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Motivated by recent experimental progress in the context of ultracold multicolor fermionic atoms in optical
lattices, we have developed a method to exactly diagonalize the Heisenberg SU(V) Hamiltonian with several
particles per site living in a fully symmetric or antisymmetric representation of SU(N). The method, based on
the use of standard Young tableaux, takes advantage of the full SU(N) symmetry, allowing one to work directly
in each irreducible representation of the global SU(N) group. Since the SU(N) singlet sector is often much
smaller than the full Hilbert space, this enables one to reach much larger system sizes than with conventional
exact diagonalizations. The method is applied to the study of Heisenberg chains in the symmetric representation
with two and three particles per site up to N = 10 and up to 20 sites. For the length scales accessible to this
approach, all systems except the Haldane chain [SU(2) with two particles per site] appear to be gapless, and the
central charge and scaling dimensions extracted from the results are consistent with a critical behavior in the
SU(N) level k£ Wess-Zumino-Witten universality class, where k is the number of particles per site. These results
point to the existence of a crossover between this universality class and the asymptotic low-energy behavior with

a gapped spectrum or a critical behavior in the SU(N) level 1 WZW universality class.
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I. INTRODUCTION

Recent advances in ultracold atoms allow experimentalists
to artificially engineer advanced models of strongly correlated
systems [1]. In particular, alkaline-earth atoms such as '37Yb
or 37Sr loaded in optical lattices can be used to realize the
Fermi-Hubbard model SU(N) interaction symmetry [2-9].
When the number of particles per site m is an integer, and when
the on-site repulsion is large enough, the system is expected
to be in a Mott insulating phase, which is well described by
the Heisenberg SU(XN) model. This is a generalization of the
familiar SU(2) spin-1/2 Heisenberg model. Depending on the
geometry of the lattice (a chain, or the square, triangular,
honeycomb, etc., lattices in 2D), the number of colors N,
the number of particles per site [and in particular the SU(N)
symmetry or—irreducible representation—of the local wave-
function on each site], such a model can lead to a rich variety of
quantum phases. For instance, in 1D and form = 1, the SU(N)
chain, for which a general Bethe ansatz solution exists [10], is
gapless with algebraic decaying correlations, while the same
system with m = 2 can lead to the opening of the gap. The
famous Haldane gap appears for SU(2) with an even number
m of particles per site in the totally symmetric representation
(corresponding to spin j = m/2) [11,12]. In 2D, for m = 1,
the ground state has been shown to be characterized by some
Néel-type ordering for SU(2), SU(3) [13,14], SU4) [15], and
SU(5) [16] on the square lattice, while the SU(4) model
on the honeycomb lattice is an algebraic spin liquid [17].
Moreover, on the square lattice, with m particles per site in
an antisymmetric representation, the ground state has been
predicted by mean-field theory to be a chiral spin liquid
provided that m/N > 5 [18,19].

From a theoretical point of view, apart from 1D with
one particle per site, where the system is both Bethe ansatz
solvable [10] and can be studied by a quantum Monte Carlo
algorithm free from the minus sign problem [20-22], the study
of these systems is in fact often challenging. Analytical studies
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can be made with the help of quantum field theory in some large
N expansion [23], strong coupling limit [24,25], or mean-field
approach [18,19,26], or through flavor-wave theory [27,28].
There is a crucial need to associate those with numerical
methods in order to test their validity, or to compensate for
them when they are unapplicable or inconclusive. Among
them, quantum Monte Carlo method can be used only in very
specific cases (to avoid sign problem); as we already said,
in 1D for m = 1, and on any bipartite lattice provided that
pairs of interacting sites correspond to conjugate irreducible
representations (“irrep”) [29-33]. In the case where the local
wave-function on each site is completely antisymmetric, varia-
tional Monte Carlo simulations based on Gutzwiller projected
wave functions have been found to lead to remarkably accurate
results [34-37], but it is not clear how to generalize this
approach to other irreps, the totally symmetric one for instance.
Density matrix renormalization group (DMRG) methods have
also been employed to investigate SU(N) Hamiltonians in
1D [38-42], as well as infinite projetced entangled pair
states (iPEPS) in 2D, in a very efficient way [14,15,17,43],
but the performances of both methods significantly decrease
when the dimension of the local Hilbert space increases, as
a consequence of the large number of colors N (typically
N > 6), or of the large number of particles per site m. Finally,
exact diagonalizations (ED) are limited by the size of the
clusters.

Recently, we have developed a method to exactly diagonal-
ize the Hamiltonian for one particle per site independently
in each global irrep of SU(N) by using standard Young
tableaux [16]. Since, for antiferromagnetic interactions, the
ground state is, in general, a singlet, and since the SU(N)
singlet sector has a dimension much smaller than that of the
full Hilbert space, this enables us to reach essentially the same
sizes for a large N as for small N: typically, if we call N;
the number of sites, N; ~ 30 sites. A natural question was the
generalization of the method to larger number of particles per
site: m > 1.
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In the present paper, we proceed to this generalization in the
cases where the local Hilbert space is a totally symmetric or
antisymmetric irrep. In the first part, we explain our method,
which is also based on the use of standard Young tableaux.
We build an orthonormal basis of states belonging to each
irrep of SU(N), and show how to write the SU(N) two-sites
interaction in such a basis. Then, we apply this method to the
study of the Heisenberg SU(N) symmetric chain with m = 2
and 3 particles per site, in order to investigate the problem
of the Haldane gap in the context of SU(N) chain [38], a
problem still open for most values of N (N > 4) in spite of
the efficiency of DMRG algorithm to treat 1D short range
interactions Hamiltonian. The results turn out to be quite
surprising: for all systems except the Haldane chain [SU(2)
with two particles per site], the excitation gap seems to tend to
zero with the system size, consistent with a gapless behavior.
In addition, the central charge and the scaling dimension that
could be extracted from the finite-size energies are consistent
with the SU(N) level k WZW universality class, where k
is equal to the number of particles per site. These results
contradict the DMRG results of Ref. [38] for N =3 and
the field theory expectation that, if the system is critical, the
universality class should be SU(N) level 1| WZW. We propose
an explanation in terms of a crossover between SU(N) level
k WZW at intermediate energies, and a gapped behavior or
SU(N) level 1 WZW at low energy.

II. THE METHOD

In the most general case, a SU(N) Heisenberg-like interac-
tion between two sites i and j can be written as

Hijp=Y_ 8.5, M
w,v
where the SU(N) generators satisfy on each site i the following
commutation relation:

[Aélﬁ’glit\)] = Sltﬂgéu - Savglaﬁ-

A. Brief review for one particle per site

When there is one particle per site, the local states belong
to the fundamental representation of SU(N). The local Hilbert
space is N-dimensional and spanned by N states, one for each
color, that we can call A,B,C, etc. The interaction in Eq. (1)
then takes the form of a permutation operator P, ;:

Hi j = Pij, @

which switches the state between site i and j: P;j|y); ®
1B); =1B)i ®|y)j, forany y,8 = A,B,C,.... In that case,
an efficient method has been devised to work directly in the
irreps of the global SU(N) symmetry in Ref. [16]. Here, we just
summarize the most important results, and we introduce the
basic definitions needed to understand the rest of the section.

Each irrep of SU(N) is labeled by a Young tableau
o = [og,a,...,0¢] (1 <k < N) where the lengths of the
rows «; satisfy a; > ap > -+ > o > 1 [see Fig. 1(a)]. The
construction relies on the concept of standard Young tableaux
(SYT) associated to a given shape «, i.e., tableaux filled with
numbers from 1 to N; (equal to the number of boxes) in
ascending order from left to right and from top to bottom.
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FIG. 1. (a) Young tableau of shape [3,2,2]; (b) examples of
standard tableaux ranked according to the last letter sequence; (c)
|®!>2y = |JAAABBCC); and (d) left: integers d; y that enter into
the calculation of the dimension dj; right: hook lengths /;; d; v is the
product of the numbers of the left box divided by the numbers of the
right box.

Their number is denoted by f¢, and they can be ranked from
1 to f* according to the last letter sequence: two SYTs S, and
S, are such that S, < S; if the number N, appears in S, in a
row below the one it appears in S;. If those rows are the same,
one looks at the rows of Ny — 1, etc. [see Fig. 1(b)].

Then, for a given Young tableau, it has been shown in
Ref. [16] that one can construct an orthonormal basis with
the help of linear superposition of permutations {0y} s—1.. f«
called orthogonal units, which satisfy the property

o

orsofv = 8"‘ﬂ5mofu Yrs=1,...,f* Yu,v=1, ...,fﬁ,
3

which allow one to write the projector on the irrep « as
= Y o, 4)

and which, more generally, allow one to uniquely express any
linear superposition of permutations 7:

n=Y uly(noly. )

Bit.q

where ,ufq (n) are the coefficients of the decomposition. Indeed,
attaching a site to each integer of the SYTs and interpreting
the permutations as operators acting in the Hilbert space, the
family of states

{lor) = llot @) op @),y e ©

where |®Y) is a product state with A on the first line, B on
the second line, etc. [see Fig. 1(c)] can be proven to be an
orthonormal basis of one of the sectors of the irrep « (if the
quadratic Casimir of « is not equal to zero, there are nontrivial
multiplicities). Most importantly, the matrix { ,uf‘q(Pk,kH)},,q
describing Py x4, the permutation between neighboring sites
k and k + 1, takes a very simple form in this basis: if k +
1 and k are in the same row (respectively, column) in S;,
then uf, (Py x+1) = +1 (respectively, —1), and all other matrix
elements involving ¢ vanish. If kK + 1 and k are not in the same
column or the same line, and if §,, is the tableau obtained from
S; by interchanging k and k 4 1, then the only nonvanishing
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matrix elements involving ¢ or u are given by
(MZ(Pk,k+1) H?M(Pk,kﬂ)) _ —p V1—p?

Moy (Preie+1)  pay (Prc 1) 1—p2 0 '
where p is the inverse of the axial distance from k to k + 1
in S, defined by counting +1 (respectively, —1) for each step
made downwards or to the left (respectively, upwards or to the
right) to reach k 4+ 1 from k. Since any permutation can be
written as product of permutations between neighboring sites,
this allows one to write down very simply the matrix of the

Hamiltonian of Eq. (2), which can then be diagonalized using
Lanczos algorithm.

B. The general Hamiltonian as a sum of permutations

Before entering an explicit construction for symmetric and
antisymmetric irreps, let us summarize the main idea of the
extension to the general case. If we have m particles per
site, the Hilbert space that corresponds to a specific irrep
at each given site is the subspace obtained by applying the
appropriate projector at each site to a much larger Hilbert
space, where each particle would be in any of the N states.
This latter is the same as the Hilbert space for mN; sites
and the fundamental representation at each site. In that
Hilbert space, the Hamiltonian of Eq.(1) just corresponds
to coupling all particles at site i to all particles at site j.
So, by numbering each of the m particles located in each
site, it is possible to express this Hamiltonian as a sum of
m? permutations. Assigning number m(j — 1) 4 to the [th
particle of site j, for/ = 1, ...,m, it takes the form (see also
Appendix A 1):

I'=1,....m

Hijp= Y Pui-niim-1y- @)
=

1,..., m

If we solve this Hamiltonian in the full Hilbert space, the
spectrum will include all the spectra obtained with all possible
combinations of local irreps.

To work in a specific irrep at each site, one needs to construct
an appropriate basis of the projected Hilbert space. Since the
Hamiltonian with one particle per site takes a very simple form
in the basis of SYTs, the natural idea is to try and express the
projectors in this basis to get a basis as linear combinations of
SYTs. In the following, we show that for the fully symmetric
or fully antisymmetric representations, on which we want to
focus in this paper, this can be achieved quite easily.

C. Symmetric and antisymmetric local irreps

First, let us give practical examples of the kind of states
that live in such local Hilbert spaces. If m =2, the fully
antisymmetric irrep labeled by the Young tableau A = [1,1],

is represented as
.

If N =4, and if we call A, B, C, and D the four colors, the
six orthogonal basis states of the irrep [1,1] can be chosen
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as

1 1
{—{IAB)—IBAH, —={IAC) = [CA)},

V2 V2
1 1
—_{|AD) — |DA — —
ﬁ“ D) — |DA)}, ﬁ{lBC> |CB)},
1 1
—{|BD) — |DB)}, —{|CD)— |DC)}}. 9
ﬁ“ ) — |DB)} ﬁ“ ) =1 )}} ©)

The fully symmetric irrep A = [2] represented as

[T (10)

is spanned, for N = 4 by the ten states:

{IAA),IBB),ICC),IDD%

1 1
—={lAB) +[BA)}, —={|AC) +[CA)},

V2 V2

1 1

—{|AD) + |DA)}, —{|BC)+ |CB)},

ﬁ{l )+ |DA)} ﬁ{l ) +|CB)}

1 1

—{|BD) + |DB)}, —{|CD)+ |DC)}}. 11
ﬁ“ )+ |DB)} ﬁ” )+ )}} (1D

The dimension dy of an (local) SU(N) irrep of shape o
can be calculated very simply from the shape « as df =
I—[?zl(di,N/li), with d; y = N + y;, where y; is the algebraic
distance from the ith box to the main diagonal, counted
positively (respectively, negatively) for a box above (below)
the diagonal [see Fig. 1(d)]. The hook lengths /; of a box are
defined as the number of boxes on the same row at the right
plus the number of boxes in the same column below plus the
box itself [see Fig. 1(d)]. Applying those rules to the fully
antisymmetric (respectively, symmetric) shapes with m boxes
in one column (respectively, row) allows one to obtain the
following formulas (with € = +1 for symmetric and € = —1
for antisymmetric):
N(N +¢€)---(N+e(m—1))

em __
d5" = - . (12)

This number can be very high even for small numbers
of particles and could prohibit the diagonalization of the
Hamiltonian even on small clusters since the full Hilbert space
has dimension (dy™)":, where N; is the number of sites.
For instance, for SU(10) and m = 2 in the symmetric irrep,
dIf = 55. Yet, we have been able, thanks to the method we
present below, to find the exact ground-state energy for the
antiferromagnetic Heisenberg model on the 20 sites chain for
this system, while (dl'g‘z)20 ~ 6.42 x 10

1. Selection of relevant symmetric and antisymmetric SYTs

The first important observation (which will be proven in
Appendix A?2) is that an SYT will give O after projection
onto a symmetric or antisymmetric irrep unless the particles
at any given site satisfy a simple symmetry condition: for the
antisymmetric case, the numbers corresponding to a given site
should be in different rows, while for the symmetric case, the
numbers corresponding to a given site should be in different
columns. Such SYTs are said to be relevant.
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For instance, for m = 2 and N; = 4, the following SYT is
relevant for the antisymmetric case:

113
215
17 (13)
68
while the following one is not:
114
215
316 14)
718

since the row of ““8,” which is the number of the second particle
of the fourth site is in the same row as ““7,” which is the number
of the first particle of the fourth site.

2. Equivalence classes and representatives

If two relevant SYTs only differ by permutations among
the particles of given sites, we say that they belong to the
same equivalence class. For instance, for six sites with m = 2
particles per site, in the case where N > 4, the two SYTs

112|5]|1[2]6
3147|1347
619110] [5]9]10 s
8 [11]12] | 8 [11]12

belong to the same class for the symmetric case because each
pair of numbers 2(k — 1) 4+ 1 and 2k belong to the same pair
of locations in the two SYTs.

The second important observation is that all the SYTs
belonging to the same equivalence class lead, after pro-
jection, to the same (nonvanishing) linear combination of
permutations. This can be shown using some properties of
the orthogonal units and a counting argument based on the
Itzykson-Nauenberg (also known as Littlewood-Richardson)
rules (cf. Ref. [44] and Appendix A 4).

Then, we need to keep only one state per class, that we
will call a representative. To select one representative in each
class of SYTs, one can for instance use the classification of the
last letter sequence and pick the smallest state. An algorithm
that allows to construct this family of SYTs is presented in
Appendix A 5. To proceed further, we need to specify the form
of the projector, hence to work separately for the antisymmetric
and the symmetric cases.

3. The equivalence classes in the antisymmetric case

Generally, for a given shape o with Nym boxes, there are
f* < f¢ equivalence classes and representatives. We denote
the representatives as S.forl <r< f “, classified according
to the last letter sequence. Due to the selection rules established
in the previous paragraph, the f“ representatives are SYTs of
shape o with additional infernal constraints: if we call y(q)
the row (between 1 and N) where the number 1 < g < mN;
is located in the considered SYT, one must have y(m(k — 1) 4
) <ymk —1)+2) <--- < y(mk) (where 1 <k < N; is
the index of the site). Unfortunately, we are not aware of the
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equivalent of the hook length formula to calculate directly the
number f from its shape «.! However, and indeed certainly
more importantly in view of doing computational calculations,
we have an efficient way to generate all the f® SYTs with
proper internal constraints for a shape « given as an input
(see Appendix A 5). Moreover, one can perform the following
decomposition of the full Hilbert space: ®lN: ((HS) = @ Ve
When V* stands for the SU(N) singlets collective irrep (o
being a rectangle of dimension N x %), the dimension of
Ve [number of independent SU(N) singlets] is directly f¢.
And when « stands for an SU(N) irrep with strictly positive
quadratic Casimir, exactly as in the m = 1 case [16], V* can
itself be decomposed into dj, equivalent subsectors on which
the Hamiltonian is invariant. Each of them has the dimension
f*. Thus the decompostion of the full Hilbert space leads to
the following equality for the dimensions:

N;
dim(@(?—(&)) = dim(HS)™ = (dy™)" =Y Fdg.
i=1 o
(16)

where o stands for all the shapes of Nym boxes and
no more than N rows. Importantly, such an equality can
be straightforwardly (and independently) obtained from the
Itzykson-Nauenberg rules that we review in Appendix A 3.

4. The basis states in the antisymmetric case

Now, to build basis states for a given shape «, we just need
to apply a projection operator Proj to the orthogonal units o}
of the representatives:

N,

Proj = HProj(k), (17)
k=1

where Proj(k) imposes the local antisymmetry at site k:

1
Projk) = — > o). (18)

" 0eS, k)

In the last equation, the sum runs over a group that can
be named S,,(k), which gathers all the permutations o that
interexchange between each other the m particles of the site
k, whose numbers are m(k — 1) + 1, ....,mk. The function
€(o0) is the signature of the permutation o. It is equal to +1
(respectively, —1) for an even (respectively, odd) permutation
o. Thus, for instance, for the site k = 1, if m = 2, we have

Proj(1) = 3(Z; — (1,2)), (19)

while if m = 3,
Proj(l) = HZ,— (1,2)— (1,3) = (2,3) +(1,2,3)+ (1,3,2)},
(20)

where Z; is the identity, (1,2) = P) , is the permutation 1 <> 2,
and so on.

"In Sec. IIC 5, we give a mathematical definition of those numbers
in terms of Kostka numbers.
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Then, the desired set of states can be defined as

o (Da>
V) = N~'"Proj x L} ;@D
ad |

where A is some normalization constant, and where the index
r runs over the representatives SYTs S, for 1 < r < f*. Note

that % is a normalized N;m-particle state of SU(N)
symmetry «, that has no defined property of local symmetry,
i.e., it appears in the Hilbert space of a system of Nym sites
with one particle per site. First of all, due to the rules reviewed
in Sec. ITA, Proj x of; is a linear superposition of 0%,
where the indices p(r) designate SYTs belonging to the same
equivalence class as S,.

It implies that for two representatives SYTs S,,S, (1 <
r<r < fo,), (W) = 4§, since the two classes of S, and
S, are disjoint. It also implies that each state |¥*) belongs to
the sector of global SU(N) symmetry «. Finally, since Vj =

1,...,N,:

Pm(j—l)+l,m(j—l)+gpr0j(j) = _PVOj(j) vl < l < 8 g m,
(22)

the local antisymmetry is satisfied.
From a conceptual point of view, we could stop here,
but we want to give additional details to make the actual

. . . S Yy

implementation easier. If one identifies each state % with
11 1

the corresponding tableau S, one can express the normalizing

projection operator N ~!Proj as an operator on the SYTs, for

1<r < fu

o | pY - Ns ~
N’IProj 0rl| 1) —N71Pr0j5r= l‘[s_j S, (23)

[lof | @) el
where ¢; is a superposition of ! operators that interexchange
between each other the numbers m(j — 1)+ 1, m(j — 1) +
2,...,mj in the SYT tableau S,. According to the rules
controling the effect of successive transposition reviewed in
Sec. I A and to the definition of the normalized projector
operator [cf. Eq. (18)], itis easy to see that form = 2, ¢; must

be
1 j 1— /
g = \/ %U)Id - \/ #T(j), (24)

where p(j) is the inverse of the axial distance between the
numbers 2j — 1 and 2j (which is necessarly non-negative due
to the internal constraints on the tableau S,), Z, is defined as
the identity operator on the SYT, while 7 (j) switches 2j — 1
and 2j in the tableau on which it is applied. For example, one
has

7(2)

(25)

[«rN SN I NG N N
[0ell BN B K2 ) [OV]
DW=
[e B ENE [0 I'*N

Note that in case where 2j — 1 and 2 are in the same column
(necessarily one above the other), then p(j) = 1and ¢; = 7;:
the constraint P;_; »; directly gives —1 on such an SYT.
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Thus, for four sites with m = 2 particles per site, in the
case where N > 4, one state of the irrep o = [2,2,2,2] is, for
instance,

113
215
—1 .
N~™"Proj 17 (26)
68
which is equal to the superposition
113 114 113 114
215 215 216 216
2 2 2 1
547—§37—§47+§37,(27)
68 68 518 58

which is obviously normalized. For m = 3, the operators ¢;
are a bit more complicated:

5
i =Y (N0, (28)

q=0

The vector of coefficients (7(;j))4=o,... 5 reads

VI+p (DVT+ p7(HVT+ p2())

=1 = p (D1 + p?(DVT+ p%())

. —V1+p (DT + p?(HVT = p7())

n() = —= = : — |- @9

VI+p (DY = p?()HVT = p*())

VI = p*(DVT = p (DY + p*())

—V1 = p (DT = p?(HVT = p7())

where p*(j) is the inverse of the axial distance from the

number 3j —2 to 3j — 1, p”(j) is the inverse of the axial

distance from the number 3j — 2to 3, and p*(j) is the inverse

of the axial distance from the number 3j — 1 to 3j. Note
.. 1 1 _ 1 .

that by definition 51T 7 =75 (see also Fig. 2). The

operators 7,(j) permute the numbers corresponding to site j

on a SYT. The correspondence between the (7,(;j))y=o0....5

and the permutation of the symmetric group Sz is the

following:

}lH

To(j) —1a,
Ti(j) —>(Bj—23j -1,
T(j) —(3j —1,3)),

3j-2

: -
Toi)—|

Ti(G) —j 3j-2 T () — 3511

FIG. 2. Action of the operators 7,(j) on a SYT.
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T(j) —>(Bj —2.3j.3j - D,

Ta(j) >3 —2.3j = 1,3)),

T5(j) >(3j —2.3)). (30)
See also Fig. 2. Thus, for four sites with m = 3 particles per

site, in the case where N > 4, one state of the irrep o =
[3,3,3,3] (and indeed the only one) is

1]4]7
21510
1 .
NPTO]3811 3D
61912
which is equal to
1[4]7 147 157
215 [10 21610 21610
5 52 5
93811—18[38114-3\563811
61912 5] 912 11912
1]4]8 158 148
215 [10 21610 21610
52 5 5
—%3 711—\93 T+ 3]0
6lol2| V39|12 50912
1479 11479 1159
215 [10 21610 21610
5 5 1
+\‘§3 711\?3 7|+ g3
3V6IsTs 2] V3 [5 s[12 1812
(32)

Form > 4, the construction of g; is still based on the definition
of the projector shown in Eq. (18), but it would require 4! = 24
coefficients.

5. The equivalence classes in the symmetric case

For a given shape o with Nym boxes, there are f “ L fe
equivalences classes, or reprentatives. We denote them with a
bar S, (for 1 < r < f “), in the same spirit as what is done in
Sec. I1 C 4 for the antisymmetric case. They are also classified
according to the last letter sequence.

Interestingly, there is another way to define f: it is the
number of semistandard Young tableaux of shape o and of
content 1,1,..1,2,2,..2,...,Ny,N;, .. Ns; (each number j
between 1 and N, appearing m times). A semistandard Young
tableau is a tableau filled up with numbers in nondescending
order from left to right in any row and in ascending order
from top to bottom in any column. Such a number is by
definition called a Kostka number (see Chap. 7 of Ref. [45]). By
realizing that one can pass from the antisymmetric case to the
symmetric case by performing basically some conjugation of
tableaux (which consists in transforming rows into columns
and columns into rows), one can prove that for the same
number of particle per site m:

4= fur, (33)

where a7 is the transposition of the shape .. The decompostion
of the full Hilbert space can be done exactly like in the
antisymetric case, and it leads to the following equality for

PHYSICAL REVIEW B 93, 155134 (2016)

the dimensions:
dim(@(HS,»)) = (ay™)" =) fedy. (34)
i=1 o

Again, such an equality could be obtained as well from the
Itzykson-Nauenberg rules that we review in Appendix A 3.

6. The basis states in the symmetric case

We assign to each representative SYT S, a specific
superposition of orthogonal units o}, that allows it to satisfy
the local constraints by using the projection operator Proj =
I—[,I(V;, ‘Proj(k) where Proj(k) is the symmetric version of the
projector defined in Eq. (18):

Projk) = % > o (35)
0 €8 (k)
Thus, for m = 2, and for the first site,
Proj(l) = 3(Zs + (1,2)), (36)
while if m = 3,
Proj(l) = é{Id +(1,2)+(1,3)+(2,3)+(1,2,3) + (1,3,2)}.
(37
Then, the set of states
o) |‘DT> }
ol @O ], s

yeeey

I\Df‘) = N""Proj x

can be proved to have the appropriate properties with the same
arguments as before. In particular, the local required symmetry
is a consequence of the equality

Po(i—Dtim(i—1+g Proj(j) = Proj(j) V1<l < g<m.
(38)
Finally, by identifying each state % with the correspond-
ing tableau S, one can also express the normalizing projection
operator N=1Pro j as an operator (for 1 <r < f “) on
the SYTs N~ 'Proj I\Zgi:igill =N""Projs, = (]_[i.v;l s)S,
where ¢; is now form = 2:

1— j 1 j
g,:/ ;(])Id+\/ +2"(”:r(,->, (39)

with the same notation as in Eq. (24).

Note thatif 2j — 1 and 2 are in the same line (necessarily
one before the other), then p(j) = —1 and ¢; =7, the
permutation P,;_j »; directly gives +1 on such a SYT.

Thus, for six sites with m = 2 particles per site, in the
case where N > 4, the first (out of the five) state of the irrep
o = [3,3,3,3] is, for instance,

Ne} PN )
~J |t

N=1YProj (40)

0| |W |+
—_
—_
—
DO
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which is equal to the normalized superposition:

1125 1126 1125 1126
31417 31417 31418 31418
3 V15 15 5
§6 9110|+ 3 519 10+%6 9 10+§ 519 (10}
8 |11]12 8111]12 7111{12 7111{12
(4D
For m = 3, the operators ¢; are given by
5
i =Y (N0, (42)
q=0
where the vector of coefficients (7(j))4=o,...,5 becomes

VT = p (DT = p?(HVT = p*(j)
VI+ ()1 = p> (DT = p%(j)
. 1| V1T =05 (DVT = pX(HV1+ p%())
() = — _ - 1l @3
V6 | VT =p DT+ p>(HVT+ 05())
VT4 p (D1 + p2(H/T = p*())
V1I+ p (D14 p2(DVT+ p2())
with the p*(j) (a = x,y,z) and the operators 7,(;j) defined as
before.
Thus, for four sites with m = 3 particles per site, in the case
where N > 3, the only state of the irrep o = [4,4,4] is

1]2]374
NtProj5|6]|7]8 (44)
9 [10[11[12
which is equal to
1]2[3]4 1121375
1 5
65678—#6\55 6|78
9 [10[11[12 9 [10[11[12
112]3]6 112]3]4
10 5
+§4578+\\[f5679
6V3oTiofili2| 6V3[solii]12
112]375 1]2]3]6
5 5v/2
+E4679+1—\8[4579 (45)
8 [10[11]12 8 [10[11]12
1]2[3]4 1121375
10 52
+6@5689 %4689
7 [10[11[12 7 [10[11[12
s[1[2]3]6
+ gals]s]e
7(10[11[12

III. SU(N) ANTIFERROMAGNETIC HEISENBERG CHAIN
IN THE FULLY SYMMETRIC REPRESENTATION

In this section, we apply this method to perform ED of
the Heisenberg SU(N) model on an antiferromagnetic chain
in the fully symmetric irreps with m =2 and 3 particles
per site. The application to the antisymmetric case can be
found in the recent paper [37], where analytical predictions
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about the nature of the ground state (gapped or critical)
due to Affleck [46,47] have been numerically verified by a
combination of ED calculations performed along the lines of
the present paper and of variational Monte Carlo simulations.

The basic results are the energies for the SU(N) symmetric
chain for m = 2,3 particles per site in the singlet subspace,
and, whenever possible, in some irreps of small quadratic
Casimir. We have employed the Lanczos algorithm whose
key part is the product of the Hamiltonian (restricted to a
given invariant sector) times a vector. We have achieved
this task by using a four-step procedure. Each basis state is
represented by a SYT with proper internal constraints (see
previous paragraph). As a first step, we develop such a basis
state to express it as a superposition of orthogonal units times
a product state, with coefficients given by expression Eq. (39)
(for m = 2) and Eq. (43) (for m = 3). Then, as a second step,
we apply one interaction term (corresponding to one link in
the lattice) to such a superposition by employing the rules
reported in Sec. Il A. We first write the interaction term as a
sum of permutations, like in Eq. (7). Then, each permutation
is written as a product of successive transpositions whose
effect on each orthogonal unit is known and described in
Sec. IT A. After step 2, we have a larger superposition of
orthogonal units than one needs to express as a linear sum
of the initial symmetric basis states. Since the interaction term
conserves the symmetry of the wave-function, one just needs
to project the last superposition using the coefficients given
by expression Eq. (39) (for m = 2) and Eq. (43) (for m = 3).
One obtains a linear sum of symmetric states. The final step
consists in finding the ranks of those states in the ordered list
of constrained SYTs (through for instance a binary search or
a more sophisticated indexing function that goes beyond the
scope of this paper).

In fact, since each permutation is decomposed into a product
of successive transpositions, this algorithm is particularly
suited for the study of chains with open boundary conditions,
since it is possible to index every pair of connected sites with
consecutive numbers.> Incidentally, this also means that the
computation of the exact energies is faster for open boundary
conditions than for periodic boundary conditions.

For m =2, we list in Table I the ground-state energies
per site for periodic boundary conditions [E55(Ns))] as well
as for open boundary conditions [EGOS(NS)] since it can be
useful for benchmarking future DMRG studies. When the
number of sites N, is a multiple of the number of colors
N, N; = pN, the ground state is always a singlet (for
antiferromagnetic couplings), so that the minimal energy is
obtained by diagonalizing the Hamiltonian in the SU(N)
singlet sector, i.e., the sector corresponding to the shape
a=1[q.q,...,q],whereq = Nym/N = pm. We also provide
in Table I the corresponding dimensions f1¢>4! that give the
size of the matrices we diagonalized.

%For periodic boundary conditions, we have indexed the sites in
such a way that the difference between two connected sites is at most
2 by starting from 1 at some site (the center) and locating consecutive
numbers alternatively to the left and to the right of this center.
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TABLE 1. Dimension of the singlet sector f19-9!, ground-state
energy per site with periodic boundary conditions EE(N;), and
ground-state energy per site with open boundary conditions EZ(N,)
for SU(N) Heisenberg chains with two particles per site in the
symmetric irrep and N, sites. The calculation is more difficult for
periodic boundary conditions because the matrix is less sparse, and it
has not been done for SU(10) with 20 sites and for SU(3) with 18 sites
since it would require a parallel architecture with several hundreds of
nodes.

m=2 N, flaoat EEs(Ny) ES(Ny)

SUQ3) 15 6879236 —1.448589 —1.397889
SUQ3) 18 767746656 —1.402602
SuU@4) 16 190720530 —1.687431 —1.619271
SU(5) 15 25468729 —1.804955 —1.716275
SuU(6) 12 16071 —1.88243593 —1.752105
SU®) 16 3607890 —1.932087 —1.827798
SU(10) 20 1135871490 —1.869078

A. Gap

We have applied this algorithm to determine the gap of
the Heisenberg SU(N) symmetric chain. With both periodic
[55((1\(9)] and open [ESX(ZVS)] boundary conditions, as long as
the number of sites Ny is a multiple of N, the first excited state
belongs to the adjoint irrep ¢ = [q + 1,q, ...,q — 1] (which
has the smallest nonvanishing quadratic Casimir Cj). Its
dimension f19+1.4.-4=11 ig always much larger than that of the
singlet. For instance, for SU(10) and 20 sites, f3:44%-43]
40 x 10°, a size we could not handle with the computers at
our disposal, whereas the dimension of the singlet sector is
~1.14 x 10°. We have gathered some values of EL(N;) and
EY (Ny) in Table II.

For two particles per site, we have plotted the corresponding
gaps in Fig. 3, in which the SU(2) case has been added
for comparison. The SU(2) case corresponds to the spin-1
chain known to exhibit the Haldane gap, which can be clearly
inferred from the results obtained even for relatively small
chains (N; < 16). Note the factor 2 between our interpolated
value (around 0.8) and the DMRG value taken from [12]
(A =~ 0.410), which comes from the two different ways to
write the interaction between 2 sites, either in terms of spin
operators or in terms of permutation operators. Indeed, if we
use the notations of the previous section, the spin 1 interaction

TABLE II. Dimension of the representation of smallest nonvan-
ishing Casimir fl4+1-4:--4=1 [corresponding to the triplet sector for
SU(2)], and first excited energies per site in that sector for SU(N)
Heisenberg chains with two particles per site in the symmetric irrep
and N; sites for periodic boundary conditions [5£(Ns)] and open
boundary conditions [EZ (N;)].

m=2 N,  flatha-al ELNY) Eq(N)

SU@3) 15 44994040 —1.413231 —1.381094
SU4) 16 2077175100 —1.6604222 —1.607230
SUS) 15 377182806 —1.778192 —1.705462
SU(6) 12 272712 —1.84503164 —1.738918
SU(8) 16 93683590 —1.915457 —1.822196
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1/N,

FIG. 3. Gap of the SU(N) antiferromagnetic Heisenberg chain
with two particles per site in the symmetric irrep with periodic
boundary conditions. The gap has been determined as the energy
difference between the first excited state (always located in the irrep
of smallest nonvanishing quadratic Casimir) and the ground state,
which is a SU(N) singlet in the systems we have considered, where
the number of sites is a multiple of N. For SU(2) (the spin-1 chain),
one can infer the presence of the Haldane gap from the results obtained
for relatively small chains (up to Ny, = 16), whereas, for N > 3, the
results for similar sizes are consistent with a gapless spectrum in the
thermodynamic limit.

between sites 1 and 2 is related to the permutations through
the identity S - S = L{Pi3+ Pia+ Pos+ Pra) — 1.

In all cases except SU(2), the data are consistent with a
vanishing gap in the thermodynamic limit, hence with a gapless
spectrum. So the difference between 1 and 2 particles per site
predicted by Haldane for SU(2) does not seem to carry over to
larger values of N.

For three particles per site, the sizes we can reach with our
algorithm are smaller (N; < 12). The ground-state energies
are listed in Table III.

Quite surprisingly, the results for the gap are also consistent
with a vanishing gap in the thermodynamic limit for SU(3),
SU@4) and SU(6), as shown in Fig. 4. For SU(3), these
results are in contradiction with the DMRG results reported in
Ref. [38]. We will come back to this difference in the discussion
section below.

B. Central charge

When a 1D quantum system is critical, it is in general pos-
sible to identify the universality class to which the low-energy

TABLEIIL. Dimension of the singlet sector 199!, ground-state
energy per site with periodic boundary conditions EE(N;), and
ground-state energy per site with open boundary conditions £5(N;)
for SU(N) Heisenberg chains with three particles per site in the
symmetric irrep and N; sites.

m=3 Ng‘ f[q AAAA al ggs(Nv) ggs(Nv)

SU@3) 12 3463075 —2.218913 —2.106611
SU4) 12 10260228 —2.574628 —2.421300
SU(6) 12 1113860 —2.832493 —2.634385
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0.2 0.3

FIG. 4. Gap of the SU(N) antiferromagnetic Heisenberg chain
with three particles per site in the symmetric irrep with periodic
boundary conditions. The gap has been determined as the energy
difference between the first excited state (always located in the irrep
of smallest nonvanishing quadratic Casimir) and the ground state,
whichisa SU(N) singlet in the systems we have considered, where the
number of sites is a multiple of N. In the case N = 2 (spin-3/2 chain),
which is known to be gapless, the curve is slightly convex, consistent
with a vanishing gap in the thermodynamic limit. For N = 3,4,6, the
concavity is opposite and the curves seem to converge towards zero;
however the maximal sizes reached in the simulations are quite small
(N; < 12).

theory belongs in terms of the underlying conformal field
theory (CFT). In the case of Heisenberg SU(N) models, the
relevant CFTs are the SU(N) Wess-Zumino-Witten (WZW)
models with topological integer coupling coefficient k [48].
The corresponding algebra of such a theory is SU(N )y, with a
central charge c given by

N2 —1
N+k’

The central charge can be extracted from the exact diago-
nalization results in two steps. First of all, one can extract the
product of the central charges ¢ with the sound velocity v from
the dependence of the ground-state energy per site ELG(Ny)
with the number of sites N, [48-50]:

c=k

(46)

2
T o(1/N), @)

EL(N,) = &L -
Gs(Ns) Gs(00) 12N

where ELG(00) is the ground-state energy per site in the
thermodynamic limit. The case SU(3) with m = 2 is shown
as an example in the right panel of Fig. 5. The scaling as 1/N?
is already quite accurate for the largest available sizes.

Secondly, one can extract the sound velocity v from the
energy of the first excited state of momentum k = 2w /N, and
nonzero quadratic Casimir [51]:

TV

P P 2
E5n (Ns) — Egs(Ns) = + o(1/Ny), (48)

s
where EZPH / ,(Ns) and Egs(Ns) are total .ene.rgies. To (.:heck
the momentum of the excited states, which is not available
right away in our approach since we do not use spatial
symmetries, we had to extract their wave functions, and to
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17, -1.4
Ns{EQP;/]\g(NS) - EE[;)S(NS)} ggs(Ns) 52
16 \\ 5
15 —1.44 “\ 48
.. 46
14 ~
-1.48 N M
13 “2 001 002
12 -1.52-
1 .
10 -1.56 -
SU(3) SU(3)
9 m=2 m =2
0 0.1 0.2 0.3 _1'60 0.02 0.04
1/N, 1/N?

FIG. 5. Examples of finite size results that were used to extract
the central charge for SU(3) and m = 2. (Left) Excitation energy of
the first excited state with momentum k& = 27 /N, times the number
of sites as a function of 1/N;. In a critical system, this is expected
to tend to 27 v in the thermodynamic limit, where v is the sound
velocity. (Right) Ground-state energy per site E£5(N;) as a function
of 1/N2. In a critical system, it is expected to converge to Ef(00)
linearly with 1/N2, with a slope equal to 2w cv/12, where ¢ is the
central charge. Inset: corresponding slopes as a function of 1/N;.

apply directly the translation operator. This is tedious but
straightforward because the translation operator can be written
in terms of permutations. It turns out that in all the gapless cases
investigated (m = 2,3 for N > 2), and as soon as Ny = pN
with p > 1, the first excited state in the adjoint irrep has
a momentum k = 27 /N, and it is actually only the second
excited state, which has the momentum k& = 27/ N;. Examples
of the resulting finite-size estimates of the velocity v are given
in the left panel of Fig. 5 for N =3, m = 2.

To avoid uncertainties due to extrapolations in extracting
the central charge c, we have used for the velocity v the value
for the largest available size, and for the product cv the slope
deduced from the values of the ground-state energy for the
two largest sizes. The central charges extracted in this way can
be expected to be slightly overestimated since the product cv
decreases with the size (see inset of Fig. 5), while the velocity
v increases with the size. The corresponding estimates for
the central charge are listed in Table IV for m = 2 and in
Table V for m = 3, together with the theoretical values for
SU(N); and SU(N),,. Quite remarkably, in all cases, the results
for m particles per site are in good agreement with SU(N),,
(and slightly above, as expected), and very far from SU(N);.
Note that the same conclusion has been reached for the SU(3)

TABLEIV. Finite-size estimates of the central charge ¢ (see main
text and Fig. 5) for SU(NV) Heisenberg chains with two particles per
site in the symmetric irrep (m = 2), compared to the predictions for
the SU(N), and SU(N); WZW universality classes.

SU@) Su@) Su) Sue) Su(T) Su()

m=2 ¢ 323 516 716 977 1165 1356

k=2 XL 33 s 686 875 1067 12.60
2_

k=1 o1 3 4 5 6 7
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TABLE V. Finite-size estimates of the central charge ¢ (see main
text and Fig. 5) for SU(N) Heisenberg chains with three particles per
site in the symmetric irrep (m = 3), compared to the predictions for
the SU(N); and SU(N); WZW universality classes.

SU@3) SU®M) Su(6)
m=3 c 4.09 7.49 13.21
k=3 S 4 6.43 11.67
k=1 L 2 3 5

ladder with ferromagnetic rungs, which is expected to become
equivalent to the symmetric m = 2 SU(3) chain in the strong-
rung limit [52]. This result is quite surprising since, according
to field theory, the SU(N)i~; WZW models have at least one
relevant operator allowed by symmetry [47,53], implying that
one should adjust at least one parameter to sit at such a critical
point, as in the case of integrable models [54-56].

C. Scaling dimension

To further check this identification, it is possible to extract
additional information from the spectra, namely the scaling
dimension A of the primary fields associated to the fundamen-
tal irrep. Indeed, the other low-lying excited energies should
satisfy some scaling relations analogous to Eq. (48) [50]:

2mvA

Ef e ng(Ny) — EE(Ny) = +o(1/Ny),  (49)

s

P
where E exc,sing

subspace, and

(Ny) is the first excited energy in the singlet

2nvA

ESi(Ny) — Ef(Ny) = +o(1/Ny),  (50)

N

where E;lj(Ng) is the lowest energy in the adjoint subspace
(irrep [g + 1.q,..,q — 1]). Combined with Eq. (48), these
scaling relations allow one to obtain finite-size estimates of the

scaling dimension as ratios of excitation energies according to

A — Ee[;(c,sing(NS) - EgS(NS) 51)
e E;n/Nx(‘NS) - E([])S(NY)
and
Egi(Ny) — EE5(Ny)
Aadj adj GS (52)

ED N (Ny) — EE(Ny)'

In the thermodynamic limit, both estimates Agpe and A,g;
should converge to the scaling dimension of the primary field
of the SU(N), theory, A, which is given by

N1
T N(N+k)

However, the scaling to the thermodynamic limit is in general
very slow because of logarithmic corrections. One way to
get around this difficulty, pioneered for SU(2) by Ziman and

Schulz [57], consists in getting rid of the main logarithmic cor-

. - . (N2 D)Aagit Asing
rections by considering the linear combination ———7—"*

as an estimate of A. The resulting estimates of the critical
dimension are compared to the theoretical predictions for a

A (33)
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12(a) SU(3) %% (b) SU(3)
I m=2| 08 m=3
1 07 k=1
08 ) _
A k=108, A po
0.6/ w’;/: Auj k=2 05 / k=3
e — k=3 g
1
(©) su@) () SU(5)
0.9 m=2 09 m =2
0.8 1 08 S—
“““““ A_ /A b9
07/k: 07 h e k:3
R . 0.6F==--mmmmmemmmmmnaatl
0% 0.2 04 %% 0.2 0.4
1/N, 1/N,

(NZEI)(A}' _6+.AFinite—size estimates of the critical dimension A =
% averaged between the singlet estimate Ay, and the
adjoint estimate A,g; to suppress the main logarithmic corrections in
a few representative case. Dashed lines: predictions for the WZW
SU(N) level k theory. For SU(3) and m = 2, the singlet and adjoint
estimates are also included for comparison. In all cases, the results
are consistent with the prediction A = M1 for the WZW SU(N)

N(N+k)
level k = m, and clearly below that of the WZW SU(N) level k = 1.

few specific cases in Fig. 6. As expected, the results for Ag,e
and A.g can be very different [see Fig. 6(a)], but once the
appropriate linear combination is considered, the results are
again consistent with the universality class SU(N),, for m
particles per site.

D. Discussion

All the ED numerical evidence collected on systems with
N > 2 and m = 2 or 3 is consistent with a gapless spectrum
and a critical behavior in the SU(N),, WZW universality
class. These results are in apparent contradiction with previous
analytical and numerical results.

Quite generally, renormalization group (RG) arguments
seem to exclude SU(N),, WZW as a generic critical theory
for N > 2 and m > 1 because there are relevant operators
allowed by symmetry that should either open a gap or drive
generic systems away from this critical point towards the stable
SU(N); WZW critical point under the RG flow [47,53] (with
the exception of SU(N), for N even and specific irreps [58]).
One such operator is the adjoint primary field of scaling
dimension 13_]+Vk’ as discussed in detail in Ref. [53]. What our
results suggest is that, for intermediate energies and length
scales, the physics is indeed governed by the SU(N),, WZW
critical theory, and that the unstable nature of this critical point
will only show up as a crossover at length scales larger than the
size of the biggest clusters we have studied. This is reminiscent
of the spin-3/2 chain studied by Ziman and Schulz [57] and by
Moreo [50], in which finite-size estimates of the central charge
and of the scaling dimension were changing significantly with
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the system size. However, in the case of the spin-3/2 chain,
results consistent with SU(2); WZW were already obtained
for systems with 12 sites, whereas in our case the results are
still fully consistent with SU(N),, WZW for systems with up
to 18 sites for m = 2. So, if there is a crossover, it has to take
place for rather large length scales.

The DMRG results for 48 sites reported in Ref. [38] for
SU(3) with m =2 and m = 3 are also at variance with the
conclusions drawn from ED of small systems. For m = 2,
a fit of the entanglement entropy with the Calabrese-Cardy
formula has led to the estimate ¢ =2.48 for the central
charge, in agreement with the SU(3); WZW universality class
with central charge ¢ = 2 because of logarithmic corrections
according to the authors of Ref. [38], while for m = 3, the
saturation of the entanglement entropy has been taken as
an evidence that the system is gapped. At first sight, these
results are consistent with the crossover scenario: for m = 2,
the system would be in the middle of the crossover between
SU(3), and SU(3), for 48 sites, while for m = 3, the gap is
already well developed for this size.

There are, however, a number of puzzling aspects. For
m = 3, the DMRG results of the entanglement entropy have
already saturated after ten sites, which suggests that the
correlation length is smaller than 10. This is inconsistent with
the results of Fig. 4, which show no sign of a gap for 12
sites. For comparison, the presence of a gap for the Haldane
chain is already visible on smaller systems. In a similar spirit,
for m = 2, the central charge is already much smaller than
¢ = 3.2, the theoretical value for SU(3),, for 48 sites, which
suggests that the crossover has already started long before.
This is not obviously consistent with the results of Fig. 3,
where there is no sign of any significant curvature for N = 3
up to 15 sites. So we think that the presence of a crossover and
its characteristic length scale require further investigation.

IV. CONCLUSION

We have developed a method to perform exact diagonal-
izations of Heisenberg SU(N) models with m particles per
site in the fully symmetric and antisymmetric irreps directly
in the symmetry sectors of the global SU(N) symmetry of
the problem, thereby allowing one to reach larger cluster sizes
than with the traditional approach. The central result is that the
relevant orthonormal basis is in one-to-one correspondence
with some subset of standard Young tableaus. We have
provided the details of the rules to select this subset, an efficient
way to computationally generate them, and the rules to write
SU(N) interaction in this basis.

We have applied this formalism to the investigation of
the symmetric Heisenberg SU(N) chain with two and three
particles. For both m =2 and 3, the finite-size results are
consistent with a gapless spectrum for any value of N > 3, and
finite-size estimates of the central charge and of the scaling
dimension of the primary field suggest that the physics is
governed by the SU(N),, WZW universality class. In view
of previous results based on renormalization group arguments
and on DMRG simulations, we suspect that a crossover
towards a gapped state or towards an SU(N); theory might
take place when increasing the system size, a possibility
that requires further investigation however. Finally, we have
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also provided some results for systems with open boundary
conditions that might be useful fo benchmark DMRG studies
that take advantage of the SU(N) symmetry, an issue of great
current interest [59-62].

In the future, we plan to extend the method to other irreps
in order to study SU(N) AKLT spin chains [63,64] that can
lead to a rich variety of symmetry protected topological phases
([39,40,65]), or their generalisation in 2D, the SU(N) simplex
phases [66]. It would also be interesting to see whether and
how one could implement both the complete SU(N) group
and spatial symmetries in the same algorithm, as done for
SU(_2) [67,68].
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APPENDIX

1. Fermionic and bosonic representation of the Hamiltonian
in the antisymmetric and symmetric cases

For the totally symmetric (respectively, antisymmetric)
irrep, the SU(N) generators can be expressed as (we drop
the upper index which stands for the label of the site):

A sp M

Sap = Sutp = 5 0ap:
where m is the number of particles per site, where f
and f, are the creation and annihilation operators for a
boson (respectively, fermion) of color« = 1, ...,N. Thus the
interaction term between sites i and j becomes

Hijy =Y fil fufib fius (A1)
v

where we have dropped the constant —m?/N. The local basis
is defined by filling up each site with m particles. Then, it is
easy to show that it is possible to express the last Hamiltonian
as a sum of m? permutations. Indeed, assigning number m(j —
1) 4+ [ to the [th particle of site j, for [ = 1,...,m, one can
prove that it is equivalent to Eq. (7).

2. Proof that the projection gives zero for nonrelevant SYTs

Let us discuss the antisymmetric case to fix the ideas
(the arguments are the same for the symmetric case). We are
going to prove that if two different numbers ¢ and ¢’ of the
set {m(k — 1)+ 1, m(k — 1) + 2 ..., mk} belong to the same
line in an SYT S,, then Proj(k)S, = 0. First of all, g and
¢’ can be chosen to be in adjacent boxes of the same line
(necessarily, there is no number between ¢ and ¢’ that would
correspond to a site k" > k since S, is a SYT). Then, we first
consider the simple case where ¢’ = ¢ + 1. Since Proj(k) can
be factorized on the right by (I; — (¢,q + 1)) [69], one directly
has Proj(k)S, « (I; — (¢,q + 1))S, = 0 thanks to the rules
controlling the effect of the permutation (¢,q + 1) on a tableau
(cf. Sec. IT A). Let us now focus on the case where ¢’ > g + 1
(still in two adjacent boxes). The first thing to notice is that

155134-11



PIERRE NATAF AND FREDERIC MILA
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FIG. 7. Itzykson-Nauenberg recipe (see text for details) to per-
form the tensorial product of the SU(N) irrep on the left times the
SU(N) irrep on the right in the general case (top), antisymmetric case
(middle), and symmetric case (bottom).

there is a transformation o,,(k) that allows one to pass from
S, to a tableau S, where all the numbers but the ones of site k
would be at the same location as in S,, and with the numbers
of site k permuted in such a way that ¢ + 1 would be at the
location of ¢’. Such a 0,, (k) is very much like the operator 7 (k)
[in Eq. (24) for m = 2] or like 7,(k) [¢ = 0...5 in Eq. (30)
for m = 3]: it exchanges numbers on a SYT, such that

0rp(K)S, = S, (A2)

o,p(k) corresponds to a linear combination of permutation
nrp(k) (involving permutation between numbers of particles
of site k) such that

0y = Nrp (k)o‘;, . (A3)

Now, the important thing to notice is that Proj(k) is propor-
tionnal to the orthogonal units 0[11,1"'1], where [11...1] is the
m boxes fully antisymmetric irrep, [with number 1,2, ... ,m
replaced by numbers m(k — 1)+ 1, m(k — 1) +2 ..., mk].
For this one column shape, there is just one SYT and so just
one orthogonal unit 0[11]]"'1]. Then, the orthonormal properties
in Eq. (3) imply that

Proj(k) oy = Proj(k)n,p(k)oj,; & Proj(k) o5,

(A4)

which is zero thanks to the case considered just before.

3. Review of the Itzykson-Nauenberg rules

Let us make the tensorial product of two arbitrary repre-
sentations, like those shown in the top panel of Fig. 7. Choose
one of those as the “trunk” (the left one in Fig. 7), and label
the boxes in the first row of the second tableau with “a,” the
boxes in the second row with “b”, etc.... Add one box labeled
“a” on the trunk in all possible ways such that it remains a
tableau (length of rows in nonincreasing order from top to

bottom). Then, add a second box labeled “a” (if any) requiring
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that the resultant object is still a tableau, etc. When the boxes
labeled “a” are exhausted in the second tableau, add the boxes
labeled “b”, etc. In this process, satisfy the following rules. (i)
Keep only the tableaux with no more than N rows. (ii) Never
let two boxes with the same label stand in the same column.
(iii) Reading from right to left and top to bottom a resulting
tableau, collect the labels of the boxes. One should always find
anumber of “a”s greater or equal to the number of “b”’s, which
itself should be greater or equal to the number of “c”’s, and
so on. (iv) Tableaux with the same attached labels at the same
place should be counted as one. That is to say, two identical
representations in the resulting tensorial product of the two
shapes should differ by the disposition of the letters.

For one particle per site, one can perform N; times the
tensorial product with the fundamental irrep (one box) to see
how many times each collective representations appear (their
multiplicity) in the full Hilbert space. Numbering the boxes
by the step at which the box is added to the current shape
(corresponding also to the number of the particle added),
the Itzykson-Nauenberg rules clearly involve that the number
of times each N;-boxes Young tableau o appear in the full
Hilbert space is f“, i.e., the number of SYTs of shape «. If
now we consider several particles per site, assigning number
m(j — 1) 41 to the Ith particle of site j, for/ =1, ...,m, the
Itzykson-Nauenberg rules involve some selection over all the
SYTs of Ny x m boxes of shape « appearing in the full Hilbert
space. The selected SYTs must respect internal constraints that
depend on the nature of the local SU(N) symmetry (either fully
antisymmetric or symmetric).

For the antisymmetric irrep with m boxes at each site,
one has to perform tensorial product of the kind shown in
the middle panel of Fig. 7. If one replaces “a,” “b,” “c”,
and so on by the particle numbers of each site, that is to
say the numbers m(k — 1) + 1, m(k — 1) + 2 ..., mk (where
1 <k < N, is the index of the site), the rule (iii) above
implies that those numbers should be located in rows y(m(k —
D+1) <ymk —1)+2) <--- < y(mk), where y(q) is the
row (between 1 and N) where the number 1 < g < mN;
is located in the considered SYT. This rule involves a
precise selection over all the f* SYTs of shape «, which
is nothing but the selection of the f, representatives in
the antisymmetric case (see Sec. IIC 3). For the symmetric
m-box irrep at each site, the bottom panel of Fig. 7 shows
the kind of tensorial product to be done. In fact, if one
replaces the m letters “a” of the row irrep of site k by the
particlenumbersm(k — 1) + 1, m(k — 1) + 2 ..., mk (where
1 < k < Nj), the Itzykson-Nauenberg rule (ii) implies that
those numbers must be located in columns c(m(k — 1) +
1,c(m(k — 1)+ 2), ....,c(mk), which are all different from
each other, c(q) being defined in general as the column
(between 1 and «r;) where the number 1 < g < mN; is located
in the considered SYT. Secondly, the Itzykson-Nauenberg
rule (iv) implies that for any acceptable set of locations
for the numbers m(k — 1) + 1, m(k — 1) + 2 ..., mk (where
1 < k < Ny), only one configuration should be kept. For
instance, one can keep the one where the numbers m(k — 1) +
1, m(k — 1)+ 2 ..., mk are located in ordered rows such that
ymk — 1)+ 1) < ymtk —1)+2) < --- < y(mk). So it is
also equivalent to the selection of the representatives in the
symmetric case (see Sec. I C5). Thus Eqgs. (16) and (34) are
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direct consequences of the Itzykson-Nauenberg rules and can
be obtained regardless of the projection procedure.

4. Proof that each class leads to a unique linear combination
of permutation (up to a constant) after projection

Let us discuss the antisymmetric case to fix the ideas
(the arguments are the same for the symmetric case). If two
indices r and p label SYTs belonging to the same class
S, and §,, it means that there is a permutation o,, that
allows one to pass from S, to S,, like in Appendix A2.
By definition of a class, it means that o,, can be factorized
into a product of Ny permutations o,, = [[;_; . 0rp(k),
each o,,(k) just permuting numbers of a given site k, that is
to say numbers m(k — 1)+ 1, m(k — 1)+ 2 ..., mk (where
1 < k < Ny). They are such that

[ ow®s,— . (A5)

To each of those o,,(k) corresponds a linear combination of
permutation 7,,(k) (involving permutation between numbers
of particles of site k) such that

o = l_[ Nrp (k)03 -
k=1,....N,

(A6)

Then, as before, since each Proj(k) is equal to the
orthogonal units 0[1111‘“1], where [11...1] is the m boxes
fully antisymmetric irrep, (with number 1,2, ... ,m replaced
by numbers m(k—1)+1, m(k —1)+2...,mk), the

properties in Eq. (3) imply that

Proj oY, = 1—[ Proj(k)n,p(k)oj"71

x 1_[ Proj(k)0i1=Pr0j0;';1. (A7)
N,

k=1,..,N,

This means that the number of independent linear combination
of permutations generated by applying the projector on the
orthogonal unit corresponding to a given class is at most
1. In addition, it cannot be zero as a consequence of
Egs. (16) and (34) (which are direct consequences of the
Itzykson-Nauenberg rules).

5. Algorithm to create the subset of representative SYTs

For a shape «, given as an imput, there is an algorithm
to generate all the SYTs directly in the last order sequence
(iterating f“ times the algorithm called NEXYTB in Chap. 14
of Ref. [70]), which is very useful in the case m = 1. When
m > 1 in the fully symmetric or antisymmetric irrep and with
N; sites, we could proceed in the following way: for a given
shape a (with m N, boxes), we could generate all the SYTs
through the algorithm NEXYTB, and then select the subset,
which satisfies the proper internal constraints. However, this
is not efficient: for instance, for SU(4), m = 2 and Ny = 18, in
the antisymmetric case, the number of independent singlets is
~61 x 10°, while the total number of SYTSs of shape [9,9,9,9]
is A2 x 10",

PHYSICAL REVIEW B 93, 155134 (2016)

Bottom
corner

FIG. 8. For a given Young tableau o = [o, 012, . . ., 0], With «;
the length of the row i of the shape and k the number of rows of the
shape (here @ = [3221] and k = 4), the bottom corners are the boxes
where we could put the last number when we fill up the shape in the
standard way (here, this number, which is the total number of boxes,
is equal to 8). If we conventionally set a;; = 0, those bottom corner
correspond to all the rows j such that o; > 4.

So we have devised a specific algorithm to generate directly
the subset of SYTs of a given shape « with the proper
internal constraints. We do it for the antisymmetric case and
m = 2, the generalization to higher m and the transposition
to the symmetric case being straightforward. The idea is
to fill up the shapes number after number (each number
labeling a particle) starting from the very last one. In order
to obtain a standard tableau, at every stage, the number should
be situated in the current bottom corners, see Fig. 8 for a
definition. There are as many steps to generate the standard
Young tableaux (SYTs) with proper internal conditions as sites

11
12
9
10 9
11 11 ol 11
12 10] 12 10| 12
%( STEP3) P~
9 §7 7 7
0 19 719 9 9 7
711 811 3 J11 11 711 El i o) 17 Joji1
8 12 ] 0J12 _&2 _Bmlz mg 1o i gpofi2] |8 poji2

FIG. 9. First three steps (out of six) to generate all the SYTs with
proper internal conditions (here y(2j —1) < y(2j)Vj=1,...,6,
where y(j) designates the row of the number j, i.e., y(11) = 3), of
shape [3333]. In this example, the 16 tableaux obtained at the end of
the algorithm (see text for details) represent an orthonormal basis of
the SU(4) singlets subspace for a six-site system with two particles
per site in the antisymmetric representation.
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in the system, that is N; in our notation. So we perform
a descending loop starting from N; and going to 1. The
purpose of each step is to fill up the current partially filled
shapes with numbers of the particles of the corresponding
site. So each step is made of m stages. If we start step
q > 0, the current partially filled shapes had already been filled
up withnumbers m Ny,mNs; — 1, ....m(Ng — g + 1) + 1 from
previous steps. See Fig. 9, where the case Ny =6, m = 2,
and o = [3333], (which would correspond to the creation
of the SU(4) singlet subspace in a six-sites system with
two particles per site in the antisymmetric representation)
is treated. The purpose of step ¢ is to add to the current
partially filled shapes the numbers m(N; — g + 1),m(N; —
qg+1)—1,....m(Ns — q)+ 1,inm different stages. We first
locate the possible bottom corners of the current partially
filled shapes for the number m(Ny; — g 4+ 1). One can have
several possibilities. See for instance Fig. 9, where for the
first stage of step 2, one must fill the current tableau with
the number 10. The current tableau contains only 11 and 12,
and the remaining Young tableau (the one without 11 and 12)
has shape [44220], so that there are 2 bottom corners: one
at row 2 and one at row 4. For each possibility, one needs
now to locate m(Ny — g + 1) — 1, that is 9 in our example.
If our only purpose was to create all the SYTs of shape
o, it would be sufficient to put this number in the current
bottom corners. However, we add the internal constraint,
corresponding to the local symmetry under investigation. In
the antisymmetric case, one also needs to have the row of

PHYSICAL REVIEW B 93, 155134 (2016)

m(Ny — g + 1) — 1 strictly above the one of m(N; — g + 1).
Denoting by y(j) the row of the number j, one needs
to have more generally y(m(Ny —q + 1)) > y(m(N; — q +
)—1)>---> y(m(Ns —g)+1). That is why the step 2
in our example shown in Fig. 9 leads to the creation of 3
(and no more) tableaux partially filled with numbers 9,10,11,
and 12. We continue in this way up to ¢ = 1. We only need
to keep in memory the mN;-dimensionnal current vectors
y that labels the rows of the already located numbers [we
can put 0 for numbers not located yet, thatis y(j) =0V j <
m(Ny — g) + 1 if we are at step g]. Interestingly, due to the
additional internal constraints, the number of current partially
filled shapes is not always monotonically increasing with the
rank of the steps: some partially filled shapes which satisfy
the internal conditions for all sites between ¢ = j and g = N
might not lead to tableaux that satisfy them one step later.
For instance, in the example shown in Fig. 9, the complete
algorithm leads to 16 differents SYTs that satisfy the internal
conditions, while at the end of step 4 over 6, one already has
19 tableaux satisfying them.

Empirically, one needs to plan a few times more interme-
diate current tableaux than the number of final ones (between
1 and 8 for the most useful shapes). We have used the
symmetric version of this algorithm to create the 190720530
representative SYTs of shape [8888] to create the SU(4)
singlets basis of a 16-sites system with two particles per
site in 1 hour and 45 minutes with one CPU on a standard
computer.
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