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Kinetic magnetism at the interface between Mott and band insulators
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We show that the interplay of a high-density two-dimensional electron gas and localized electrons in a
neighboring Mott insulator leads to kinetic magnetism unique to the Mott and band insulator interface. Our
study is based upon a bilayer Hubbard model at U = ∞ with a potential difference between the two layers. We
combine analytic results with DMRG simulations to show that magnetism, and especially ferromagnetism, is
greatly enhanced relative to the proximity of the two subsystems. The results are potentially relevant to recent
experiments, suggesting magnetism in RTiO3/SrTiO3 heterostructures.
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I. INTRODUCTION

Kinetic magnetism is a very old and elegant idea, whereby
magnetic order appears solely due to the motion of the
correlated itinerant electrons. The concept dates back to an
argument by Nagaoka from 1966 in which he proved that
ferromagnetism must exist in the Hubbard model [1]. While
there have been attempts to extend these results to a wide
range of models [2,3], it has become apparent that Nagaoka’s
ferromagnetism is a subtle effect that seems to be destroyed
for any straightforward extension to realistic parameters [4].
It remains an outstanding goal to achieve this effect in an
experimentally realizable model.

In this paper, we consider the relevance of this venerable
idea to artificial heterostructures of perovskite transition metal
oxides. These systems have emerged as a novel venue to
explore correlated electron physics in a highly controlled
environment [5]. The dominant motif is that of a cubic lattice
of Ti d orbitals, with from 0 to one electron per site. This is a
canonical Mott material, with small overlap-induced hopping
among neighboring d orbitals, and large onsite Hubbard
repulsion U . Most of the physics explored experimentally
originates from the so-called “polar discontinuity.” This
produces a high-density two-dimensional electron gas (2DEG)
at the interface between two such materials with different
stacking of polar and nonpolar atomic layers, ideally consisting
of half an electron per planar Ti unit cell for the case of a unit
polar discontinuity. Correlation effects may be observed for
these electrons.

Such a 2DEG is in principle induced for any such polar
structure, independent of other details of the constituent
materials. For example, it should occur at the junction between
two band insulators, LaAlO3/SrTiO3 (LAO/STO), which is
the most studied such oxide interface [6–8]. In practice,
the electron concentration observed in LAO/STO is greatly
reduced from the expected value, for reasons which are not
clear. A polar discontinuity 2DEG is also expected for the
interfaces between Mott insulating titanates RTiO3 (where R

is a rare earth) and SrTiO3 (STO), where the proper electron
density has been measured experimentally [9–11]. These latter
studies have been interpreted by treating the STO as a quantum
well, viewing the RTiO3 (RTO) as entirely inert and serving
only to confine the electrons of the 2DEG. When the 2DEG
is sufficiently narrowly confined on both sides by RTO,

indications of magnetism in the 2DEG are found [12,13]. In
this paper, we tentatively connect this observation to the storied
problem of kinetic magnetism.

A cautionary note is in order. Ferromagnetism is ubiquitous
in theoretical treatments of correlated electron materials
[14,15]. Most theoretical descriptions of magnetism rest on
a mean field analysis, which notoriously overestimates the
tendency to ferromagnetism. The vast majority of theoretical
treatments of oxide heterostructures fit into this category,
including all first principles calculations of magnetism, and
even sophisticated variants like dynamical mean field theory.
While such calculations are useful and suggestive, a controlled
approach is desirable.

We take a distinct view of polar Mott insulator and band
insulator (MI/BI) interfaces. Unlike a band insulator like LAO,
the insulating RTO contains a very high density of correlated
localized electrons, even higher than in the 2DEG. We suggest
that the mobile electrons in STO can have a dramatic effect on
these localized electrons, driving magnetism. We introduce
a model that takes into account both the Mott insulating
and itinerant electron degrees of freedom. We then present
a controlled limit whereby kinetic magnetism in the interface
emerges independent of the bulk physics of either material.
We will further support this analysis with unbiased numerical
evidence, which constitutes some of the first exact numerical
results on these systems.

II. THE MODEL

We consider a minimal model that captures the physics of
the MI/BI interface. It consists of a two layer square lattice, as
shown in Fig. 1, with one layer each for the MI and BI. If the
two were decoupled, the MI would have “exactly” one electron
per site, and the BI a lower concentration n per site, where we
expect n � 1/2, the maximum achievable if all the electrons in
the 2DEG are in the first layer of the BI. In reality, interlayer
hopping allows the charge to redistribute, and we include a
(large) potential offset � to favor more electrons in the MI
layer, and fix the total electron concentration to 1 + n per two
Ti sites. We further stress our use of an effective single-band
model, which captures the effects of orbital splitting at the
interface [16,17] and includes only the electrons, which make
up the large majority of the Fermi surface [18–20].
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FIG. 1. The bilayer lattice geometry. For the numerical simula-
tions, an elongated geometry that is optimal for the DMRG algorithm
was used.

We model interactions by the extreme limit U = ∞, which
forbids double occupancy. The justification is that exchange in
the RTO titanates is quite weak; for example, the most studied
materials with R = Sm, Gd show antiferromagnetism and
ferromagnetism, respectively, with Tc ≈ 30K in both cases
[21], indicating exchange |J | is of order 1 meV, while t ∼
0.3 eV and U ∼ 4–8 eV. Since J ∼ t2/U � t,U , the very
small exchange supports the large U limit.

With this motivation, the U = ∞ limit maps the Hubbard
model to the so-called “t-J model” with J = 0:

H = −t
∑
〈ij〉zσ

Pc
†
iσ zcjσzP − t

∑
iσ

P(c†iσ1ciσ2 + H.c.)P

+
∑
izσ

(�δz,1 − μ)niσz, (1)

where P = ∏
i(1 − ni↑ni↓). The only free parameters are the

filling 1 + n = 1
LxLy

∑
izσ 〈niσz〉 (or chemical potential μ) and

the ratio of hopping to the potential difference (t/�).
The single-layer, single-band, U = ∞ Hubbard model has

been the subject of many studies. At half filling, the system
is a Mott insulator since the projection operator prevents
electron hopping. Nagaoka famously showed in Ref. [1] that
when the half-filled system is doped with a single hole, the
exact ground state is the fully polarized state with maximum
Stotal. This magnetism is the result of delicate quantum effects
arising from the kinetic motion of the single hole through the
lattice. The question of whether this ferromagnetism can be
extended to finite doping has been attacked via mean field
calculations [22], variational studies [23,24], and unbiased
numerical approaches including quantum Monte Carlo [25]
and most recently DMRG calculations [26]. While it appears
that a ferromagnetic metal is stable over a finite range of filling
n, it is clear that at lower densities (0 � n � 0.75), the ground
state is a paramagnetic metal. In this paper we will show that
the bilayer model with finite band separation, �, contains much
richer magnetic structure at all filling densities. In particular,
at large band separation we are able to stabilize Nagaoka’s
ferromagnetism over a wide range of electron densities n.

III. PERTURBATIVE REGIME (� � t)

In the limit of large � we can demonstrate analytic control
over the model. At � = ∞, the two layers are completely
decoupled, where the upper layer is a degenerate spin system
and the bottom layer behaves according to the results of
Ref. [26]. In particular, for 〈n〉 < 3

4 , the bottom layer is a
paramagnetic metal. If we now tune away from � = ∞, we
can derive an effective low-energy Hamiltonian perturbatively

in (t/�). To lowest order in the perturbative expansion,

Heff = H00 + H01
1

E − H11
H10. (2)

where H10 hops an electron from the top to the bottom layer,
and H01 brings us back into the ground-state subspace of no
holes in the top layer. Assume that the density in the bottom
layer is such that there is a paramagnetic metal. In this case,
the virtual contribution to the energy when there is a single
hole in the top layer, by Nagaoka’s result, is minimized when
the top layer is a fully polarized ferromagnet. Then for nearly
all densities at large �, the degenerate ground-state subspace
splits in a way that causes the ferromagnetic state to become
the true ground state. However, this argument breaks down at
the lowest electron densities, since here there are no electrons
present at different spatial sites to fill the virtual hole in the
top layer. The electron is then effectively localized and the
ferromagnetism is lost.

We will now make this argument precise. We expand the
Hamiltonian to order (t/�)3, by using the identity

1

ω − H
= 1

ω
+ 1

ω
H

1

ω − H
. (3)

The lowest-order effect, which occurs at order (t/�)2, is

H ′(1) = − t3

�2

∑
〈ij〉

∑
σσ ′σ ′′

c
†
i2σ ci1σ c

†
j2σ ′ci2σ ′c

†
j1σ ′′cj2σ ′′

= − t3

�2

∑
〈ij〉

∑
αβ

[
�Si · �Sj δαβ + 1

2
(�Si + �Sj ) · �σαβ

− i(�Si × �Sj ) · �σαβ

]
Pc

†
j1αci1βP. (4)

This expression suggests an obvious way to decouple the
terms at the mean field level, by taking expectation values
of operators in the same layer. This leaves us with an effective
spin model for the upper layer and a doped electron system in
the bottom layer. The antisymmetric form of the third term in
Eq. (4) implies we can ignore its mean field effect at this order
in perturbation theory. The first term then gives the effective
interaction in the upper layer as a ferromagnetic Heisenberg
interaction with JFM = −t3〈c†j ci〉/�2 ∼ (t3n)/�2.

At zero temperature, the energy can be lowered at the
mean-field level if the upper layer forms a fully polarized
ferromagnet. The second term of Eq. (4) then provides an
effective magnetic field in the ordering direction of the upper
layer spins. If n → 0 then JFM → 0 also, and we must look at
the next order in perturbation theory. At this order, we derive
additional antiferromagnetic interactions, which compete with
the lowest order term. These can be written as

H ′(2) = 4t4

�3
〈(1 − n)〉2

∑
〈ij〉

�Si · �Sj

+ t4

�3

∑
〈〈ijk〉〉

〈c†i ck〉[(�Si + �Sj + �Sk) · (�Si + �Sj + �Sk)],

(5)
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FIG. 2. We embed the classical phases of the J1-J2-J3 Heisenberg
model into our bilayer Hubbard phase diagram, using the form of
J1, J2, and J3 given in the text. These results become rigorous for
large �/t . The highest densities are ferromagnetic by Nagaoka’s
theorem.

where 〈〈ijk〉〉 implies the sum is over all connected clusters
of three sites on the same layer. This therefore describes next
and third nearest-neighbor interactions.

When (t/�) is small, we can treat the upper layer of our
bilayer model as a spin system with nearest, next-nearest,
and third-nearest neighbor interactions. The resulting effective
Hamiltonian is equivalent to the so called J1-J2-J3 Heisenberg
model. The parameters, J1, J2, and J3, are related to the original
parameters t and � via the results of the previous section. J1

can thus be either ferromagnetic (FM) or antiferromagnetic
(AFM), but J2 and J3 are always antiferromagnetic. Away from
n ≈ 1 and �/t ≈ ∞, this effective Hamiltonian is frustrated.
While a full quantum solution for such a model on the square
lattice is still lacking, the classical solution is well understood
[27–31]. We embed this classical solution in the t − n phase
diagram in Fig. 2. There are four distinct phases. When � is
large, J1 is large and positive and the ground state is a simple
ferromagnet. At lower densities, J1 is large and negative and
the system is in a Néel phase. Between these limits, the two
contributions to J1 nearly cancel, and the second and third
neighbor terms become important. In these cases the ground
state is either a striped phase with wave-vector peaked at (0,π )
or a spiral phase, which interpolates between the striped and
FM or the striped and Néel phases. We note that, quantum
mechanically, the regime of competing exchanges might host
another exotic state such as a valence bond solid or quantum
spin liquid.

IV. INSTABILITY OF FERROMAGNETISM

We next study the instability of ferromagnetism using a
variational method. Since double occupancy is forbidden auto-
matically in the fully polarized or “half-metallic ferromagnet”
(HMF) state due to fermi statistics, its energy can be calculated
exactly. We then can prove that this state is not the ground state
if we find any state with lower variational energy. We consider

(a) (b)

FIG. 3. Results of (a) the variational calculation and (b) the
Gutzwiller approximation. (a) The stability of the fully polarized
FM state to the Gutzwiller projected trial state with a single flipped
spin. The FM state becomes unstable inside the area bounded by the
solid line. (b) Ground-state energy with respect to n1 = ∑

σ 〈niσ1〉
calculated by Gutzwiller approximation at n = 0.

the same trial state as in Ref. [24],

|ψ〉 = Pψ
†
↓|FM′〉, (6)

ψ↓ =
∑
iα

ξiαc
†
iα↓, (7)

where |FM′〉 = c�kF
|FM〉 is the fully polarized metal with one

less electron than |ψ〉, and P is the Gutzwiller projection
operator, which forbids double occupancy of any site, and ξiα

are variational parameters.
Further details of the variational calculation are given in the

Appendices. The results are shown in Fig. 3(a). The trend is
toward increased ferromagnetism for larger �, in agreement
with the perturbative results. This implies that for large enough
hole concentrations, the Nagaoka state is unstable to flipping
an electron spin, consistent with the intuitive picture. The
instability, however, weakens for larger � and we could not
find an unstable region for � � 6.5.

We next turn our attention to the metal-insulator transition
(MIT) at n = 0 with increasing �. To investigate the MIT,
we here study the model in Eq. (1) by the Gutzwiller approx-
imation assuming a paramagnetic solution [32–35]. In this
framework, the MIT is characterized by the absence of elec-
trons in the bottom layer. As is shown in Fig. 3(b), this occurs
at �  8t . This is consistent with our DMRG results, where
we find the single particle excitation gap Eg = E(n+ 1) −
2E(n) + E(n − 1) becomes nonzero continuously in the four-
leg ladder at � = 6t .

V. NUMERICAL RESULTS

We will now demonstrate the consistency of our analytic
arguments with unbiased numerical results. We performed a
series of DMRG calculations on bilayer systems of up to six-
leg ladders. The total number of sites is then 2 × 24 × 6. We
keep 4000 to 6000 states and the truncation error is of the order
of 10−6 in the ferromagnetic phase, but increases to 10−4 in
the paramagnetic phase.

In our DMRG set up, we first combine the two-layer system
into an effective one-layer system. The new rung index is
Rnew

x = 2 ∗ (Rx − 1) + τ where Rx is the rung index of each
layer, and τ = 1, 2 is the layer index. The DMRG study for the
effective one-layer system follows the standard DMRG for a
cylinder. The two-layer system is reflected in the Hamiltonian
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FIG. 4. The structure factors for the 6 × 24 × 2 system for (from
top to bottom) � = 4, 6, and 10. The highest densities are always
ferromagnetic. Néel order becomes more stable for smaller �, and
the intermediate regions show no strong peaks.

of the effective one-layer system (which has a doubled unit
cell along x, besides the open boundary conditions we used).
The convergence crucially depends on which state we obtain in
the different parameter regimes. For the ferromagnetic ground
state, we are able to go to a large total Sz subspace, which
has a substantially reduced Hilbert space dimension. For other
phases (the metallic phase in particular), DMRG indeed has
a large truncation error and the results are not converged for
such a bilayer system (which is not the focus of our study).

Due to the difficulty of the simulations, we limit our search
over phase space to values of �/t = 4, 6, and 10 and the
fillings n = 0, 0.25, 0.5, 0.75, and 0.875. We focus mainly on
the spin-spin structure factor S(q) = ∑

j ei �q·�xij 〈�Si · �Sj 〉. These
results are summarized in Fig. 4.

For n � 0.75 and all � � 4, we find very large peaks in the
structure factor at wave-vector (qx,qy) = (0,0), consistent with
a nearly fully polarized ground state. In all cases, the total spin
S satisfies S � 0.90Smax. In fact, for {n = 0.875; � = 4,6},
we find S � 0.98Smax. Note that this does extend the range of
ferromagnetism from the results of Ref. [26], which find the
HMF in the single-layer model only up to fillings n = 0.8.

At the lowest densities n = 0 and n = 0.25, we find very
strong agreement with our predicted results from perturbation
theory. At {n = 0,� = 6, 10}, there are large peaks in the
structure factor at the (π, π ) wave vector. This suggests the
presence of strong staggered magnetism consistent with a Néel
phase. For n = 0.25, we find a smaller Néel peak at � = 6,
which then disappears as � is increased to � = 10. This is
again consistent with our perturbative results, which suggest
that AFM exchange is stronger for smaller �.

From the classical phase diagram of the effective perturba-
tive spin model we expect striped or spiral order to interpolate

between the Néel and FM phases. Our results on six-leg ladders
for {n = 0.5; � = 6, 10} and {n = 0.25; � = 10} show no
strong evidence of magnetic order. We do observe small peaks
that may presage spiral or stripe order in larger systems.

We provide further evidence for this magnetic ordering in
the Appendices, by calculating the momentum distribution
function.

Finally, we would like to stress that although ferromag-
netism occurs over a smaller range of densities in the numerical
results, our perturbative phase diagram must be exactly correct
for sufficiently large �. However, it is possible that the range
of � accessible in our simulations is not large enough to see
the full extent of this effect.

VI. CONCLUSIONS

In closing we note that a more faithful representation of the
oxide interface would include additional complications such
as multiple t2g electron orbitals and super-exchange interaction
J . For R = Gd, Sm, which are strongly distorted from the cubic
structure, the intrinsic J is so weak that the kinetic mechanism
described here is dominant or at least competitive with J , and
orbital splittings are large. In general, however, these effects
may work to stabilize certain types of magnetic order [36].
For example, directional hopping of the t2g orbitals may act
to favor ferromagnetism for smaller values of �. Our model
avoids these complications by considering a simple limit where
only the filling n and band offset � are free parameters, yet
nevertheless provides a picture of the physics. We suggest that
scattering experiments to directly probe the magnetic order in
the vicinity of these interfaces would be the most direct test of
our theoretical predictions.
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APPENDIX A: MOMENTUM DISTRIBUTION FUNCTION

In this section, we present the momentum distribution
function as calculated using DMRG for a six-leg ladder and
� = 4. We can estimate the position of the Fermi surface from
the apparent discontinuity in the distribution function. We only
show the results for � = 4. We again exclude 2LyLx/4 sites
on each end of the ladder for the purpose of reducing boundary
effects.

For the largest two densities, n = 0.75 and n = 0.875, the
volume enclosed by the Fermi surface, as shown in Fig. 5,
is Vol/(2π )2 = 0.75 and 0.875, respectively. This Luttinger
volume is consistent with a polarized Fermi gas, whereby
the upper band is completely filled and every electron fills a
different momentum state in the lower band. The discontinuity
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FIG. 5. The momentum distribution function of the six-leg
bilayer model, for � = 4 and high electron densities. The Luttinger
volume is consistent with a polarized state. We show only the ky cuts
that are not related by inversion symmetry.

gives the quasiparticle residue. We see that this value is slightly
less than that of a noninteracting polarized Fermi gas, signaling
the fact that the ground state here is nearly fully polarized with
a few flipped spins (i.e., S > 0.90Smax).

Figure 6 shows the same calculation for n = 0.25 and n =
0.5. The top layer is filled very uniformly, with all momentum
states occupied. The Fermi surface then encloses a volume
equal to half that of the number of electrons in the bottom
layer. This is consistent with the small Fermi volume of an
unpolarized Fermi liquid. For n = 0.25 the structure factor
indicates the presence of Néel order, which implies there is a
doubling of the unit cell. This allows the upper layer electrons
to form a completely filled band so that only the lower layer
electrons contribute to the Luttinger volume. For n = 0.5, we
find the same Luttinger volume as the n = 0.25 case. Here,
however, the structure factor showed no evidence of magnetic
order. The fact that only the lower layer electrons contribute
to the Fermi volume, however, rules out the possibility of a
trivial paramagnetic metal. If the absence of magnetic order
survived to the thermodynamic limit, this would be the FL∗

phase, which describes a quantum paramagnetic metal with
a “small” Fermi volume. We also see that the quasiparticle

FIG. 6. The momentum distribution function for n = 0.25 and
n = 0.5. With the smaller Luttinger volume, the discontinuity now
gives twice the quasiparticle residue.

FIG. 7. When n = 0, and at � = 4, there appear to be no sharp
discontinuities.

residue is much smaller in this regime, indicating that the
ground state here is a strongly interacting state.

Finally, we look at the case when n = 0. For this filling,
there exists a metal insulator transition at a critical �c. When
� = 4, we are on the metallic side of this transition. From
Fig. 7, we see no apparent discontinuities in the momentum
distribution. This could indicate the existence of a non-
Fermi liquid ground state in this parameter range. Note that
although we are on the metallic side of the MIT, the structure
factor shows a small (π, π ) peak. This type of spin-density
wave transition coupled to a Fermi surface has been studied
extensively in the literature and is strongly suspected to show
non-Fermi liquid behavior.

APPENDIX B: VARIATIONAL RESULTS

In the main text, we show the instability of the fully
polarized ferromagnetic state by comparing the energy to a
trial state. Here, we present details of the method we used.

In the variational calculation, we consider a trial state

|ψ〉 = Pψ
†
↓|FM′〉, (B1)

ψ↓ =
∑
iα

ξiαc
†
iα↓, (B2)

where |FM′〉 = c�kF
|FM〉 is the fully polarized metal with one

less electron than |ψ〉, and P is the Gutzwiller projection
operator, which forbids double occupancy of any site, and ξiα

are variational parameters.
With some calculation, we obtain

ε↓ = 〈ψ |H − EFM|ψ〉
〈ψ |ψ〉 =

∑
k

ξ̂khkξ̂k, (B3)

where EFM is the ground-state energy for the fully polarized
state and ξ̂k = (ξk1,ξk2) with ξkα = ∑

i ξiα exp(i�k · �ri), α =
1, 2. Additionally, hk is a 2 × 2 effective Hamiltonian whose
explicit form is

hk =
(−t̃0εk − T0 −t̃ ′

−t̃ ′ t̃1εk + �̃ − T1

)
, (B4)

with

t̃a = t

R
〈(1 − nia↑)(1 − nja↓)〉, (B5)

t̃ ′ = t ′

R
〈(1 − ni1↑)(1 − nj2↓)〉, (B6)

�̃ = �

R
, (B7)
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Ta = 1

R

∑
j,b

tia,jb〈c†ia↑cjb↑〉, (B8)
and where R2 = 〈ψ |ψ〉. The optimal variational parameters
are then just given via the solution of this single-particle
problem, and ε↓ is given by the smallest eigenvalue of hk.
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