creates a maximally
entangled state between nearest neighbor spins [26].
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So, under Eq. (3.1), one can map the trivial time-reversal
symmetric ground state

|	0〉 =
( |↑〉 + |↓〉√

2

)⊗N

= 1

2N/2

∑
σ

|σ 〉 (3.3a)

of

H0 = −h

N∑
j=1

σx
j (3.3b)

into

|	TRS〉 = WTRS |	0〉 = 1

2N/2

∑
σ

ei π
2 Nd(σ )|σ 〉, (3.4a)

which is the unique ground state of the SPT Hamiltonian

HSPT = WTRS H0 W
−1
TRS = h

N∑
j=1

σ z
j−1 σx

j σ z
j+1. (3.4b)

It is immediate to see that the SPT Hamiltonian Eq. (3.4b),
when open boundary conditions are imposed, possesses
twofold degenerate states per edge.

Now, applying our discussion of Sec. II to the time-reversal
symmetric SPT Hamiltonian Eq. (3.4b) yields the phase
contribution Eq. (2.9b) due to a single spin fluctuation to be

eiSj (τk,j−1,τk,j ) = ei π(
σj (τk,j−1)−σj (τk,j )

2 ) (
σj+1(τk,j )−σj−1(τk,j )

2 ), (3.5)

[the product of delta functions �j (τk,j−1,τk,j ) in Eq. (2.9b)
is omitted in Eq. (3.5)]. Combining the result Eq. (3.5) due
to single spin processes yields, according to Eq. (2.7b), the
total Berry phase as the one-dimensional SPT chain evolves in
imaginary time:

ei � Wk,k+1 = ei π
2 [Nd(σ (τk))−Nd(σ (τk+1))]. (3.6)

Equation (3.5) implies that a single spin fluctuation at site j

contributes a phase −1 to the partition function if the neighbor
spins are antiparallel and +1 if they are parallel to each other.
Summing up these individual phase contributions throughout
the chain gives ei � Wk,k+1 = −1 if the change in domain wall
number is 4m + 2 (m ∈ Z) and ei � Wk,k+1 = +1 if the change
in domain wall number is 4m.

B. D = 1,Zn×Zn symmetric SPT state

We consider a periodic chain with an even number N of
sites where, at every site j , there exists a clock operator σj and
its conjugate operator τj satisfying the algebra

σn
j = τn

j = 1, σ
†
j = σn−1

j , τ
†
j = τn−1

j ,

τ
†
j σj τj = ω σj , ω ≡ ei 2 π

n . (3.7)

For the n = 2 case, Eq. (3.7) admits a Hermitian repre-
sentation in terms of Pauli matrices σj = σ z

j and τj = σx
j ;

otherwise these clock operators are not Hermitian (see
Ref. [46] for a recent discussion). We shall denote by
|σi〉, for σi ∈ {1,ω, . . . ,ωn−1}, the eigenstates of σi , and by
|σ 〉 = |σ1, . . . ,σN 〉 the corresponding many-body state. (The
distinction between operators and their eigenvalues should be
clear from the context.)

We choose to work with a representation in which the gen-
erators of the Zn×Zn symmetry implement transformations
σj → ω σj independently for the operators on even and odd
sublattices, and hence are given by

Ŝ
(1)
Zn

=
∏

j∈even

τj , Ŝ
(2)
Zn

=
∏

j∈odd

τj . (3.8)

A trivial ground state and its parent Hamiltonian, both
invariant under the action of the operators in Eq. (3.8), are
given by

|	0〉 =
( |1〉 + |ω〉 + · · · + |ωn−1〉√

n

)⊗N

= 1

nN/2

∑
{σ }

|σ 〉, (3.9a)

H0 = −h

N∑
j=1

(τj + τ
†
j ). (3.9b)

There exist n − 1 unitary transformations W (p)
n ,p ∈

{1, . . . ,n − 1} that (i) map the product state Eq. (3.9a) into
a new state where every spin is maximally entangled with
its nearest neighbors and (ii) commutes with the symmetries
Eq. (3.8) [26]:

W (p)
n = e

i
2πp

n

∑
j

∑n−1
a=1

(σ
†
2j

σ2j+1)a−(σ
†
2j−1 σ2j )a

(ωa−1) (ω̄a−1)

W (p)
n |σ 〉 ≡ ei W (p)

n (σ ) |σ 〉, W (p)
n (σ ) ∈ R. (3.10)

Each of the W (p)
n for p 	= 0 gives rise to an SPT ground state,

and hence, there are n − 1 SPT classes [11,24].
With the transformation Eq. (3.10), one then arrives at the

SPT Hamiltonian [26]

H (p)
n = W (p)

n H0
(
W (p)

n

)−1 = −h
∑

j

{[τ2j (σ2j−1 σ
†
2j+1)p

+ τ2j+1 (σ †
2j σ2j+2)p] + H.c.} (3.11)

and its ground state∣∣	(p)
n

〉 = W(p)
n |	0〉 = 1

nN/2

∑
{σ }

ei W (p)
n (σ )|σ 〉. (3.12)

The SPT Hamiltonian Eq. (3.11), when open boundary
conditions are imposed, possesses n-fold degenerate states per
edge.

Now, applying our discussion of Sec. II to the SPT
Hamiltonian Eq. (3.11) yields the phase contribution Eq. (2.9b)
due to a single spin fluctuation to be

eiSj (τk,j−1,τk,j ) = eηj i 2π
n

p
∑n−1

a=1[
σ̄ a
j

(τk,j−1)−σ̄ a
j

(τk,j )

ω̄a−1 ][
σa
j+1(τk,j )−σa

j−1(τk,j )

ωa−1 ],

(3.13)

where ηj = 1 if j is even, and ηj = −1 if j is odd. [The
product of delta functions �j (τk,j−1,τk,j ) in Eq. (2.9b) is
omitted in Eq. (3.13).] According to Eq. (3.13) the Berry
phases due to a single spin fluctuation in imaginary are
nonzero provided the neighbor spins are not parallel to each
other. Using the expression Eq. (A6) in the appendix, one
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can show that if the spin at site j fluctuates between values
σj (τk,j−1) = ω�0+� and σj (τk,j ) = ω�0 , for �0,� ∈ {0, . . . ,

n − 1}, then the expression Eq. (3.13) reduces to the simple
form eiSj (τk,j−1,τk,j ) = (σ̄j+1 σj−1)ηj � p.

Combining the result Eq. (3.13) due to single spin processes
yields, according to Eq. (2.7b), the total Berry phase as the
one-dimensional Zn×Zn symmetric SPT system evolves in
imaginary time:

ei � Wk,k+1 = ei [W (p)
n (σ (τk))−W

(p)
n (σ (τk+1))]. (3.14)

C. D = 2,Z2 symmetric SPT state

We now analyze the 2D Z2 SPT model proposed by Levin
and Gu. [13] This is an exactly solvable model where spin-1/2
degrees of freedom are defined on the vertices of a triangular
lattice. The Hamiltonian of the system is

HZ2 = h
∑

j

σ x
j e

i π
4

∑j

〈�,�′ 〉 (1−σ z
� σ z

�′ ), h > 0, (3.15)

where the summation
∑j

〈�,�′〉 extends over nearest neighbor
spins around the site j . The ground state of the Levin-Gu
model is ∣∣	Z2

〉 = 1

2N/2

∑
σ

(−1)L(σ )|σ 〉, (3.16)

where L(σ ) counts the number of loops, defined in the dual
(hexagonal) lattice, associated with domain wall configura-
tions of the the many-body state |σ 〉 in the σ z basis.

There exists a unitary transformation WZ2 , connecting
the Levin-Gu Hamiltonian to a trivial 2D paramagnetic
Hamiltonian

H0 = −h
∑

j

σ x
j , (3.17)

whose ground state is a simple product state

|	0〉 = 1

2N/2

∑
σ

|σ 〉. (3.18)

Such transformation, having the property

WZ2 |σ 〉 = (−1)L(σ ) |σ 〉, (3.19)

reads

WZ2 =
∏
j

e−i π
6 σ z

j Dj ({σ z}), (3.20)

where Dj ({σ z}) = ∑j

〈��′〉 (
1−σ z

� σ z

�′
2 ) defines the domain wall

operator around the close loop formed by the six sites nearest
neighbors of site j .

One verifies that

πx
j ≡ WZ2 σx

j W−1
Z2

= −σx
j ei π

4

∑
〈ik〉;j (1−σ z

i σ z
k ),

π
y

j ≡ WZ2 σ
y

j W−1
Z2

= −σ
y

j ei π
4

∑
〈ik〉;j (1−σ z

i σ z
k ),

πz
j ≡ WZ2 σ z

j W
−1
Z2

= σ z
j .

(3.21)

As seen in Eq. (3.21), the unitary transformation Eq. (3.20)
gives rise to a new set of Pauli operators whose phase factors
depend on the domain wall operator Dj ({σ z}) surrounding

(b)(a)

(c) (d)

FIG. 2. Figures 2(a) and 2(b) capture the fluctuation of the middle
spin giving a phase eiSj = −1 [Eq. (3.22)], as the configuration of
nearest neighbor spins has Dj = 0. Figures 2(c) and 2(d) capture the
fluctuation of the middle spin giving a phase eiSj = +1 [Eq. (3.22)],
as the configuration of nearest neighbor spins has Dj = 2.

site j . Notice that since this domain wall operator takes even
integer values, the phase factors in Eq. (3.21), and hence πa

j ,
are Hermitian.

From the explicit form of the unitary transformation
Eq. (3.20), we find, according to Eq. (2.9b), that the Berry
phase contribution due to a single spin fluctuation at site j is
given by

eiSj (τk,j−1,τk,j ) = e
−iπ(

σj (τk,j−1)−σj (τk,j )

2 ) [1+ 1
2

∑j

〈�,�′ 〉(
1−σ�(τk,j )σ

�′ (τk,j )

2 )]

= e−iπ(
σj (τk,j−1)−σj (τk,j )

2 ) (1+ 1
2 Dj (τk,j )). (3.22)

Hence, the spin fluctuation at site j contributes with −1
to the partition function if the configuration of surrounding
spins has Dj = {0,4}, while it contributes with +1 to the
partition function if the configuration of surrounding spins has
Dj = {2,6} (see Fig. 2). Moreover, as the full two-dimensional
system evolves in imaginary time, it picks a phase factor

ei � Wk,k+1 = ei π[L(σ (τk))−L(σ (τk+1))], (3.23)

which is −1 if �L = 1 (mod 2), or +1 if �L = 0 (mod 2).

IV. SUMMARY AND DISCUSSION

We have studied the path integral of bosonic SPT systems,
focusing on the manifestation of the so called topological θ

terms on the lattice scale. We did so by investigating lattice
models of bosonic SPT states, which allowed us to compute
the Berry phase contributions appearing in the path integral
due to the quantum fluctuations of local degrees of freedom.
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In the examples we have considered, these nontrivial Berry
phases involve the coupling of local spin fluctuations with sur-
rounding domain wall like configurations, and thus illustrate,
in a intuitive way, the connection between Berry phase effects
and the nontrivial entanglement characteristic of SPT states.

Although here we have focused entirely on bosonic sys-
tems, we close by mentioning some works that address the
character of Berry phases in fermionic systems. At the level of
relativistic free field theories (coupled to gauge fields) this
problem has been studied in the high-energy literature in
the context of anomalies and obstruction to gauging certain
symmetries [47–49]. It has been known from that work that
there is indeed a connection between these anomalies and
Berry phases. Also, a recent discussion of Berry phases
in fermionic SPT systems that can be described by band
theory and free fermions has been given in Ref. [50]. The

bosonic cases studied here are strongly coupled and cannot
be examined by the same methods as in the field-theoretic
anomalies. The nature of Berry phases in strongly coupled
fermionic systems is an interesting open problem.
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APPENDIX: Zn OPERATORS

A possible representation for the (σ,τ ) operators satisfying
Eq. (3.7) is as follows

σj =

⎛
⎜⎜⎜⎝

1 0 0 0
0 ω 0 0

0 0
. . . 0

0 0 0 ωn−1

⎞
⎟⎟⎟⎠, τj =

⎛
⎜⎜⎜⎜⎝

0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
... 0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎠, (A1)

where σ is a clock variable (in the diagonal representation) and τ is a raising and lowering operator. Consider the following
Hermitian operator:

q(σ ) = n − 1

2
+

n−1∑
a=1

σa

ω̄a − 1
. (A2)

We now prove that this operator satisfies

q
(
σ = ωδ = ei 2π

n
δ
) = δ, δ = 0, . . . ,n − 1. (A3)

In order to prove Eq. (A3), we start by showing that q(ω0) = 0:

q(ω0) = n − 1

2
+

n−1∑
a=1

1

ω̄a − 1
= n − 1

2
+ Re

[ n−1∑
a=1

ωa − 1

|ωa − 1|2
]

= n − 1

2
+

n−1∑
a=1

(
−1

2

)
= 0. (A4)

Now it is simple to verify that the following relation holds:

q(ω̄σ ) = q(σ ) +
n−1∑
a=1

σa. (A5)

From the fact that
∑n−1

a=1 σa = n − 1 if σ = ω0 = 1 and
∑n−1

a=1 σa = −1 if σ = ωδ , δ ∈ {1, . . . ,n − 1}, then it is possible to use
Eq. (A5) to establish Eq. (A3) by induction. Thus combining Eq. (A2) and Eq. (A3) yields

exp

{
i

2 πp

n

[
n − 1

2
+

n−1∑
a=1

(σ †
j σj ′ )a

ω̄a − 1

]}
= (σ †

j σj ′ )p, (A6a)

exp

{
−i

2 πp

n

[
n − 1

2
+

n−1∑
a=1

(σ †
j σj ′ )a

ωa − 1

]}
= (σ †

j σj ′ )p, (A6b)

for p ∈ {0, . . . ,n − 1} (mod n).
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