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Crystal structure and magnetism in α-RuCl3: An ab initio study
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α-RuCl3 has been proposed recently as an excellent playground for exploring Kitaev physics on a two-
dimensional (2D) honeycomb lattice. However, structural clarification of the compound has not been completed,
which is crucial in understanding the physics of this system. Here, using ab initio electronic structure calculations,
we study a full three-dimensional (3D) structure of α-RuCl3, including the effects of spin-orbit coupling (SOC)
and electronic correlations. The three major results are as follows: (i) SOC suppresses dimerization of Ru atoms,
which exists in other Ru compounds such as isostructural Li2RuO3, and makes the honeycomb closer to an ideal
one. (ii) The nearest-neighbor Kitaev exchange interaction between the jeff = 1/2 pseudospin strongly depends
on the Ru-Ru distance and the Cl position, originating from the nature of the edge-sharing geometry. (iii) The
optimized 3D structure without electronic correlations has P 3̄1m space-group symmetry independent of SOC,
but including electronic correlation changes the optimized 3D structure to either C2/m or Cmc21 within 0.1 meV
per formula unit (f.u.) energy difference. The reported P 3112 structure is also close in energy. The interlayer
spin-exchange coupling is a few percent of the in-plane spin-exchange terms, confirming that α-RuCl3 is close to
a 2D system. We further suggest how to increase the Kitaev term via tensile strain, which sheds light in realizing
the Kitaev spin-liquid phase in this system.
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I. INTRODUCTION

There have been a number of studies on quasi-two-
dimensional systems having both spin-orbit coupling (SOC)
and on-site Coulomb interactions, which are believed to host
unconventional magnetic orders and spin-liquid phases [1,2].
One promising candidate is α-RuCl3, where edge-sharing
RuCl6 octahedra form two-dimensional RuCl3 layers in which
Ru honeycomb layers reside [3–11]. Compared to its 5d

transition-metal-oxide counterparts α-A2IrO3 (A = Li, Na)
[12–16], α-RuCl3 has closer-to-ideal RuCl6 octahedra [3],
so it was proposed as an excellent platform to explore the
Kitaev physics and related magnetism despite weaker SOC
[4,9,11,17,18]. A few recent reports suggest the presence of
strong Kitaev-type bond-dependent exchange interactions in
α-RuCl3 [5], which originate from the cooperation between the
intermediate SOC in the Ru atom and the Coulomb interaction
[8]. A zigzag-type magnetic order within the RuCl3 layer is
also predicted and observed, which is proximate to the Kitaev
spin-liquid phase [5,8].

In previous studies, α-RuCl3 was considered as a two-
dimensional system with an ideal Ru honeycomb lattice,
but such assumption needs further clarification. A potential
Ru layer distortion, which is observed in an isostructural
compound Li2RuO3 [19,20], might happen in this compound.
Furthermore, α-RuCl3 has a three-dimensional crystal struc-
ture consisting of RuCl3 layer stacking, and interlayer coupling
and interaction terms can introduce another complication.
Experimentally, both P 3112 and C2/m space groups have
been suggested as the crystalline symmetry in this compound
[3,6,11,21,22]. As an illustrative example, Fig. 1(a) shows
the crystal structure of α-RuCl3 with a C2/m space-group
symmetry, where adjacent RuCl3 layers within the unit cell
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are related to each other by a translation along the a axis in
the figure. Stacking faults can easily be introduced in this
layered structure as in the case of α-A2IrO3 [23], which
obscures further clarification of the crystal structure. The effect
of interlayer exchange interactions from the layer stacking
on the ground-state magnetic properties of this system is
not well understood either. More interestingly, a sample-
dependent two-transition behavior is reported, where two
different magnetic order peaks at TN1 � 14 K and TN2 � 8 K
with two- and three-layer c-axis periodicity, respectively,
are observed in neutron-diffraction measurement [11]. These
issues pose a question on the relation between crystal structure
and magnetism in this system.

In pursuit of such motivations, in this work we perform
ab initio calculations for the structural properties of α-RuCl3
and their impact on magnetism. We present three main results:
(i) The role of SOC and zigzag magnetic order on the
single-layer RuCl3 structure is discussed. We find that SOC
prefers an ideal honeycomb lattice by preventing Ru-Ru dimer
formations, and the presence of in-plane zigzag order tends
to give small monoclinic distortion commensurate with the
magnetic order. (ii) The effect of Ru-Cl and Ru-Ru distance on
the exchange interactions and magnetism is discussed, where
the hopping channels within the nearest-neighbor (NN) Ru
t2g orbitals and the resulting exchange interactions between
the SOC-induced jeff = 1/2 pseudospins strongly depend on
the Ru-Cl and Ru-Ru distance. Such behavior originates from
the existence of multiple hopping channels in the t2g orbitals,
which enables leveraging magnetism with rather small amount
of structural changes. (iii) The stability of crystal structures
with different stacking orders is discussed by comparing
relative total energies. We find that structures with C2/m

[22] and Cmc21 space-group symmetries are most favorable
with almost degenerate energies. The previously suggested
P 3112 structure [3,21] yields total energy comparable to
those of C2/m and Cmc21 structures, with the energy
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FIG. 1. (a) Crystal structure of α-RuCl3 with the C2/m space
group. Solid lines depict a monoclinic unit cell. (b) Schematic view
of three triangular sublattices on which Ru and Cl layers are located.
Stacking indices for Ru honeycomb and Cl triangular layers are shown
on the right side of (a), where indices for Ru and Cl layers are
expressed as capital and lowercase letters, respectively.

difference smaller than 0.4 meV per formula unit (f.u.).
Energy differences between different interlayer magnetic
orders are smaller than 0.1 meV/f.u., and the magnitude
of interlayer exchange interactions estimated from interlayer
hopping integrals is smaller than 0.05 meV. These observations
justify the employment of two-dimensional spin models in
exploring magnetism in α-RuCl3. We further propose how
to increase the Kitaev term using tensile strain or uniaxial
pressure to realize the Kitaev spin-liquid phase.

This paper is organized as follows. After showing computa-
tional details in Sec. II, the structural properties of single-layer
RuCl3 and its relation to magnetism are presented in Sec. III.
The effect of SOC and zigzag magnetic order on the single-
layer RuCl3 structure, and the relation between the structure
and magnetism, are discussed in Secs. III A and III B, respec-
tively. In Secs. IV and V, the results on the stacking without
and with the Coulomb interaction and magnetism are shown,
respectively. A summary and conclusion follow in Sec. VI.

II. COMPUTATIONAL DETAILS

For the electronic structure calculations, we employed the
Vienna ab initio Simulation Package (VASP), which uses the
projector augmented wave (PAW) basis set [24,25]. 370 eV
of plane-wave energy cutoff was used and, for k-point
sampling, a 15 × 15 and 8 × 6 × 4(6) Monkhorst-Pack grid
was adopted for single-layer primitive cell and monoclinic
cells with three- (two)-layer c-axis periodicity. The tetrahedron
method with Blöchl correction was used for the calculation
of density of states [26]. On-site Coulomb interactions
are incorporated using the Dudarev’s rotationally invariant
DFT+U formalism [27] with effective Ueff ≡ U − J = 2 eV.
For each configuration with different unit cell, Ueff value,
and magnetic order, structural optimization is performed with
a force criterion of 1 meV/Å. Unless specified, a revised

Perdew-Burke-Ernzerhof generalized gradient approximation
(PBEsol) [28] was used for structural optimization and total-
energy calculations. Note that the PBEsol functional yielded
reasonable results for the stacking order of bilayer transition-
metal dichalcogenides in comparison to the van der Waals
functionals [29]. The results from employing vdW functionals
are shown in the Appendix. Interlayer hopping integrals were
obtained by employing maximally localized Wannier orbital
formalism (MLWF) [30,31] implemented in the WANNIER90
package [32]. Also, for comparison of the magnetism in the
single-layer structures in Sec. III, a linear-combination-of-
pseudo-atomic-orbital basis code OPENMX [33,34] was used,
where double-zeta plus polarization (DZP) bases, 500 Ry of
energy cutoff for real-space integrations, and the Perdew-
Zunger parametrization for the local-density approximation
were employed [35,36].

III. RELATION BETWEEN STRUCTURE AND
MAGNETISM IN RuCl3 SINGLE LAYER

In this section, structural changes due to the lattice
optimization and their effect on the magnetism are discussed
in the RuCl3 single layer. The initial trial structure we chose is
the one reported in Ref. [37], which was used in Ref. [8]. The
lattice optimization gives rise to in-plane structural changes,
and here we present the optimized structures focusing on the
difference from the old one. Since we found that such behavior
and the resulting changes in magnetism also occur in the
full three-dimensional (3D) structures, which are presented in
Secs. IV and V, below we first discuss the single-layer results.

A. Effect of SOC on in-plane Ru dimerization

First, the effect of SOC and magnetism with Ueff on a
Ru honeycomb lattice is discussed in this section. Figure 2
summarizes the results, where the sizes of Ru displacements δ

from the ideal honeycomb lattice after structural optimizations
under different conditions are shown. Positive and negative
values of δ in Fig. 2(b) correspond to Ru dimerization and Ru
zigzag-chain formation, respectively, as shown in Fig. 2(a).
Note that the lattice constants are fixed to the experimentally
observed a = a0 = 5.96 Å and b = √

3a0. Without including
SOC and Coulomb interactions, the two Ru atoms in the unit
cell tend to dimerize to lower the energy, as shown in Fig. 2(a).
The presence of dimer formation is robust against different
choices of exchange-correlation functionals—Perdew-Zunger
parametrization of local-density approximation (LDA) [36],
PBE [38], and PBEsol—with slightly different size of δ, as
shown in Fig. 2(b). Similar dimer formation was reported
in another layered honeycomb compound, Li2RuO3, whose
origin is suggested to be the σ -like direct bonding between the
neighboring Ru t2g orbitals [19,20].

Since the dimer formation breaks the Ru t2g degeneracy,
we expect that SOC would not favor the dimer formation.
The spin-orbit entangled jeff orbitals, which emerge under
the presence of cubic crystal fields and SOC [39,40], do
not favor orbital polarization between the t2g—dxy , dxz, and
dyz—orbitals. Indeed, structural optimizations including SOC
yield significant reduction of dimerization, as shown in the
middle of Fig. 2(b). Although there are small differences
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FIG. 2. (a) Schematic figure of Ru honeycomb with colored
circles depicting Ru sites. Gray dotted and black dashed squares
represent the primitive and monoclinic unit cells, respectively, where
colors on Ru sites show the zigzag magnetic order in a monoclinic unit
cell. (b) Size of Ru distortion δ under different exchange-correlation
functionals and with/without the presence of SOC, Ueff , and in-plane
zigzag magnetic order. Note that positive and negative δ correspond
to Ru dimer and zigzag-chain formations, respectively.

between LDA, PBE, and PBEsol results, the role of SOC in
preventing the dimerization is evident. Additionally, inclusion
of the on-site Coulomb interaction without the presence of
magnetism is expected to enhance the idealness of the Ru
honeycomb lattice, since it was shown previously that the on-
site Coulomb interaction effectively enhances the size of SOC
[8,41].

Next we show the effect of in-plane zigzag magnetic order,
which is predicted to occur when SOC and the Coulomb
interaction are incorporated into ab initio calculations [8] and
observed in experiments [5,11]. The right columns of Fig. 2(b)
show the results from calculations including SOC, Ueff = 2 eV,
and the zigzag order. The enlarged monoclinic unit cell and
the magnetic configuration are shown in Fig. 2(a), where the
red and blue colored circles represent Ru sites with antiparallel
moments to each other. Regardless of the choice of functional,
δ shows negative values with almost the same magnitude. The
resulting structure is commensurate to the zigzag magnetic
order, as shown in Fig. 2(a), suggesting a finite magnetoelastic
coupling in this compound.

B. Effects of Cl displacement and lattice constant change to the
exchange interactions between the jeff = 1/2 pseudospins

Here we discuss the Cl displacement after the optimization
and its impact on the exchange interactions between the
neighboring Ru jeff = 1/2 pseudospins. Figure 3 shows the

a

b

Z

X

Y

FIG. 3. Schematic figure showing the direction of Cl displace-
ment from the ideal position after the structural optimization. Three
inequivalent NN bonds—Z, X, and Y bonds—and the displacements
of participating Cl atoms therein are depicted by red, blue, and
green planes and arrows, respectively. Cl triangles located above
and below the Ru plane are represented as solid and dotted triangles,
respectively.

displacement of Cl atoms after structural optimization, where
the two Cl atoms participating in each NN Ru bond move
toward the bond center. When the in-plane lattice constants are
fixed to be a = a0 and b = √

3a0, structural optimization with
SOC only (no Ueff and magnetism) yields reduced Cl height of
1.43 to 1.34 Å with respect to the Ru plane, and the Cl triangles
above and below the Ru plane rotate by 2.7◦ in the opposite
direction as shown in the figure. The Ru-Cl-Ru NN bond
angle increases from 89.1° to 93.8°. After allowing the lattice
constants to relax, the lattice constants reduce to a = 0.981a0

and b = 0.986b0 when SOC is employed with the monoclinic
distortion allowed. With Ueff = 2 eV and the zigzag magnetic
order, they are increased to a = 1.011a0 and b = 1.006b0. The
averaged Ru-Cl distance changes from 2.34 to 2.36 Å in the
nonmagnetic calculation, with Ueff = 0 eV, to the magnetic
results, with Ueff = 2 eV, but both of them are shorter than
the distance of 2.45 Å in the initial trial structure. Note that
when the monoclinic distortion is allowed, the NN Z bond in
Fig. 3 becomes inequivalent to the X and Y bonds, where the
X and Y bonds form the zigzag chain in Fig. 2(a). Also, no
Ru-Cl bond-length disproportionation is observed in any of
our results, implying no Jahn-Teller distortion in this system.

Due to the presence of inversion symmetry at the bond cen-
ter and additional trigonal distortion in the RuCl6 octahedra,
the hopping integrals between the NN Ru t2g Wannier orbitals
have the following form [16,42]:

T̂ =
⎛
⎝

t1 t2 t4
t2 t1 t ′4
t4 t ′4 t3

⎞
⎠,

where each hopping channel is displayed in Fig. 4 with the
participating Ru t2g Wannier orbitals therein. As shown in the
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FIG. 4. Four major NN hopping channels—(a) t3, (b) t2, (c) t1,
and (d) t4—within the t2g subspace. For each hopping channel, the
participating t2g Wannier orbitals are plotted, where the schematics
for each channel is represented in the inset. Note that the t3 and t2
terms depend more sensitively on the structural change than t1 and t2.

figure, while t1 originates mainly from the δ- and σ -like d-d
direct overlap integrals, t2 is mostly from the π -type indirect
overlap dominated by d-p-d hopping between the Ru and
intervening Cl p orbitals. Note that the t3 channel has both
the d-d direct overlap and d-p-d indirect overlap, which have
opposite signs to each other. Also, due to the small trigonal
distortion, the small t4 and t ′4 terms are introduced, where
the difference between them introduced by the monoclinic
distortion is negligibly small.

Table I shows the hopping terms from the Wannier orbitals
for four crystal structures optimized with different conditions.
There is the old P 3112 structure [37] used in previous work,
the structure with internal coordinates and lattice constants
optimized with SOC, the structure with only internal
coordinates optimized (fixed a = a0 and b = b0), and the one
optimized with SOC, Ueff , and the zigzag order. Hereafter, we
denote the structures as cases 0 to III, respectively, as stated
in Table I. With those optimized structures, calculations of
the Wannier orbitals were performed without the inclusion of
SOC, Ueff , and magnetism. Surprisingly, the hopping integrals
show a huge dependence on the structural change. In particular,
the t3 term varies from −0.229 to −0.062 eV depending
on the structures, and t2 also varies from 0.114 to 0.191 eV.
Comparing the case 0 and II results, the effect of Cl relaxation
is to enhance t2 and suppress t3. The effect of increasing Ru-Ru
distance, which can be seen by comparing case I to III, is also
similar to the role of Cl relaxation, with a less dramatic but
still substantial trend. Such tendency can be understood from
the character of participating Wannier orbitals shown in Fig. 4.
The t3 term, i.e., the most sensitive to the structural change,
originates from the two distinct channels: one from the σ -like
direct d-d overlap and another from the d-p-d indirect channel.
The two channels has opposite sign to each other, with a minus
sign for the d-d channel and plus sign for the d-p-d channel.
As a result, enhancing the d-p-d channel by reducing the
Ru-Cl distance or increasing the Ru-Cl-Ru angle will lead to
better cancellation of the dominant d-d channel and reduction
of the overall t3 term, as shown in Table I. Enhancement of t2
after Cl relaxation is also easy to understand since it mostly
comes from the π -like d-p-d channel, while the t3 dominated
by the δ-like d-d channel is reduced as the Ru-Ru distance is
increased. The trend for the small t4 term is less clear, but it
tends to enhance when there are more trigonal and monoclinic
distortions.

TABLE I. Values of the averaged Ru-Cl distances, NN Ru-Ru distances, hopping integrals, and examples of exchange interactions for
U = 3 eV and JH/U = 0.15 [16]. The structures of cases I to III were optimized with different stated conditions, while the case 0 structure is
from Ref. [37]. In case II, lattice constants are fixed to be a0 and b0, while in cases I and III, they are allowed to relax. Hopping integrals and
exchange interactions are shown in eV and meV units, respectively. For comparison, the values of hopping integrals and exchange interactions
from the old structure (case 0) in Ref. [8] are listed.

d
avg
Ru−Cl dRu−Ru t1 t2 t3 t4 J K � �′

(Å) (eV) (meV)

Case 0 structure: old P 3112 structure
(from Ref. [3], a = a0, b = b0)
NN 2.45 3.44 +0.066 +0.114 −0.229 −0.010 −3.50 +4.60 +6.42 −0.04
Case I structure: a = 0.981a0, b = 0.986b0

(structure optimized with SOC)
NN-Z 3.40 +0.058 +0.177 −0.154 −0.022 −2.67 −4.52 +7.27 −0.67

2.34
NN-X/Y 3.38 +0.060 +0.165 −0.160 −0.018 −2.81 −3.07 +6.99 −0.47
Case II structure: a = a0, b = b0

(structure optimized with SOC and lattice constants fixed)
NN-Z 3.44 +0.044 +0.178 −0.109 −0.019 −1.49 −6.71 +5.28 −0.69

2.36
NN-X/Y 3.44 +0.042 +0.176 −0.107 −0.030 −1.55 −6.47 +5.24 −1.08
Case III structure: a = 1.011a0, b = 1.006b0

(structure optimized with SOC, Ueff , and zigzag order)
NN-Z 3.47 +0.036 +0.191 −0.062 −0.024 −0.74 −9.34 +3.71 −1.04

2.36
NN-X/Y 3.47 +0.037 +0.182 −0.075 −0.026 −1.09 −7.64 +4.38 −0.87
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From the NN t2g hopping terms, one can estimate the
values of exchange interaction terms in the jeff = 1/2 spin
Hamiltonian

H =
∑
〈ij〉

Si · Mij · Sj ,

where the bond-dependent 3 × 3 matrix Mij has the form

M =
⎛
⎝

J � �′
� J �′
�′ �′ J + K

⎞
⎠.

Note that Mij undergoes simultaneous cyclic permutations
of rows and columns depending on the NN-bond directions.
Explicit expressions for the Heisenberg J , the Kitaev K , and
the symmetric anisotropy terms � and �′ in terms of the
hopping integrals U and the Hund’s coupling JH are reported
in Refs. [16,42]. Using the values of ti listed in Table I and
setting U = 3 eV and JH/U = 0.2, we can calculate the
values of exchange interactions which are listed in Table I.
Note that changing the values of the U and JH/U changes
does not change the ratio between the exchange interactions
when JH/U > 0.05. As shown in the table, among the
exchange interactions, the Kitaev term shows dramatic change
of changing sign after the Cl relaxation. This is due to the
enhancement and suppression of the t2 and t3 terms. Increasing
the Ru-Ru distance gradually enhances K and reduces J and
�, which drives the system closer to the Kitaev spin-liquid
limit with ferromagnetic K . Comparing cases II and III, note
that increasing the lattice constant by 1% enhances the K

term significantly. This implies the possibility of controlling
the magnetism and realizing the Kitaev spin-liquid phase with
a rather small amount of structural change such as epitaxial
strain or uniaxial pressure. Another noticeable feature is the
small but non-negligible �′ term from the trigonal distortion,
which can stabilize the experimentally observed zigzag order
near the Kitaev spin-liquid phase with K < 0 [42].

Finally, we discuss the evolution of the magnetic moments’
direction in the zigzag order with respect to structural changes.
Figure 5(a) shows the schematic figure of the zigzag order with
an angle of the moments θ with respect to the a axis. Note that
in all of our calculations, the moments were residing on the
ac plane. In the case 0 structure, both in the OpenMX and VASP

results, the moments were parallel/antiparallel to the a axis
(i.e., θ = 0), consistent with our previous result [8]. After the
structural optimization, the moments gain nonzero θ , which
tends to increase when the lattice constant increases, as shown
in Fig. 5(b). There is a difference in θ between the results
from the two different codes, but the tendency of increasing
the angle remains the same. We speculate that such behavior
may originate from the Cl relaxation and the resulting change
of exchange interactions, especially the change of the ratio
between the K and � terms. Also, as the lattice constant is
enlarged, the two zigzag chains with antiparallel moments in
the unit cell begin to develop the difference in θ , resulting in
the net ferromagnetic component in the ac plane. The origin
of such behavior is unclear at this point.
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FIG. 5. (a) Schematic figure representing the zigzag magnetic
order in the Ru honeycomb plane. Note that the moments are confined
on the ac plane, where the angle of the moments with respect to the
a axis is denoted as θ . (b) Evolution of θ for the two zigzag-ordered
chains in the monoclinic unit cell as a function of a, obtained from
OpenMX (blue) and VASP (red) codes. Structures with a = 5.84, 5.96,
and 6.023 Å are cases I, II, and III, respectively, and angles from the
structures are marked as filled symbols. The rest of the results are
obtained from interpolation between the three structures, marked as
empty symbols.

IV. STACKING WITHOUT Ueff AND MAGNETISM

Next let us study the stacking order of RuCl3. First we
discuss their relative total energies without including Ueff and
magnetism. As mentioned in Sec. II, here we show the results
using the PBEsol functional, and their comparison with vdW
functional calculations is shown in the Appendix. Note that
PBEsol results give the same lowest-energy configurations
with other vdW results, and the closest c-axis constant to the
experimentally observed one as well [3].

Figure 6 shows five unit cells we considered in this work,
where the upper and lower panels show the side view of unit
cells and the top view of Ru honeycomb layers, respectively.
When we consider the Ru honeycomb as a triangular layer
by ignoring Ru hollow sites, the α-RuCl3 crystal structure
can be understood as a stacking of Ru and Cl triangular
layers with three triangular sublattices (a/A, b/B, and c/C,
where capital and lowercase letters denote Ru and Cl layers,
respectively) shown in Fig. 1(a) as a degree of freedom. In
Fig. 6, each different structure can be understood as a sequence
of sublattice indices. Note that within a RuCl3 layer, any two
Ru or Cl layers cannot be in the same sublattice. As we take
into account Ru hollow sites, an additional degree of freedom
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FIG. 6. Five different unit cells with two- and three-layer periodicity along the c direction. Upper and lower panels show the side view of
the unit cell and schematic top view of Ru honeycomb stacking, respectively.

is introduced to each Ru layer, and we denote this with primes
in the triangular sublattice index (for example, A, A′, and A′′,
as shown in the figure).

For structures with three-layer c-axis periodicity, we choose
unit cells with P 3112 and C2/m space groups. Note that the
C2/m structure was also reported as the space group of this
compound [6,22], and is similar to the P 3112 structure. The
major difference in the two structures is the c-axis ordering of
the Ru honeycomb layers, where in the C2/m unit cell, three
Ru layers are related by translation by (a + a

′ + c)/3, while
in the P 3112 cell, they are related by a threefold screw axis.
In addition, since the neutron-diffraction result identified a
magnetic peak with two-layer c-axis periodicity at TN1 = 14 K
in a polycrystalline sample [11], we consider two-layered unit
cells as well. Avoiding two Cl− triangular layers belonging
to adjacent RuCl3 layers locating on top of each other (i.e.,
sitting on the same triangular sublattice), we have only three
unit cells with space groups P 3̄1m, P 3̄1c, and Cmc21, as
shown in Fig. 6. Note that the P 3̄1m cell is just a doubling
of a single-layer unit cell, and the P 3̄1c structure differs from

TABLE II. Optimized lattice constants, relative total energies
(�E) per formula unit (f.u.), and densities of states (DOS) at
the Fermi level for five stacking unit cells. Values are obtained
using PBEsol functional and including SOC, but without electron
interactions.

P 3112 C2/m P 3̄1m P 3̄1c Cmc21

Lattice constants
a/a0 0.984 0.981 0.986 0.985 0.984
b/a0 0.984 0.986 0.986 0.985 0.983
c/c0 1.014 1.013 1.005 1.007 1.014

�E/f.u. (meV) 1.4 1.4 0.0 2.8 2.5

DOS at Ef

(states/eV/f.u.) 9.2 7.9 6.0 10.8 8.5

the P 3̄1m structure by the position of Ru hollow sites, so
that half of the Ru sites avoid sitting on top of the Ru sites
in the neighboring layer, as shown in the bottom panels of
Fig. 6. Finally, the Cmc21 structure differs from other unit
cells by anticyclic stacking of every other RuCl3 layer, as
shown in the stacking sequence in the figure, which can be
obtained by applying a mirror operation to every other RuCl3
layer.

Structure optimizations were performed including SOC,
and Table II shows the optimized lattice constants with re-
spect to experimentally reported lattice constants a0 = 5.96 Å
and c0 = 17.2 Å and their relative total energies. Note that
structures without threefold symmetry—monoclinic C2/m

and orthorhombic Cmc21—show slightly different a/a0 and
b/b0. Among the five different structures, the P 3̄1m structure
yields the lowest energy. The P 3112 and C2/m structures are
closer in energy by 1.4 meV/f.u., and for the other phases,
energy differences are less than 3 meV/f.u. compared to the
the P 3̄1m structure. The lowest energy of the P 3̄1m structure
can be attributed to the larger kinetic-energy gain originating
from the larger band dispersion along the c direction compared
to other structures. This is reflected in the lower DOS of the
P 3̄1m cell at the Fermi level compared to other structures,
as shown in Table II and Fig. 7. Figure 7 presents total DOS
for the five structures in the presence of SOC. Compared to
the single-layer result depicted as the gray shaded areas in
the figure, layer stacking yields pronounced peaks near the
Fermi level except the P 3̄1m structure in the results without
SOC (not shown) due to the presence of flat bands along the
c direction at the Fermi level. Inclusion of SOC smoothes
the peaks, but the gross feature remains the same as shown in
Fig. 7, which results in higher DOS at the Fermi level except the
P 3̄1m structure, as shown in Table II. Note that Stoner-type
ferromagnetic (FM) instability is also observed, but in this
study we concentrate on the experimentally observed zigzag
magnetic order, as discussed in the next section.
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FIG. 7. Densities of states (DOS) for different α-RuCl3 structures
including SOC in the absence of Ueff and magnetism. The gray
shaded areas show DOS of single-layer RuCl3 multiplied by 0.5 as a
reference.

V. STACKING WITH ZIGZAG MAGNETIC ORDER

Now we present the stacking results that include the on-site
Coulomb interaction and magnetism. Figure 8 shows ten trial

P3112 C2/m

cFM

cAF

P 3̄1m P 3̄1c Cmc21

cFM

cAF

a

b

FIG. 8. Ten trial magnetic configurations with in-plane zigzag
order, where the red and blue symbols depict Ru sites with antiparallel
magnetic moments to each other.

structural and magnetic configurations, where the direction
of the magnetic moments in each layer is the same as the
single-layer result in Sec. III. Fixing the in-plane zigzag order,
we choose two interlayer magnetic configurations that we
denote as cFM (ferromagnetic) and cAF (antiferromagnetic)
hereafter. As shown in Fig. 8, in the cFM configuration, the
zigzag-ordered layers are stacked along the c direction so that
the FM zigzag chains in adjacent layers become closer in
distance, while in the cAF configuration, the moments on
one Ru layer are flipped. Note that there can be additional
magnetic stacking orders due to the threefold rotational degree
of freedom for each single-layer zigzag order— three different
direction for FM zigzag chains—and in this work we chose
the simplest configuration commensurate to the monoclinic
unit cell [shown in Fig. 2(a)] for each structure. Structural
optimizations were done first by varying the c axis with fixing
a-lattice constants determined in the single-layer calculation,
and later fully optimizing a- and c-axis constants and internal
coordinates. Note that symmetry constraints are lost during
the full optimizations including the Coulomb interaction and
magnetism. As a result, the optimized structures slightly
deviate from the original space-group symmetries, where the
deviation develops in Cl positions with its size about 1% for
each internal coordinate compared to the lattice constants.
Note also that the structural optimization for each stacking
with different magnetic configuration (either cFM or cAF
configurations in Fig. 8) yielded negligible differences. All
of the configurations become insulators with the gap of ∼1 eV
between the lower and upper Hubbard bands at Ueff = 2 eV.
The DOS for the resulting phases are almost identical to the one
from the single-layer calculation [10] and show no significant
difference compared to each other, so we do not present the
DOS plots here.

Table III shows the optimization results. Compared to the
results without stacking and magnetism, a few differences can
be noticed: (i) Energy differences between structures are less
than 1 meV per f.u., except the P 3̄1m structure, which is
higher in energy by ∼4.0 meV/f.u. compared to the other
structures. Note that the P 3̄1m structure showed the lowest
energy in the calculation without Ueff and magnetism. With
Ueff and magnetism introduced, the gap is fully opened for
all of the structures and the relative energy gain in the P 3̄1m

structure due to the c-axis dispersion (discussed in Sec. IV)

TABLE III. Optimized lattice constants for five stacking unit
cells, using the PBEsol functional and including SOC, Ueff , and
magnetism. a, b, and c are the optimized monoclinic lattice constants
(shown in Fig. 1) with a0, b0, and c0 being their experimentally
observed values, respectively [3].

P 3112 C2/m P 3̄1m P 3̄1c Cmc21

Lattice constants
a/a0 1.011 1.011 1.010 1.011 1.010
b/b0 1.006 1.006 1.006 1.006 1.006
c/c0 1.041 1.043 1.067 1.039 1.056
�E/f.u. (meV)
cFM 0.4 0.1 3.7 0.8 0.0
cAF 0.4 0.2 4.1 0.9 0.4
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becomes smaller. (ii) Energy differences between cFM and
cAF configurations are smaller than 0.1 meV/f.u. for the
P 3112, C2/m, and P 3̄1c structures, and for the P 3̄1c and
Cmc21 stackings, the differences are about 0.4 meV/f.u. Such
small energy differences can be attributed to weak interlayer
exchange interactions, which will be discussed in the last
paragraph of this section. (iii) Lattice constants are increased
by 2 to 3% compared to the results without Ueff . (iv) Small
monoclinic distortion, which manifests itself by the difference
of a/a0 and b/b0 (and negative δ in Fig. 2), happens in
every structure in the presence of the in-plane zigzag magnetic
order.

Except for the P 3̄1m structure which is higher in energy
by ∼4 meV/f.u. compared to other structures, the structural
energy differences are smaller than 1 meV. This result implies
the coexistence of different structures in experimentally
synthesized samples. In particular, it is natural that the P 3112
and C2/m structures have similar total energies; their only
difference is the stacking of the Ru honeycomb order, which
can be switched to each other by the ionic hopping of Ru
atoms within the RuCl3 layers. Indeed, both were reported as
the crystal structure of α-RuCl3 by different groups [3,11,22].
It is also interesting that the Cmc21 structure (with cFM order)
shows the lowest energy, which can be transformed into other
structures by applying mirror operations to every other RuCl3

layer. One can speculate that the Cmc21 structure forms in the
high-temperature regime and freezes below T ∼ 150 K, where
an anomalous behavior in magnetic susceptibility is observed
[5,6], which contributes to the magnetic peak with two-layer
periodicity in polycrystalline samples below TN1 � 14 K
[5,7,11].

Finally, we comment on the interlayer exchange interac-
tions. Major interlayer hopping channels are shown in Fig. 9,
where the largest channel is depicted as a green solid arrow,
while others are represented as dashed/dotted arrows. Note
that the value of the largest interlayer t2g hopping term is
about 35 meV, and magnitudes of other channels depicted in
the figure are comparable to the largest one, i.e., about 20 to

Z-bond

X/Y-bond

a

b

FIG. 9. Two distinct NN bonds— Z and X/Y bonds—in the
presence of zigzag magnetic order, and the dominant interlayer
hopping channels in C2/m structure. Note that although the largest
interlayer hopping channel is depicted as green thick and solid arrows,
the magnitudes of all of the hopping channels in the figure are
comparable to each other.

30 meV. The interlayer exchange Heisenberg term is roughly
estimated to be J = t ′2/9U ∼ 0.05 meV for the jeff = 1/2
pseudospins. This value is two-orders-of-magnitude smaller
than the previously estimated in-plane exchange interactions
in α-RuCl3 [8,11], and is also consistent with the small
energy differences between the cFM and cAF phases discussed
above.

VI. DISCUSSION

The relative energies between different stacking order
depends on the electronic structures of each system in our
results, especially whether or not the system becomes fully
insulating. Given that α-RuCl3 remains insulating in the
paramagnetic phase above TN1 with 1 eV of optical gap [4,10],
we speculate that the four stacking orders—P 3112, C2/m,
P 3̄1c, and Cmc21—are almost degenerate, as discussed in
Sec. V.

The change of hopping integrals and exchange interaction
terms after the structure optimization show that the physics
of α-RuCl3 is sensitive to the NN Ru-Ru distance and Cl
position. For example, the strength of the Kitaev and �

terms is significantly modified by the Ru-Ru and Ru-Cl
distances. This implies that even a small amount of epitaxial
tensile strain by 1% or uniaxial pressure perpendicular to the
layer can significantly enhance the Kitaev term and push
the system closer to the Kitaev limit. On the other hand,
hydrostatic pressure or compressive strain can increase the
t3 term by decreasing the Ru-Ru distance. This reduces the
FM Kitaev term and drives the effective model to the highly
frustrated �-dominated regime. In addition, the presence of the
negative �′ term due to the trigonal distortion can stabilize the
zigzag-ordered phase, as discussed in a previous study [42].
The effects of the monoclinic bond disproportionation [43] are
another factor that can change the magnetism. In this regard,
full experimental structure determination including precise
atomic positions and stacking order would be important for
future studies.

In summary, structural properties of α-RuCl3 from ab initio
calculations are presented in this study. SOC is found to
prevent the Ru dimerization in the Ru honeycomb layers,
and the presence of in-plane zigzag magnetic order further
gives small monoclinic distortion. The relation between the
hopping integrals and exchange interactions to the structure is
also discussed. A total-energy comparison between different
RuCl3 stacking orders yields the Cmc21 and C2/m structures
to be the almost degenerate ground-state structures, and the
P 3112 structure to be comparable in energy, with energy
differences smaller than 0.4 meV per formula unit. In-
plane exchange interactions are found to be sensitive to the
structural distortions, and the jeff = 1/2 pseudospin model
is dominated by the FM Kitaev terms in the optimized
structures with the presence of Ueff , similar to the two- and
three-dimensional honeycomb iridates [44–46]. As expected,
interlayer exchange interactions are estimated to be weak
compared to the in-plane exchange interactions, so this system
can be a good platform to study frustrated two-dimensional
magnetism.

Note added. Recently, we became aware of the experi-
mental work by Johnson and co-workers [47], which reports
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monoclinic C2/m crystal structure and the in-plane zigzag
magnetic configuration with antiferromagnetic interplanar
order below TN ∼ 13 K.
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APPENDIX: VAN DER WAALS CALCULATION

In this Appendix, we compare the results with
using different exchange-correlation functionals includ-
ing vdW interactions. Four functionals are considered:
PBE, PBEsol, vdW-DF2 [48], and vdW-optB86b [49],
where vdW-DF2 and vdW-optB86b functionals showed
accuracies comparable to random-phase approximation
(RPA) calculations in layered and bulk systems, re-
spectively. Here, SOC, Ueff , and magnetism are not
included.

Figure 10 shows the relative energies versus c-lattice
constant with fixed a = a0 for the results with four functionals,
where C2/m stacking order is not considered. Except PBE,
which yields an unreasonably large value of c, the other three
functionals yield P 3̄1m and P 3̄1c as configurations with
the lowest and second-lowest energy. Compared to PBEsol,
vdW functionals tend to yield a steeper energy curve away
from the optimum c values and higher energy for the P 3112
phase.

Table IV shows the results from full lattice optimizations.
Except for the change of a-lattice constants, where vdW-DF2

TABLE IV. Optimized lattice constants and total-energy dif-
ferences for four stacking orders, using the PBE, PBEsol, vdW-
DF2, and vdW-optB86b functionals. SOC is not included in these
calculations.

P 3112 P 3̄1m P 3̄1c Cmc21

a/a0

PBE 1.011 1.012 1.006 1.000
PBEsol 0.984 0.986 0.985 0.984
vdW-DF2 1.027 1.029 1.030 1.027
vdW-optB86b 1.000 1.000 1.000 1.000
c/c0

PBE 1.098 1.091 1.132 1.140
PBEsol 1.014 1.005 1.007 1.014
vdW-DF2 1.015 1.004 1.001 1.010
vdW-optB86b 0.980 0.980 0.980 0.980
�E/f.u. (meV)
PBE 1.4 0.0 2.6 4.5
PBEsol 2.1 0.0 3.0 2.3
vdW-DF2 10.5 0.0 1.0 7.0
vdW-optB86b 9.9 0.0 2.3 7.1

results yield 3% enhancement of the a value, the features
are qualitatively similar to the results in Fig. 10. P 3̄1m is
still the most favored configuration, and optimized c-lattice
constants do not change significantly from the values in Fig. 10.
It is notable that the vdW results give high energies for the
P 3112 and Cmc21 phases, which were the favored phases in
PBEsol+SOC+Ueff calculations.

Compared to the vdW functionals, PBEsol yields reason-
able estimates of total energy and lattice constants, although
quantitative differences can be noticed. Since test calculations
on combining vdW functionals and DFT+SOC+U , which is
crucial in understanding the physics of RuCl3, have not been
done yet, in this study the PBEsol functional is employed for
the rest of the calculations.
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E
ne

rg
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FIG. 10. Total energy vs c-lattice constant plots with fixed a = a0 = 5.96 Å for different crystal structure and exchange-correlation
functionals. From left to right, results with PBE, PBEsol, vdW-DF2, and vdW-optB86b functionals are shown.
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