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Density matrix renormalization group on a cylinder in mixed real and momentum space
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We develop a variant of the density matrix renormalization group (DMRG) algorithm for two-dimensional
cylinders that uses a real space representation in the direction along the axis of the cylinder and a momentum
space representation in the direction around the circumference. The mixed representation allows us to use the
momentum around the cylinder as a conserved quantity in the DMRG algorithm. Compared with the traditional
purely real-space approach, we find a significant speedup in computation time and a considerable reduction in
memory usage. Applying the method to the interacting fermionic Hofstadter model, we demonstrate a reduction
in computation time by over 20-fold, in addition to a sixfold memory reduction.
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I. INTRODUCTION

While the density matrix renormalization group (DMRG)
[1–3] method was originally conceived as an algorithm for
one-dimensional systems, it has shown tremendous success in
exploring two-dimensional systems in recent years [4]. The
2D DMRG method uses geometries such as a cylinder of finite
circumference so that the quasi-2D problem can be mapped
to a 1D one [5]. Despite the development of genuinely two-
dimensional tensor network optimization algorithms [6,7],
DMRG is still a standard method due to its reliability and
stable convergence properties. Especially in the very active
field of topological phases, it has been successfully applied to
identify quantum spin liquids [8,9], fractional quantum Hall
phases [10–16], and bosonic and fermionic fractional Chern
insulating states [17–19].

Despite the improvements and successes of DMRG for
(quasi-)two-dimensional systems, calculations on cylinders or
strips of large width remain an extremely challenging task.
The main cause for this is rooted in the behavior of quantum
entanglement, which is governed by the area law [20–23]: the
computational cost in efficient DMRG implementations grows
exponentially in the circumference (but not length) of the
cylinder for gapped systems. Progress has only been possible
due to numerous improvements to the original algorithm. The
inclusion of Abelian and non-Abelian symmetries [24–28],
the introduction of single-site optimization with density
matrix perturbation [29,30] and the development of real-space
parallelization [31] have increased convergence speed and
decreased the requirement of computational resources. An
infinite version of the algorithm [32] has facilitated the
investigation of translationally invariant systems. While the
barrier to larger circumferences is exponential, the accuracy
also increases exponentially with circumference in a gapped
system, so further optimizations of the DMRG are both highly
desirable and worthwhile.

In this paper, we introduce a modification of the 2D DMRG
algorithm for fermionic systems on cylinders in which we
represent the state in momentum space in the direction around
the cylinder. This allows momentum to be used as a conserved
quantity and greatly reduces computational costs. We test the
algorithm for the interacting Hofstadter model [33] and report

a speedup and better scaling of computation time with the
bond dimension and drastically reduced memory usage. At
moderate DMRG bond dimensions (χ = 3200) computational
time is reduced 20-fold, and the advantage increases further
with χ . Furthermore, we show that the efficient construction
of the Hamiltonian as a matrix product operator (MPO) in
our method results in a surprising reduction of the MPO bond
dimension compared to the traditional real space approach for
the model under consideration.

The paper is organized as follows. After introducing the
concept of the algorithm in Sec. II, we present the numerical
results comparing the real and mixed space approach in
Sec. III. In Sec. IV, we give some technical details of the
algorithm by reviewing the construction of Hamiltonians as
matrix product operators (MPOs). We detail the structure of
an interacting Hofstadter MPO in the traditional real space
formulation and in the mixed real and momentum space.
Finally, we conclude with a discussion in Sec. V.

II. CONCEPT OF THE ALGORITHM

Cylinder DMRG requires mapping the Hilbert space of the
cylinder to a 1D chain with sites indexed by i. Generally,
this is done by letting the 1D chain “snake” through the real-
space sites of the 2D cylinder, as illustrated in Fig. 1(a). In
order to simulate 2D cylinders while keeping computational
costs manageable, it is crucial to exploit symmetries of the
Hamiltonian. To a exploit a global symmetry R̂g in DMRG, it
must be on-site, meaning that its action factorizes across sites:

R̂g =
∏

i

R̂(i)
g . (1)

Charge conservation and spin-rotation are of this form.
However, when snaking in real space, a rotation of the cylinder
permutes the sites, so does not factorize as above, and cannot
be used to accelerate computations.

To bring a rotation of the cylinder into an onsite form, we use
a mixed real-space and momentum-space basis. In a fermion
system, the Hilbert space of a real-space site is spanned by the
occupations nx,y = 0,1 of the single-particle fermion orbitals.
We instead Fourier transform the single-particle orbitals in the
direction around the cylinder and pass to the many-body basis
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FIG. 1. Numbering scheme in order to transform the 2D lattice
into a 1D chain. The horizontal direction is the direction along the
cylinder, the vertical one around the cylinder. As an example, we
show a cylinder of width Ly = 12 (a) real space, (b) mixed real and
momentum space approach.

{nx,ky
= 0,1}. A crucial property of fermions is that the hard-

core constraint is a direct consequence of the Pauli exclusion,
so remains true in momentum space. This would not be true
in a bosonic system; projecting into the nx,y = 0,1 space does
not lead to an equivalent restriction on nx,ky

. Thus we focus
on fermion systems, though it would be interesting to develop
a bosonic version for application to spin-systems.

The 1D chain is again chosen to snake through the orbitals
i = (x,ky) as shown in Fig. 1(b). While it is imperative that
x remains ordered in the chain, to reduce the bipartite entan-
glement, there is freedom in choosing the ordering of the ky .
Indeed, different orderings may require different intermediate
DMRG bond dimensions (and hence different computational
efficiencies) depending on the phase in question [34]. For
example, if the state forms a charge density wave (CDW)
at wave vector Qy = π , it is advantageous to keep ky,ky + π

close together in the chain, as the CDW is dimerization in ky

space. In this work, we study liquid phases, so we choose the
simplest sequential ordering.

We note that while it is tempting to pass entirely to
momentum space [35,36], this would destroy locality in
the x direction. The efficiency of the DMRG algorithm
implicitly relies on short-range interactions along the length
of the cylinder. Even though eigenstates of noninteracting
fermionic systems are product states in this basis, this behavior
immediately changes once interaction terms are taken into
account as the Hamiltonian becomes highly nonlocal in the
momentum basis [37].

In the new “mixed” basis, a rotation of the cylinder takes
the onsite form Ty = ∏

x,ky
eiky n̂x,ky , so can be exploited for

a considerable speedup in computation time and a drastic
reduction of memory usage by introducing an additional ZLy

momentum quantum number where Ly is the number of unit
cells around the cylinder. Furthermore, we readily obtain quan-
tities such as the entanglement spectrum momentum-resolved
without any further computation. We present numerical results
benchmarking the mixed space algorithm versus the traditional

real-space approach for the interacting fermionic Hofstadter
model in the following section.

III. NUMERICAL RESULTS

A. Hofstadter model

To demonstrate the efficiency of our approach, we employ
the infinite version of the algorithm (iDMRG) to calculate the
ground states of the interacting Hofstadter model on an infinite
cylinder geometry for different parameters. The Hofstadter
model describes fermions hopping on a square lattice subject
to a magnetic field and the single-particle spectrum was shown
to exhibit a fractal structure for arbitrary flux densities [33].
In the case of rational flux densities given by φ/φ0 = p/q per
square plaquette, the spectrum separates into q energy bands
with nontrivial Chern number Ci [38,39]. For noninteracting
fermions, the model hosts incompressible states when an
integer number of bands are fully occupied, and displays a
Hall conductivity of

σxy = C
e2

h
, (2)

where C = ∑n
i=1 Ci is the sum over the Chern numbers of the

occupied bands [39]. More complex physics, however, arises
in the case of a fractionally filled Chern band where lattice
analogues of the fractional quantum Hall effect can emerge.
These fractional Chern insulators (FCI) were theoretically
proposed and numerically detected in numerous works for
C = 1 [40–43] as well as for higher Chern numbers [44–46].

However, experimental realizations of FCI states remain
elusive up to now. The Hofstadter model is of particular interest
in this respect since its single-particle Hamiltonian has recently
been realized in a system of ultracold atoms in an optical lattice
[47,48] and the Chern number of the lowest band has been
experimentally determined to be unity [49].

In the following, we will numerically investigate the
Hofstadter model with Hamiltonian

H = −t
∑
〈j,l〉

(eiφjl c
†
j cl + H.c.) + V

∑
〈j,l〉

njnl, (3)

where c
†
j (cj ) creates (annihilates) a fermion on site j , φjl is

the phase acquired when hopping from site l to site j and nj is
the particle number operator at site j . By fixing a rational flux
of φ = 2πp/q per square plaquette and choosing the Landau
gauge A = (0,Bx), the φjk are nonzero only for hoppings in
y direction and are invariant by a translation of q sites in
x direction. This allows for representing the single-particle
problem in a magnetic unit cell (MUC) comprising q × 1
sites and solving the q-site tight-binding model via Bloch’s
theorem. We then obtain q energy bands with nonzero Chern
numbers. A typical plot of the band structure is given in Fig. 2.

B. Fully occupied band with weak interactions

To benchmark our algorithm, we first calculate the ground
state of the model Hamiltonian (3) for a fully occupied lowest
band and weak interactions, i.e., at one third site filling for
the flux φ = 2π/3 per square plaquette and V/t = 0.1. In this
case, the lowest band of the noninteracting model has Chern
number C = 1 and hosts an integer quantum Hall state on
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FIG. 2. Single-particle spectrum of the Hofstadter model for a
flux density of φ/φ0 = 1/3. The magnetic unit cell is chosen to be
lx × ly = 3 × 1.

the lattice when fully occupied which we expect to be stable
against weak interactions.

The convergence of energy and entanglement entropy
and the respective computing times and memory use with
increasing DMRG bond dimension χ are depicted in Fig. 3. In
Fig. 3(a), we observe that the energy of the k-space approach
is higher for very low χ but this behavior quickly reverses.
From χ = 800 on, the ground-state energy obtained from the
k-space method is lower than the one from the real space
approach and in the converged region χ � 3200, both methods
yield the same energies. We observe a similar behavior for the
entanglement entropy S between two semi-infinite halves of

FIG. 3. Benchmark plots for the Hofstadter model on an infinite
cylinder with Ly = 10, φ = 2π/3, and V/t = 0.1 at one third
filling. This corresponds to a fully occupied lowest band and weak
interactions. Here, χ is the DMRG bond dimension; increasing
χ leads to better accuracy, at the expense of greater computa-
tional cost. The subplots are (a) energy, (b) entanglement entropy,
(c) computing time, and (d) memory usage, as a function of χ for the
range χ = 100–12 800.

the cylinder in Fig. 3(b). For χ < 3200, S is slightly different
between the two methods, but as expected, it converges to the
same value with increasing bond dimension.

The reason for the different dependence of these quantities
on the bond dimension for low χ originates from the different
representation of the state. Since the direction around the
cylinder is transformed into momentum space, the “intraring
entanglement” within one ring of sites wrapping around the
cylinder differs between the two methods. Thus even though
both methods have the same interring entanglement between
two halves of the infinite system for a cut between rings, the
difference in intraring entanglement has a small effect both for
the entanglement entropy and the energy of the states at lower
bond dimensions.

The behavior of these two quantities for low bond dimen-
sions shows that the basis chosen for DMRG calculations can
have an effect if χ is not high enough to fully represent the state
of the system. This is particularly interesting at or near a critical
point, where the state can never be faithfully represented by
a matrix product state of finite bond dimension, though finite
entanglement scaling [50,51] can provide information about
the nature of the state.

In Fig. 3(c), we show the computing time as a function of the
bond dimension which clearly demonstrates the superiority of
the k-space method compared to the traditional approach. For
higher bond dimensions, the computing time is significantly
lower and it increases considerably slower as a function of
χ . The presence of an extra conserved quantity provides an
additional block structure to the tensors, severely reducing the
computational cost, with 20-fold speed up at χ = 3200. For
the same reason the amount of memory needed to perform the
calculations is dramatically reduced as depicted in Fig. 3(d).
For bond dimensions χ > 400, the peak memory use in the
mixed space approach is approximately six times lower.

C. Partially filled band

Having tested the algorithm in the “integer” case in the
previous paragraph, we now turn to the case of a partially
filled band. We compute the ground state of the Hamiltonian
at one particle/nine sites, corresponding to one third filling of
the lowest band at an interaction of V/t = 7.0 with the mixed
space algorithm. Even though the interaction is significantly
higher than the gap � = 2 between the lowest and the second
band, we expect the system to host a fractional Chern insulator
(FCI) state for these parameter values since FCI states have
been shown to survive for interactions much larger than the
band gap [19,52]. In order to confirm the presence of the FCI
state, we compute the Hall conductivity σxy of the system.
If there is a finite Hall conductance σxy , then adiabatically
threading one flux quantum through the cylinder will pump the
charge σxy from the left to right half of the cylinder [53]. Thus
we adiabatically insert a flux through the system by twisting
the boundary conditions and monitor the charge pumped into
the left side of the system, as depicted in Fig. 4. After a flux of
6π has been inserted, a unit charge has been pumped across
the cut showing a Hall conductivity of σxy = 1/3 × e2/h.

Another advantage of the mixed space approach is the
possibility of readily obtaining the momentum-resolved en-
tanglement spectrum. If we cut the system into two halves, we
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FIG. 4. Average charge value of the left Schmidt states as a
function of flux going through the cylinder. After three flux quanta
(6π ) have been adiabatically threaded through the cylinder, one
charge has been pumped across the artificial cut of the system
indicating a Hall conductivity of σxy = 1/3 × e2/h.

can represent the ground state |ψ〉 by a Schmidt decomposition
given by

|ψ〉 =
∑

α

λα |φα〉L |φα〉R , (4)

where |φα〉L/R are the Schmidt states defined on the left
and right side of the system. These Schmidt states can be
labeled by charge and ky momentum values. The entanglement
spectrum {εα} of the ground state can directly be read off
the Schmidt decomposition via εα = −2 ln λα . Whereas the
calculation of the momentum labels of the Schmidt states
requires additional computational steps in the real space basis
[18], it is a trivial byproduct of the algorithm in the mixed
basis. In this way, we readily obtain the entanglement energies
labeled by momentum and charge values of the corresponding
Schmidt states.

In the ν = 1/3 FCI state, we expect a structure in
the entanglement energies matching the prediction of the
corresponding conformal field theory for the edge [19,54].
The counting pattern of the entanglement energy levels as
a function of momentum for every charge sector should be
{1,1,2,3,5,7, . . .}. This counting is clearly reproduced in Fig. 5
proving that the mixed real and momentum space algorithm
correctly captures the ν = 1/3 FCI state in the Hofstadter
model.

Having demonstrated the suitability of our algorithm
for evaluating the ground state of two-dimensional gapped
systems on the example of the Hofstadter model, we turn to
some technical details considering the representation of the
Hamiltonian in the algorithm in the next section.

IV. EFFICIENT MPO CONSTRUCTION

A crucial element of the (i)DMRG method is the represen-
tation of the Hamiltonian as a matrix product operator (MPO)
[3,55,56]. In this way, the operator acting on the infinite system
can be expressed by a finite number of matrices that equals the
number of sites in the iDMRG unit cell. Here, we want to give

FIG. 5. Momentum resolved entanglement spectrum for Ly =
12, φ = 2π/3, V/t = 7.0, and χ = 6400 at one ninth filling (one
third filling of lowest band). The different colors indicate the charge
values of the corresponding entanglement eigenstates. The system
is in a fractional Chern insulator phase and the chiral structure of
the entanglement matching the edge theory state counting predicted
from conformal field theory is clearly visible. The numbers indicate
the counting for the zero charge sector depicted in green.

a short pedagogical review about the construction of general
MPOs and subsequently present the structure of the MPO of
the mixed real and momentum space approach in some detail.

A. Finite-state machines

Let us first consider a general operator acting on a chain of
length N as an introductory example. Suppose the only terms
are nearest neighbor couplings of the form

Ô =
∑

i

(ÂiB̂i+1 + B̂iÂi+1), (5)

then Ô reads in tensor product representation as

Ô = Â ⊗ B̂ ⊗ 1 ⊗ · · · ⊗ 1

+ 1 ⊗ Â ⊗ B̂ ⊗ 1 ⊗ · · · ⊗ 1 + · · ·
+ B̂ ⊗ Â ⊗ 1 ⊗ · · · ⊗ 1

+ 1 ⊗ B̂ ⊗ Â ⊗ 1 ⊗ · · · ⊗ 1 + · · ·

(6)

A pictorial way of writing down all summands of the operator
is the representation of Ô in terms of a finite-state machine
(FSM) [57]. A finite-state machine consists of a set of states
and a table of rules for transitions between the states. An
FSM can be depicted as a graph whose nodes (vertices)
represent states and whose directed edges correspond to
transitions between those states. Conventionally, FSM are
understood to be probabilistic, with the various possible
transitions out of a state weighted probabilistically. Each
transition of the FSM into a new state has a corresponding
action—for example, appending a character to string—so that
by repeating sequentially a probability distribution over strings
is built up. For our purposes these sequences will be taken in
superposition, generating the summands of our Hamiltonian.
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FIG. 6. Part of the FSM at sites i and i + 1 generating the operator
Ô and MPO matrix for the matrix M [n] (8). The letters R, A, B, and
F label the states of the FSM as well as the rows/columns of the MPO
matrix. Two paths of the FSM producing the term Âi B̂i+1 + B̂i Âi+1

are highlighted in red. The gray rectangles indicate the six transitions
in the FSM that exactly correspond to the six nonzero entries of M .

Therefore the Hamiltonian is the sum of all possible transition
paths generated by the FSM.

Here the transition on the i th iteration of the FSM will
place an operator on site i. A part of the FSM generating the
operator Ô is shown in the left illustration of Fig. 6 and is to
be read as follows. We enter the FSM by starting in a “ready”
state labeled by R. From there, we follow all paths given by
transitions between states leading to the “final” state labeled
by F . Each path represents one tensor product term in Eq. (6).
When taking a transition between states, the operator which
labels the transition is added to the tensor product.

Let us now focus on a particular path generating the term
ÂiB̂i+1. It starts with a transition R → R in which the unit
operator is added as the first term of the tensor product. After
going through i − 1 of these transitions, the path jumps from
R into the state A placing an operator Â at the i th site, and
then from A to F adding B̂ at site i + 1 to the product.
From there on, it continues with transitions F → F adding
unit operators until the tensor product has a length of N

operators. The resulting operator is 11 ⊗ · · · ⊗ 1i−1 ⊗ Âi ⊗
B̂i+1 ⊗ 1i+2 ⊗ · · · , which is the desired term.

In Fig. 6, all transitions corresponding to the sites i and
i + 1 are depicted. The entire operator Ô is created by taking
a superposition of all paths in the FSM, corresponding to a
sum of all tensor products. It is easy to generalize the concept
to an operator acting on an infinite chain in which the R parts
of the paths come from −∞ and the F parts of the paths go
to ∞. In this way, we may obtain a translationally invariant
depiction of the FSM for any translationally invariant operator.

B. MPO

The representation of Ô as an FSM immediately leads to its
representation as an MPO. In the MPO formalism an operator
Ô acting on the length-N chain is written as

Ô =
∑

a0,...,aN

�vleft
a0

M [1]
a0a1

M [2]
a1a2

· · · M [N]
aN−1aN

�vright
aN

. (7)

Each M
[i]
aa′ is a physical operator acting on site i, the indices

a,a′ range from 1 to D, where D is the number of states in
the FSM picture. Thus it is convenient to interpret M [i] as a
matrix of operators on site i, in much the same way a matrix

is used to represent a FSM or Markov chain. The vectors �vleft

and �vright respectively initiate and terminate the MPO.
By identifying the rows and colums of the MPO matrices

with the states in the FSM as depicted in Fig. 6, we obtain
the entries of the matrices M [i]. For example, the i th transition
from R to A places an operator Â on site i of the chain,
and so M

[i]
R,A = Â. This leads to the following matrices and

intitiating/terminating vectors, written in the basis (R,A,B,F ):

M [n] =

⎛
⎜⎜⎝
1 Â B̂ 0
0 0 0 B̂

0 0 0 Â

0 0 0 1

⎞
⎟⎟⎠,

�vleft = (1,0,0,0),

�vright = (0,0,0,1)T .
(8)

Multiplying these (taking tensor products of the operators),
we obtain the sum of all terms of Ô. The concept can easily
be extended to an infinite chain. In the particular case of Ô,
the operator is invariant under the translation by one site and
all the matrices M [i] along the chain are equal. If an operator
is only invariant under translation by l sites, then there will
be l different MPO matrices along the chain. In general, the
dimensions of the matrices M (which may vary on different
sites), denoted D, are called the MPO bond dimensions.

C. Real-space MPO

Let us now turn to the construction of the interacting
Hofstadter Hamiltonian in MPO form. Working in the Landau
gauge on an infinite cylinder, which guarantees translational
invariance around the cylinder, the Hamiltonian in real space
is given by

H = Hkin + Hint. (9)

The hopping and interaction terms are given by

Hkin = −t
∑

x

⎛
⎝ L∑

y=1

c†x,ycx+1,y

+ eixφc
†
x,Lcx,1 +

L−1∑
y=1

eixφc†x,ycx,y+1

⎞
⎠ + H.c.,

Hint = V
∑

x

⎛
⎝ L∑

y=1

nx,ynx+1,y

+ nx,Lnx,1 +
L−1∑
y=1

nx,ynx,y+1

⎞
⎠, (10)

where the index x is the site labeling along the cylinder, y

labels the position around the cylinder and the flux per square
plaquette is given by φ. For numerical implementation, we
order the sites with increasing x, and then within each ring
order by y coordinates. We then Jordan-Wigner transform the
Hamiltonian according to

ci = σ+
i

∏
j<i

σ z
j and c

†
i = σ−

i

∏
j<i

σ z
j . (11)

This leads to strings of σ z operators between σ+ and σ− in
the hopping terms.
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FIG. 7. Finite-state machine creating the hoppings in the real
space Hofstadter Hamiltonian for L = 4 and φ = π . For creating
the Hermitian conjugate and interaction part of the Hamiltonian, we
need two more copies of the depicted graph. In the Landau gauge,
the Hamiltonian is invariant under translation by eight sites (two
rings), which means that there are eight different MPO matrices. The
remaining four matrices M [5]−[8] can be obtained from M [1]−[4] by
simply replacing −σ+ by σ+ in the paths describing the hopping
around the cylinder.

As mentioned above, we have to construct l MPO matrices
to express the Hamiltonian in a unit cell of length l. As
an example, we show the finite-state machine creating the
hopping terms of Hamiltonian (9) for L = 4 and φ = π , which
has a unit cell of eight sites in Fig. 7. Note that this FSM
will only create a part of the full Hamiltonian. To obtain the
Hermitian conjugate of the hoppings, an identical FSM with
Hermitian conjugate operators is needed. The interacting terms
can be created by another copy of the graph without σ z-strings
and σ+/− replaced by n. Furthermore, the four remaining
matrices of the eight-site unit cell can be obtained by reversing
the sign of the hoppings around the cylinder. Putting together
all finite-state machines that produce the MPO matrices, the
matrix dimension scales linearly with the circumference as
D = 3L + 2.

D. Mixed basis MPO

In order to use the momentum in the direction around the
cylinder as a conserved quantity, we transform the Hamiltonian
(9) into k space in the y direction. Then, the kinetic and
interaction parts of the Hamiltonian read

Hkin = − t
∑
x,k

[
(c†x,kcx+1,k + H.c.) + 2 cos(k + xφ)c†x,kcx,k

]

(12)

and

Hint = V

L

∑
x,q

[
(cos q)nx,qnx,−q + nx+1,qnx,−q

]
, (13)

with k labeling the momentum in y direction and nx,q =∑
k c

†
x,k+qcx,k . Since it only includes operators acting on one

or two sites as in the real space version, the construction
of the MPO part for the kinetic terms is straightforward.
The interaction part, however, consists mostly of terms

FIG. 8. Different cases of momentum transfer within one ring
occurring in the MPO due to the interaction term Hint. Four cases not
shown in the figure are related to A–D via Hermitian conjugation.

with operators acting on four sites and additionally displays
a momentum transfer dependent prefactor for interactions
within one ring.

To demonstrate how the MPO is constructed, we focus on
the interactions within the same ring

V

L

∑
k,k′,q

(cos q) c
†
x,k+q cx,k c

†
x,k′−q cx,k′ , (14)

which represent the most complex terms in the MPO formula-
tion. The remaining part of the MPO for all other terms may be
constructed accordingly. If we want to write this part in MPO
form, every term has to be ordered according to the DMRG
chain, with increasing momentum indices from left to right.
This leads to six distinct types of interaction terms within the
ring, illustrated in Fig. 8. All other cases are either Hermitian
conjugates or variants of q → L − q of these cases.

FIG. 9. Coarse-grained version of the FSM generating all intra-
ring interaction terms of type A to D from Fig. 8. The transitions
between adjacent columns inserts a creation/annihilation operator at
various momenta. The self-pointing “loops” places strings of 1/σ z

operators in between the four creation/annihilation operators. In the
actual FSM, there are multiple copies of the nodes Aμ and Cμ labeled
by momenta in order to ensure momentum conservation (see Fig. 10).
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The terms of type A and type B take the form
c
†
kck+lck+mc

†
k+m+l , with m > l > 0. After the Jordan-Wigner

transformation, they become

σ−
k · · · σ+

k+l × σ+
k+m · · · σ−

k+m+l , (15)

where the ellipsis denote a string of σ z for the intermediate
sites. These terms come with coefficients of 2[cos l − cos(m +
l)] due to the (cos q) factor in the intraring interactions. Type
C and D terms are those that have two annihilation operators
followed by two creation operators when ordered by momenta.
In the spin language, they take the form

σ+
k · · · σ+

k+l × σ−
k+l+m · · · σ−

k+l+m+n, (16)

with l + 2m + n = L to enforce momentum conservation. The
coefficients for these terms are 2[cos(l + m) − cos m]. Finally,
type E and F terms are number-number operator terms in k

space, of the form 2(1 − cos q)nknk+q .
Figure 9 depicts a coarse-grained version of the FSM,

which generates the type A–D terms. It is coarse-grained
in the sense that if taken literally, it correctly captures only
the distinct operator orderings which contribute to terms
A–D, as well as the q-dependent prefactor (cos q) which
is created by the phases e±iα with α = 2π/L. However, it
neglects the constraint placed by momentum conservation on
the precise location of the operator placements. Implementing
this constraint will require duplicating the nodes Aμ,Cμ to
keep track of momentum conservation, as will be shown
shortly.

We summarize how the various paths through the FSM
produce the different types of terms from Fig. 8 in the

following table:

Type Path
A R → A1/A2 → A3 → A6 → F

B R → A1/A2 → A4/A5 → A6 → F

C R → C1 → C4/C5 → A6 → F

D R → C2/C3 → C4/C5 → A6 → F

The FSM for type E and type F terms are not shown in the
figure, but may be constructed with a similar idea.

In the actual MPO implementation, there are multiple
copies of each Aμ and Cμ nodes, one for each momentum
quantum number (see Fig. 10). Thus we label these copies by k,
Aμ(k),Cμ(k). The interpretation is that in state X(k), the FSM
has thus-far placed operators with total momentum k. In this
manner, the FSM can keep track of momentum conservation.
As a concrete example, Fig. 10(a) focuses on one specific
subset of type-A paths in the FSM generating the terms propor-
tional to c

†
0c2c4c

†
6, or equivalently σ−

0 σ z
1 σ+

2 13σ
+
4 σ z

5 σ−
6 17 after

a Jordan-Wigner transformation. (The momenta are given in
units of 2π/L.) The intermediate states Aμ(k) are labeled by
the total momentum k that has been placed along the path. It is
straightforward to verify that the graph yields the coefficient
V
L

2(cos 2α − cos 4α).
To account for all terms in the interacting Hamiltonian,

naively we need more intermediate states than in the real-
space formulation since first, the interaction part has a more
complicated structure and second, the information about the
momentum has to be encoded in the state. If we assume
each intermediate state type Aμ,Cμ has an additional L-fold
momentum label, a very crude upper bound for the MPO bond
dimension is given by D � 26L + 9. This is considerably
larger than in the real space case, but still linear in L. However,

FIG. 10. (a) Application of the FSM from Fig. 9 for L = 8 and the specific term proportional to c
†
0c2c4c

†
6, which following the Jordan-Wigner

transformation (11) becomes σ−
0 σ z

1 σ+
2 13σ

+
4 σ z

5 σ−
6 17. The red and blue portions of the path correspond, respectively, to case A and case B from

Fig. 8. Following the path from R to F generates the desired coefficient of V

L
2(cos 2α − cos 4α) with α = 2π/L. The intermediate nodes are

labeled Aμ(k), where k denotes the cumulative momentum, modulo L. [Thus 6 ≡ −2 (mod 8).](b) Modified path after rotating the basis which
replaces the complex exponentials by real-valued sine and cosine terms.
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FIG. 11. (a) Scaling of the average MPO bond dimension 〈D〉
with the circumference L of the cylinder. Despite the additional
complexity of the k-space MPO, its bond dimension is smaller than
that of the real space MPO. (b) Average ratio of the number of nonzero
vs total number of entries in the MPO matrices for the real space and
the exponential and sine/cosine formulation in mixed space.

the true dimensions of the matrices in the computation are
much lower. Due to momentum conservation, many paths
through the FSM are not allowed, and so at any specific site
there are many unreachable intermediate states. As a result,
a significant fraction of such FSM states may be eliminated,
resulting in much fewer states. In the MPO language this means
that the MPO matrices comprise many rows or columns that do
not contain any nonzero entries. We may simply delete these
from the matrices. Note that in the real space version, no such
rows or columns exist so that the size of the MPO cannot be
reduced further. In fact, after trimming the MPO dimension D

is significantly lower in the mixed space than in real space. We
show a scaling of the MPO bond dimension, averaged over
the unit cell, as a function of the cylinder circumference in
Fig. 11(a).

As described above, the MPO includes complex numbers
eiα . However, eiα and e−iα always show up in pairs, as the
matrix elements of Hint are real-valued. Using the identity(

eiα 0
0 e−iα

)
= 1

2

(
i 1

−i 1

)(
cos α sin α

− sin α cos α

)(−i i

1 1

)
,

(17)

we can further optimize the MPO. By replacing the complex
exponentials with the corresponding sine and cosine terms,
we are able to perform our numerical calculations exclusively
using real numbers. (Note that the hopping terms in Eq. (12)
are real-valued in the k-space basis.) The off-diagonal terms
in the rotation matrix of Eq. (17) generate more transitions in
the resulting FSM, hence more nonzero entries in the MPO
matrices, but do not increase the MPO bond dimension. To
illustrate the effect of the transformation (17) on the FSM,
we show the transformed version of the path from Fig. 10(a)
in Fig. 10(b). Furthermore, we show the average sparsity of
the different formulations in Fig. 11(b), which may also serve

as an indication of the computational complexity. In general,
the MPO matrices in real space are slightly sparser than in
the mixed representation, but the difference decreases with
increasing circumference. The transformation in mixed space
(17) does almost not affect the sparsity of the matrices.

V. CONCLUSIONS

The mixed space approach for DMRG on cylinders intro-
duced in this paper uses the momentum around the cylinder
as an additional conserved quantity, greatly reducing the
numerical effort of the method. Applying the algorithm to
the interacting fermionic Hofstadter model, we have shown a
speedup of up to 20 times in CPU time and up to six times
reduced memory usage. In addition, the algorithm scales more
favorably with the DMRG bond dimension χ , offering the
prospect of an even increased speedup for larger χ .

The drastically reduced computational cost suggests this
approach could be a standard procedure when investigating
fermionic lattice models with DMRG. With quantum Monte
Carlo suffering from the sign problem in these systems, DMRG
is still one of the most reliable algorithms to investigate
ground states of fermionic systems when going beyond system
sizes accessible in exact diagonalization. An exciting future
direction is to consider spinful Hubbard models in Mott
insulating and Fermi-liquid regimes [58]. Since the method
allows us to reach much larger DMRG bond dimensions,
a possible application is to detect exotic gapless non-Fermi
liquid phases by finite entanglement scaling (FES) [51]. The
possibility of extracting the central charge of a critical phase
from FES can reveal non-Fermi liquid behavior [59,60].

The extension of the method to bosonic systems remains
an open issue requiring further investigation. Since local
interactions become nonlocal around the cylinder in the
k-space representation, the onsite Hilbert space in mixed
space has to be larger than two even for hard-core bosons.
The increase in the dimension of the local Hilbert space will
strongly affect the efficiency of the algorithm. For soft-core
bosons where an artificial cutoff of the onsite Hilbert space
has to be performed even in real space, we also expect that the
effective Hilbert space of a “site” in the mixed representation
has to be larger to achieve the same accuracy of representing
the state. While repulsive onsite interactions penalize a double
occupancy in real space, this constraint is weakened due to the
prefactor 1/L of the interaction terms in the mixed basis.
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Rev. B 91, 155115 (2015).
[31] E. M. Stoudenmire and S. R. White, Phys. Rev. B 87, 155137

(2013).
[32] I. P. McCulloch, arXiv:0804.2509.
[33] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
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