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Yige Chen,1 Heung-Sik Kim,1 and Hae-Young Kee1,2,*

1Department of Physics, University of Toronto, Ontario M5S 1A7, Canada
2Canadian Institute for Advanced Research, CIFAR Program in Quantum Materials, Toronto, ON M5G 1Z8, Canada

(Received 25 January 2016; revised manuscript received 7 April 2016; published 21 April 2016)

Numerous efforts have been devoted to reveal exotic semimetallic phases with topologically nontrivial bulk
and/or surface states in materials with strong spin-orbit coupling. In particular, semimetals with nodal line Fermi
surface (FS) exhibit novel properties, and searching for candidate materials becomes an interesting research
direction. Here we provide a generic condition for a fourfold degenerate nodal line FS in nonsymmorphic
crystals with inversion and time-reversal symmetry (TRS). When there are two glide planes or screw axes
perpendicular to each other, a pair of Bloch bands related by nonsymmorphic symmetry become degenerate on a
Brillouin zone (BZ) boundary. There are two pairs of such bands, and they disperse in a way that the partners of
two pairs are exchanged on other BZ boundaries. This enforces a nodal line FS on a BZ boundary plane protected
by nonsymmorphic symmetries. When TRS is broken, fourfold degenerate Dirac points or Weyl ring FS could
occur depending on a direction of the magnetic field. On a certain surface double helical surface states exist,
which become double Fermi arcs as TRS is broken.
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I. INTRODUCTION

Recently intense interest has been drawn to novel topo-
logical semimetallic phases, in which the systems support
nontrivial band crossing points in crystal momentum space.
Such studies have been motivated by the discovery of topolog-
ical insulators with a bulk energy gap and conducting surface
modes protected by time-reversal symmetry (TRS) [1–11].
A list of topological semimetals, which is an extension of
topological insulators to metallic phases, has been growing
in theoretical communities, and some members in the list
have been experimentally confirmed [12–15]. One group
of topological semimetals is characterized by the Fermi
surface (FS) points. This includes Weyl semimetals with
chiral fermions [16–20], and three-dimensional (3D) Dirac
semimetals with surface Fermi arc states [21–23]. Another
class of topological semimetals is characterized by a closed
loop of the FS called nodal line FS [24,25,27–31,35–37]. These
semimetals named topological nodal line semimetals have
recently been proposed in various materials, including a three-
dimensional graphene network [29], Ca3P2 [32], Cu3PdN [33],
and orthorhombic perovskite iridates [24,31]. However, in
graphene, Ca3P2, and Cu3PdN, spin-orbit coupling gaps out
the nodal FS, and the system becomes a trivial insulator [37].
On the other hand, in perovskite iridates, spin-orbit coupling
assists the system to develop a nodal line FS [24].

In this work, we provide a generic condition for a fourfold
degenerate nodal line FS for three-dimensional spin (or
pseudospin)-1/2 systems, where the nonsymmorphic crystal
symmetry plays a critical role. In the presence of space-time
inversion symmetry, all Bloch states are doubly degenerate due
to the Kramers theorem. We show that when there are two glide
planes or screw axes perpendicular to each other, two Bloch
bands related by these operations form a degenerate pair on a
BZ boundary. Their Kramers partners follow the same pattern,
and thus four Bloch states are degenerate on a BZ boundary.

*hykee@physics.utoronto.ca

Due to the two nonsymmorphic symmetry operations, two
pairs of such bands exist, and their partners within each pair
should be exchanged when the Bloch bands disperse from one
BZ boundary to another. This enforces a fourfold degenerate
nodal line FS protected by nonsymmorphic symmetries on a
BZ boundary plane. Using a tight binding model derived for
perovskite iridates AIrO3 (A being alkali earth elements) [24],
we further show how a Dirac point or line of Weyl FS
appears when TRS is broken. Surface states of this topological
crystalline semimetal with and without TRS are also presented.

II. A SUFFICIENT CONDITION FOR NODAL-LINE
SEMIMETAL WITH TRS

First, we provide a generic condition for a fourfold
degenerate nodal line FS as shown in Fig. 1(a): a combination
of two perpendicular nonsymmorphic symmetry operations
together with space-time inversion symmetry guarantees a
fourfold degenerate nodal line FS for a three-dimensional spin
(pseudospin)-1/2 system. Let us consider the â- and b̂-axis
twofold screw operators that are perpendicular to each other.
The explicit form of those operations are given as follows:

Ŝa : (x,y,z,t) → (
1
2 + x, 1

2 − y, − z,t
) × iσ̂x, (1)

Ŝb : (x,y,z,t) → (
1
2 − x, 1

2 + y, 1
2 − z,t

) × iσ̂y, (2)

where the Bravais lattice vectors �R = x�a + y �b + z�c. We set
the length of each lattice vector to unity, i.e., |�a| = |�b| =
|�c| = 1. The Pauli matrices �̂σ = (σ̂x,σ̂y,σ̂z) represent how spin
transforms under the above symmetry operations. Note that
another screw-axis operator Ŝc is defined via Ŝc = Ŝa ∗ Ŝb.

In addition to these crystalline symmetries, the system
also preserves time-reversal T̂ and inversion P̂ symmetries.
The composite symmetry operator defined as the product of
time-reversal and inversion operators (� ≡ T̂ ∗ P̂ ) reverses
the space-time and spin coordinates simultaneously, � :
(x,y,z,t) → (−x, − y, − z, − t) × iσ̂y . Since �2 = −1, it
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FIG. 1. The fourfold degenerate nodal line on the kb = π plane is
shown as the red loop in (a). (b) shows the schematic band dispersion
along the U -A and U -B lines, where A and B are arbitrary points
on the R-S and X-S lines, respectively as depicted in (a). The Bloch
states at the U point are labeled by Ĝn and Ŝa eigenvalues (n±, a±).
All bands are doubly degenerate, and Kramers partners �|φi〉 have
the same eigenvalues as |φi〉 on these BZ boundaries. On the U -A
and U -B lines, the Bloch states are labeled by n±. |φ2〉 and |φ3〉 have
to be exchanged along these paths enforcing the nodal ring FS.

enforces twofold degeneracy everywhere in the momentum
space.

Note that the glide planes are found by taking the product of
the above screw and inversion operators, i.e., b̂-glide operator
Ĝb = Ŝa ∗ P̂ , n-glide Ĝn = Ŝb ∗ P̂ , and mirror reflection at
z = 1/4, M̂c = Ŝc ∗ P̂ . This corresponds to Pbnm lattice, but
our proof below is general and applicable to other lattices with
two orthogonal nonsymmporhic symmetries such as Pbca .

Now let us focus on the kb = π plane, which is invariant
under Ĝn operation. The Bloch states |φi〉 on the plane carry n̂-
glide eigenvalues n± = ±iei ka+kc

2 . Its Kramers partner, �|φi〉
is also an eigenstate of Ĝn with the same n̂-glide eigenvalue on
this BZ boundary plane [38]. There are eight Bloch states, say
|φi〉 and �|φi〉, where i = 1, . . . ,4 for a single-orbital problem.
In general, these Bloch states at a generic momentum point
on the kb = π plane carry n+ and n− eigenvalues as shown
in Fig. 1(b). At a time-reversal invariant momentum (TRIM)
point U = (ka = 0,kb = π,kc = π ), these Bloch states can be
classified by eigenvalues of the n̂ glide as well as a screw

axis operator Ŝa along the â axis. Since (Ŝa)
2 = −eika , the

eigenvalues a± = ±i at the U point. Due to the presence of
the b̂-glide symmetry, two Bloch states |φ1〉 and |φ3〉, and
|φ2〉 and |φ4〉 are in fact related under Ĝb, i.e.., |φ3〉 ∝ Ĝb|φ1〉
and |φ4〉 ∝ Ĝb|φ2〉 with the same n̂ glide but opposite screw
eigenvalues as denoted in Fig. 1(b) at the U point. The fourfold
degeneracy including a Kramers partner at the U point is
protected by the n̂ glide and screw axis Ŝa . On the other
hand, along the R-S and X-S BZ boundary lines, where the
Bloch states within each pair are related though Ĝb and Ŝa ,
respectively, |φ1〉 and |φ2〉, and |φ3〉 and |φ4〉 are degenerate
with different n̂-glide eigenvalues as shown in Fig. 2(c). Thus
the two pairs of Bloch states at the U point must experience
a partner switching between |φ2〉 and |φ3〉 when the bands
evolve towards the BZ boundary line X-S or R-S on the
kb = π plane. This also occurs for Kramers partner states.
We refer to Appendix for proofs of Bloch states degeneracies
at different BZ boundaries originated from the glide/screw
symmetries. This enforces a fourfold degenerate nodal line on
the kb = π plane with the U point as its center. The nodal

Bĉ

b̂

â

FIG. 2. Schematic plot to summarize how the direction of the
magnetic field B perturbation affects the fourfold degenerate nodal-
line FS. The grey axis is labeled the orientation of the magnetic field.
All band dispersions are plotted on the kb = π plane. The nodal line
(red solid/dashed line) FS, located at the origin, represents the case
when TR symmetry is preserved. When B ‖ ĉ, the nodal-line FS
is destroyed by having a bulk energy gap. Two fourfold nodal FSs
emerge along the ka direction after applying the B field parallels to
the â axis. On the other hand, the b̂ magnetic field splits the single
nodal-ring FS into two Weyl rings.

line crossings hence are assured by the nonsymmorphic space
group at a half-filling, which indicates the system should be a
filling enforced semimetal [26,39].

III. TOPOLOGICAL SEMIMETALS WITHOUT TRS

In the above discussion, the TRS is crucial to ensure the
fourfold degeneracy of nodal FS. Without TRS, the twofold
degeneracy for each band is no longer guaranteed. However,
possible fourfold degenerate nodal FSs can still be realized in
the absence of TRS, as an antiunitary operator that leads to a
double degeneracy like Kramers theorem. Below we will show
how a nodal FS changes under magnetic field perturbations
along three different directions and identify their topological
nature without TRS. The two degenerate states could have
the same eigenvalues of nonsymmorphic operations, leaving
fourfold degenerate Dirac points on the BZ boundary line.

Applying a magnetic field along â axis breaks the n̂ glide
and mirror symmetry plane in addition to TRS. The schematic
band structure are shown in Fig. 3. Under the magnetic field
along the â axis, each band remains doubly degenerate on the
kb = π plane with a fourfold degenerate Dirac point crossing
on the U -R high-symmetry line. An antiunitary operator �n

defined as the product of Ĝn and � leads to a such degeneracy
as shown below:

�n ≡ Ĝn� : (x,y,z,t) → (
1
2 − x, 1

2 + y, 1
2 − z, − t

) × I .

(3)
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FIG. 3. (001) surface states in the presence of TRS. (a) shows
the bands of the 40-layer-thick (001) slab geometry, with the surface
weight of each Bloch state depicted as the size of the green symbol.
(b) shows the bands with a sublattice potential that breaks mirror and
n̂-glide symmetries. The double helical surface states are represented
by the green symbols where the size refers the weight.

While TRS and Ĝn are broken, �n is preserved. Further-
more, �n symmetry is invariant on the kb = π plane with
(�n)2 = eikb = −1 on this BZ boundary plane. Therefore, two
orthogonal Bloch states |φ〉 and �n|φ〉 are degenerate, similar
to Kramers doublets under TRS. In addition, the screw axis Ŝa

is also present.
Suppose that there is a Bloch state |φ〉 on the U -R line with

a+, the Ŝa eigenvalue. Its Kramers partner �n|φ〉 under the Ŝa

operation shows that Ŝa�n|φ〉 = a+�n|φ〉 . It carries the same
screw Ŝa eigenvalue with |φ〉. Therefore a magnetic field along
the â direction will not lift the degeneracy along the U -R line.
The fourfold degeneracy at the U point also remains intact due
to the persistence of the screw axis along the â direction. This
pair of Dirac nodes, as demonstrated above, is thus protected
by a screw axis Ŝa and �n. They can only be destroyed by
annihilating them at BZ boundary, similar to the interlayer
sublattice potential discussed in Ref. [24].

When the field is along the b̂-axis, Ĝb and TRS are both
broken, and the fourfold degeneracy at the U point is lifted.
However, the product of Ĝb and T̂ is preserved on both the
U -R and X-S BZ boundary lines:

�b ≡ ĜbT̂ : (x,y,z,t) → (
1
2 − x, 1

2 + y,z, − t
) × iσ̂z.

(4)

The square of this antiunitary operator �b is −1 on kb = π , i.e.,
�2

b = e−ikb = −1 implying that double degeneracy protected
under the �b operation occurs on the U -R and X-S lines.
�b operationon the Bloch state |φi〉 with n+ eigenvalues on
the U -R line yields �b|φi〉, which in fact possesses the same
n-glide eigenvalue with |φi〉. Thus the fourfold degenerate
eigenstates on the U -R line are protected by the n̂ glide and �b

symmetry. The Bloch states at the R point still remain fourfold
degenerate, which can be attributed to the preservation of the n

glide. Meanwhile, since the screw rotation symmetry is broken
by the magnetic field, a gap proportional to the strength of
the magnetic field, appears at the U point. This degenerate
Dirac nodes on the U -R line can be also understood as the
intersect points between two nodal ring FSs as shown in Fig. 2.
One fourfold degenerate nodal ring FS splits into two doubly

degenerate nodal ring (Weyl ring) FSs as they move upwards
and downwards, respectively, along the U -X line under the
presence of a magnetic field. The overlap between two nodal
ring FSs makes the fourfold Dirac points, which eventually
vanish when the magnetic field strength increases further.

Finally, we discuss the case with the magnetic field along
the ĉ direction, where b̂ glide, n̂ glide, and TRS are all
broken. The doubly degenerate states for each band on the
kb = π plane can be explained by another emergent antiunitary
operator �n, which is defined as the product of n̂-glide and
� operator as in Eq. (3). Along the U -X line, the screw
rotation symmetry along ĉ-axis Ŝc ≡ ĜbĜn is invariant. The
degenerate pair of �n|φi〉 and |φi〉 on the U -X line carry
opposite screw eigenvalues. Therefore the fourfold degenerate
points are avoided due to the hybridization, and completely
gaped out the band degeneracy near the Fermi energy. A similar
situation also occur on the U -R line where mirror symmetry is
preserved and [M̂c,�n] = 0. It hence leads to gapped states
on the U -R line. Besides, since the n̂-glide symmetry is
also broken, a generic momentum point on the kb = π plane
should have a gap, and the system turns into a trivial band
insulator.

IV. SURFACE STATES

Since the bulk nodal FSs are protected by the space-time
inversion and nonsymmorphic symmetries, one can ask if there
are nontrivial surface states associated with the bulk states.
While the surface naturally breaks the inversion symmetry,
surface states can possess nontrivial topology depending on
the direction of surfaces. Given that the double degeneracy
along the U -R and X-S lines are protected by the product of
the b glide and TRS (�b) without involving the inversion
symmetry, a surface containing this glide plane could be
potentially interesting. The (001) surface breaks the mirror
and n glide, but preserves the b-glide symmetry. Thus we study
the (001) surface states using a tight binding model derived
for perovskite iridates AIrO3 in Ref. [24].

As shown in Fig. 3(a), the (001) surface states perpendicular
to the ĉ direction shows the surface bands across the �̄-X̄ line.
This is related to the Z2 Dirac cone discussed in Ref. [34]. On
the other hand, the surface states associated with the FS ring
cannot be separated from the bulk spectrum across the X̄-S̄
line. To gap out the bulk states but keeping the �b invariance,
one can introduce a sublattice potential [24,31]. The surface
states are then double helical states named Riemann surface
states [40] as shown in Fig. 3(b). TRS is essential for the
existence of these surface states, and one then can ask what
happens to them when the TRS is broken. When the field
is along the a axis, the b̂-glide plane is still preserved and
furthermore the bulk states are gapped except two nodal points.
As shown in Fig. 4, two Fermi arcs emerge from the bulk nodal
points on each surface side: the double helical state splits into
two Fermi arcs, and one appears on the top surface while the
other appears on the bottom surface just like the Fermi arcs
appearing from Dirac to Weyl FSs. Unlike the conventional
Dirac point discovered so far, this nodal point accompanies
two Fermi arcs on each side. The Chern number associated
with the each nodal point is ±2.
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FIG. 4. (001) surface states in the presence of magnetic fields
along the â direction. (a)–(c) and (d)–(e) show the surface states on
the top and bottom surfaces of the (001) slab geometry, respectively.
(b), (e) and (c), (e) show the constant energy cut of the surface states
in the momentum space at the energy +2.5 and 0 meV with respect to
the Fermi level, respectively, as shown in (a) and (d). Green crosses in
the constant energy plots mark the position of the surface-projected
bulk Dirac points. These surface states represent two Fermi arcs from
the fourfold degenerate Dirac points.

V. SUMMARY

In summary, we prove that the presence of fourfold
degenerate nodal lines of FSs on the BZ boundary plane in
3D nonsymmorphic lattices is guaranteed, when there are
two perpendicular nonsymmorphic symmetry operators, e.g.,
two perpendicular glide planes in addition to the space-time
inversion symmetry. Our result is applicable for nonsymmor-
phic crystals with perpendicular glide/screw symmetry planes.
Note that, in the experimentally relevant real materials such
as SrIrO3, the presence of the hopping terms between the
same sublattice explicitly break the chiral symmetry [34], and
the nodal line hence acquires dispersion. While the amplitude
of such hopping terms is tiny in SrIrO3 [31,34], in other
materials it can be a different case. However, this does not
alter the main conclusion. We also show that fourfold Dirac
FSs can survive even when TRS is absent. This is because the
combination of nonsymmorphic and time-reversal symmetries
is an antiunitary operator that leads to the double degeneracy
like Kramers degeneracy. Using a tight-binding model derived
for perovskite iridates, we also present the associated surface
states with and without TRS. On the (001) surface where
the product of the b glide and TRS is preserved, double
helical surface states are found, but they are hidden under
the bulk states. When the magnetic field is applied along

a certain direction that keeps the b-glide symmetry, double
Fermi arcs associated with fourfold Dirac points appear, which
indicates that these Dirac points are made of two Weyl points
with the same topological charge. On the other hand, a pair
of Weyl ring FSs emerges under the magnetic field along
another direction. The current work suggests that materials
with nonsymmorphic crystalline symmetries offer an excellent
playground to explore rich topological phases.
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APPENDIX: FOURFOLD DEGENERACY ENABLED
THROUGH NONSYMMORPHIC SYMMETRIES WITH

SPACE-TIME INVERSION SYMMETRY

Here, we provide a proof for the degeneracy between a
pair of Bloch states related by nonsymmorphic symmetries
when there are two perpendicular screw or glide symmetry
operations. The two screw operators considered in the maintext
are defined in Eq. (1) and (2), and, note that the screw axes are
off-center from the inversion center, (0,0,0). The axis for the
Ŝa screw operation is parallel to â axis but it passes through
(0,b/4,0), instead of (0,0,0). The other screw rotation axis
Ŝb passes through (a/4,0,c/4), and is parallel to b̂ axis. Here,
a, b, and c are the length of the Bravais lattice basis â, b̂, and ĉ,
respectively. Note that, when squared, both Ŝa and Ŝb correctly
reproduces the unit translations along the â and b̂ directions,
respectively. The space-time inversion symmetry defined as a
product of TR and inversion operator, � = T̂ ∗ P̂ is present:
� : (x,y,z,t) → (−x, − y, − z, − t) × iσ̂y . The c-axis screw
operator is then given by Ŝc = Ŝa ∗ Ŝb and the glide plane
operators are also found by Ĝn = Ŝb ∗ P̂ and Ĝb = Ŝa ∗ P̂ .

Since the degeneracy occurs on the BZ boundary plane, let
us focus on the Bloch states on the kb = π plane. In this plane,
the Bloch states are invariant under the n-glide operator Ĝn,
thus they can be classified by n-glide eigenvalues n±. Given

that (Ĝn)
2 = −eika+ikc , n± = ±iei ka+kc

2 . All Bloch states on
the kb = π plane carry one of these eigenvalues.

Now let us examine a particular high-symmety U point
(ka = 0,kb = π,kc = π ) on this BZ boundary plane. At the
U point, the Bloch states are invariant under the screw
Ŝa operation in addition to Gn. Thus the Bloch states at
the U point are denoted by both n-glide and a-axis screw

eigenvalues. Since (Ŝa)
2 = −eika , the eigenvalues of Ŝa are

a± = ±iei ka
2 which is ±i at the U point. Taking the b-glide

operation on a Bloch state |φ1〉, i.e., Ĝb|φ1〉 generates another
Bloch state with the same n-glide eigenvalue but different
screw Ŝa eigenvalue. These two are orthogonal and degenerate.
The proof is shown as follows.

Let us consider a Bloch state |φ1〉 that carries n+ and a+
eigenvalues. Note that under Ĝn and Ŝa , Ĝb|φ1〉 behave as

Ĝn(Ĝb|φ1〉) = Ĝb(Ĝn|φ1〉) = n+Ĝb|φ1〉 (A1)

Ŝa(Ĝb|φ1〉) = −Ĝb(Ŝa|φ1〉) = −a+Ĝb|φ1〉 = a−Ĝb|φ1〉,
(A2)
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TABLE I.

Symmetry Ĝb Ĝn M̂c �

Ĝb 0 ĜbĜn = −e−ika+ikb ĜnĜb {Ĝb,M̂c} = 0 Ĝb� = e−ika+ikb�Ĝb

Ĝn ĜnĜb = −eika−ikb ĜbĜn 0 ĜnM̂c = −eikc M̂cĜn Ĝn� = eika−ikb+ikc�Ĝn

M̂c {Ĝb,M̂c} = 0 M̂cĜn = −e−ikc ĜnM̂c 0 M̂c� = e−ikc�M̂c

� Ĝb� = e−ika+ikb�Ĝb Ĝn� = eika−ikb+ikc�Ĝn M̂c� = e−ikc�M̂c 0

where we used the commutation relations given in Table I: Ĝb

commutes with Ĝn but anticommutes with Ŝa . We also used
a− = −a+. This suggests that Ĝb|φ1〉 is also an eigenstate
of both Ĝn and Ŝa operators with n+ and a− eigenvalues,
respectively. As mentioned in the main text, we denote this
Bloch state |φ3〉, which is proportional to Ĝb|φ1〉 up to a U(1)
phase factor. Furthermore, the inner product of these two Bloch
states is given by

〈φ1|Ĝb|φ1〉 = −〈φ1|(Ŝa)2Ĝb|φ1 = −(−Ŝa|φ1〉)†ŜaĜb|φ1〉
= −〈φ1|Ĝb|φ1〉, (A3)

where (Ŝa)
2 = −1 at the U point is used. This implies

〈φ1|Ĝb|φ1〉 = 0 and thus |φ1〉 and |φ3〉 are orthogonal. Since
Ĝb commutes with the Hamiltonian, we proved that |φ1〉
and |φ3〉 are degenerate at the U point. Following a sim-
ilar argument, another pair of Bloch states (|φ2〉,|φ4〉) are
degenerate where |φ4〉 ∝ Ĝb|φ2〉. Thus taking into account
their Kramers partners [38], two sets of four Bloch states—
(|φ1〉,|φ3〉,�|φ1〉,�|φ3〉) and (|φ2〉,|φ4〉,�|φ2〉,�|φ4〉)—are
degenerate at the U point.

How do these Bloch states evolve as they move to a generic
point on the R-S and X-S BZ boundary line in the kb = π

BZ plane? As discussed in the maintext, along the R-S and
X-S BZ boundary line, |φ1〉 and |φ2〉 (|φ3〉 and |φ4〉) are
degenerate and related by Ĝb (Ŝa). To prove our statement, let
us consider an arbitrary point on the R-S line (ka = π,kb = π ),
where the Bloch states are invariant under the b- and n-glide
operation. Using the commutation relation given in Table I,
i.e., ĜbĜn = −e−i(ka=π)+i(kb=π)ĜnĜb = −ĜnĜb, the Bloch
state Ĝb|φ1〉 on the R-S line under an n-glide operator Ĝn

carries an n− eigenvalue as shown below:

Ĝn(Ĝb|φ1〉) = −Ĝb(Ĝn|φ1〉) = −n+Ĝb|φ1〉 = n−Ĝb|φ1〉.
(A4)

Thus Ĝb|φ1〉 with an opposite n-glide eigenvalue becomes de-
generate with |φ1〉 along the R-S line, as Ĝb commutes with the
Hamiltonian on the R-S line. Using a similar process including
orthogonality, 〈φ1|Ĝb|φ1〉 = 〈φ1|Ĝb�|φ1〉 = 0, we showed
that two pairs of four Bloch states, (|φ1〉,|φ2〉,�|φ1〉,�|φ2〉)
and (|φ3〉,|φ4〉,�|φ3〉,�|φ4〉) including a Kramers doublet are
degenerate on the R-S line. Hence |φ2〉 and |φ3〉 with opposite
and same n-glide eigenvalue at the U point exchange their
degenerate parter, as they move from U to any other point
along the R-S line as shown in Fig. 1(b) in the main text. The
energy level crossing should occur somewhere in between,
unless these nonsymmorphic symmetries are broken.

Similarly, a band crossing should occur somewhere be-
tween the U point to any point on the X-S BZ boundary line
(kb = π,kc = 0), where the Bloch states are invariant under
Ĝn and Ŝa operations. Since they anticommute, i.e., ŜaĜn =
−e−i(kc=0)ĜnŜa = −ĜnŜa , another Bloch state Ŝa|φ1〉 gener-
ated by taking Ŝa on |φ1〉 has the opposite n-glide eigenvalue
from |φ1〉. Since |φ2〉 ∝ Ŝa|φ1〉 on the X-S line, and Ŝa com-
mutes with the Hamiltonian, we find (|φ1〉,|φ2〉,�|φ1〉,�|φ2〉)
and (|φ3〉,|φ4〉,�|φ3〉,�|φ4〉) are degenerate on the X-S line.

In summary, we prove that two pairs of Bloch states denoted
as (|φ1〉,|φ3〉) and (|φ2〉,|φ4〉) at the U point must switch a
degenerate partner when the bands move from the U point
towards the BZ boundary line of the X-S and R-S lines, which
results in a ring of fourfold degenerate FS on the kb = π BZ
plane.

The commutation table among b-glide,n-glide, mirror, and
� operators established in the end is used to demonstrate the
mathematical proof provided in the above discussion.
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