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Edwards polaron formation : From one to three dimensions
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Employing a self-consistent (optimized) variational diagonalization scheme, we investigate the formation of
polaronic quasiparticles in a spinless fermion-boson transport model that couples the movement of charge carriers
to fluctuations and correlations of a background medium. The background is parameterized by bosonic degrees
of freedom. The variational fermion-boson Hilbert space is constructed to achieve high accuracy in one to three
spatial dimensions with modest computational requirements. To characterize the ground-state properties of the
Edwards model in the single-particle sector, we present exact numerical results for the polaron band dispersion,
quasiparticle weight, Drude weight, mass enhancement, and the particle-boson correlations in a wide parameter
regime. In the Edwards model, transport will be quasifree, diffusive or boson-assisted in the weakly fermion-boson
coupled, fluctuation-dominated or strongly correlated regimes, respectively. Thereby correlated transport is not
only assisted but also limited by the bosonic excitations. As a result, the Drude weight remains finite even in the
limit of very small boson frequencies. For a strongly correlated background, closed loops are important, in any
dimension, to generate a finite effective particle mass even when the free fermion has an infinite mass.
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I. INTRODUCTION

The question of how a background medium affects the mo-
tion of a charge carrier is one of the most heavily debated issues
in solid state physics. In this connection, the background may
typify a great variety of situations. It could, for example, rep-
resent a simple deformable lattice [1,2] or a highly correlated
Mott insulator [3–5]. In the former case, the mutual interaction
between the charge carrier and the lattice deformation may
constitute a new quasiparticle, the so-called (lattice) polaron
[6], an electron dressed by a phonon cloud. Here, depending on
the nature of the particle-phonon coupling [7], nonpolar short-
ranged or polar long-ranged, (small) Holstein [8,9] or (large)
Fröhlich [10,11] polarons will form, with distinct transport
and optical properties [12–15]. In the latter case, the undoped
(insulating) parent compounds develop magnetic, orbital, or
charge ordered phases at low temperatures [16]. Prominent
examples are the three-dimensional (3D) ferromagnetic (colos-
sal magnetoresistive) manganites [17], the quasi-2D antiferro-
magnetic (high-temperature superconducting) cuprates [18],
the 2D transition-metal dichacogenides (competition between
unconventional superconductivity and charge-density-wave
order) [19], or the 1D halogen-bridged (charge-density-wave)
transition-metal complexes [20]. Doping such systems, the
charge carriers, electrons or holes, cannot propagate freely as
their motion normally disturbs the spin-, orbital-, or charge-
order of the background. Nevertheless coherent particle trans-
fer may occur on a reduced energy scale: this time the particles
have to carry a cloud of background (e.g., spin or orbital)
excitations. The corresponding quasiparticles are frequently
called in the literature spin [21,22] or orbital polarons [5].

The Edwards fermion-boson model constitutes a paradig-
matic model to describe quantum transport and polaron
formation for such situations [23]. It is based only on a few,

very plausible assumptions: (i) as a charge carrier moves
along a transport path in a solid, it creates an excitation
with a certain energy in the background medium at the site
it leaves or annihilates an existing excitation at the site it
enters, (ii) because of quantum fluctuations, excitations in
the background may appear and disappear spontaneously, and
(iii) the (de)excitations of the background can be parameter-
ized as bosonic degrees of freedom. In this way, the model
captures, to varying degrees, some of the basic aspects of the
Holstein-, t-J -, Hubbard- or Falicov-Kimball-model physics.
The Edwards Hamiltonian reads

H = Hb − λ
∑

i

(b†i + bi) + ω0

∑
i

b
†
i bi, (1)

where the first term, Hb = −tb
∑

〈i,j〉 f
†
j fi(b

†
i + bj ), describes

a boson-affected nearest-neighbor hopping (∝tb) of spinless
fermionic particles (f (†)

i ), the second term allows for the
relaxation (∝λ) of the bosons (b(†)

i ), and the third term gives the
energy (∝ω0) of the bosonic background excitations. We note
that in the Edwards model, the coupling between fermions and
bosons notably differs from that in the Su-Schrieffer-Heeger
(SSH) model [24–26] where the modulation of the electronic
hopping is given by the difference of the on-site lattice
displacements (X̂i − X̂j ), with X̂i ∝ (b†i + bi) and b

†
i creating

a phonon at site i. Self-evidently, the Edwards fermion-boson
coupling also differs from the local Holstein electron-phonon
interaction [8,9], which is to a quantized (dispersionless)
optical normal mode of lattice vibration. In the Edwards model,
the (Einstein) boson simply accounts for the (de)excitation of
the background, through which the fermion is moving.

So far, the Edwards model could only be solved in 1D,
namely by numerical approaches like exact-diagonalization
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and density matrix renormalization group (DMRG) tech-
niques. There, for a single particle, quasifree, diffusive, or
correlated transport emerges [27]. The latter sets in at small
λ and large ω0 when the background becomes “stiff,” a case
that resembles the motion of a hole in an antiferromagnetic
spin background [21,22,28,29]. At half-filling, 1

N

∑
i〈f †

i fi〉 =
1/2, a metal-insulator quantum-phase transition has been
proven to exist: entering the strongly correlated regime a
repulsive Tomonaga-Luttinger liquid gives way to a charge-
density-wave ground state [30,31]. Off half-filling, attractive
Tomonaga-Luttinger-liquid phases and regions with phase
separation have been detected [32]. In 2D, the treatment of
the Edwards model was only approximate. In the single-
particle sector, using the momentum-average approach [33],
the quasiparticle dispersion throughout the Brillouin zone has
been calculated. Very recently, employing the projective renor-
malization method [34], a tendency towards unconventional
superconductivity has been observed for the 2D half-filled
band case.

In this paper we focus on Edwards polaron formation in
the single-particle sector. Since the microscopic structure of
the Edwards polaron is rather diverse, with—depending on
the model parameters—lattice polaron or spin polaron char-
acteristics, we utilize a self-consistent variational numerical
diagonalization technique [35–39] to address this issue in
one to three spatial dimensions. Due to the huge bosonic
Hilbert space, the dimensionality effects on the Edwards
polaron problem have not been studied before. The proposed
method is capable of computing the band dispersion, the
quasiparticle weight, the effective mass, the Drude weight and
the spatial particle-boson correlations of the polaron in 1D to
3D. Thereby we particularly investigate how the new energy
scale of “coherent” particle transport develops.

That the Edwards model actually captures two transport
channels, a free-fermion hopping channel on a reduced energy
scale and the original boson-affected one, becomes already vis-
ible performing an unitary transformation, bi → bi + λ/ω0,
which eliminates the boson relaxation term. Omitting the
constant energy shift Nλ2/ω0 (N is the number of lattice sites),
we obtain

H → H = Hf + Hb + ω0

∑
i

b
†
i bi , (2)

where Hf = −tf
∑

〈i,j〉 f
†
j fi with tf = 2λtb/ω0. The physics

of the Edwards model is governed by two parameter ratios:
tf /tb (relative strength of free and boson-affected hopping)
and (ω0/tb)−1 (rate of bosonic fluctuations). In this way, H

perfectly describes the interplay of “coherent” and “incoher-
ent” transport channels realized in many condensed matter
systems. In what follows we measure all energies in units
of tb.

The paper is organized as follows. Section II briefly
introduces our numerical approach. In Sec. III, we determine
the ground-state and spectral properties of the Edwards model
and discuss several issues of the Edwards polaron problem,
especially the dimensionality effect. Section IV gives a brief
summary and contains our conclusions.

TABLE I. Ground-state energy in a certain k sector for the single-
particle Edwards model in 1D. SC-VED results are compared with
data obtained by the VED approach (which is basically the same as
used in Ref. [27]). Within VED, a variational basis of 18 054 141
states is used. The numerical accuracy is specified in such a way that
the ground-state energies of the (Nh − 1)-th shell and the Nh-th shell
match up to the digit presented. For the SC-VED, this means that these
digits do not change in going from the penultimate to the final iteration
cycle. Given the dimension of the basis and the computational effort,
the accessible precision of the data strongly depends on the model
parameters and the momentum.

tf ω0 k E0(SC-VED) (basis size) E0(VED)

20 0.5 0 − 40.5922 (2 000 000) − 40.591
20 0.5 π − 40.05 (2 000 000) − 40.01
2 0.5 0 − 5.427354 (1 250 000) − 5.42734
2 0.5 π − 5.020042 (1 500 000) − 5.02
5 2.0 0 − 10.388823488 (1 250 000) − 10.388823488
5 2.0 π − 8.386998 (1 250 000) − 8.38
1 2.0 0 − 2.59317697703908 (750 000) − 2.59317697704
1 2.0 π − 0.8637159668 (1 500 000) − 0.86371596

II. NUMERICAL APPROACH

A variational basis is constructed by diagonalizing the
Edwards fermion-boson model numerically, starting with a
state of a bare electron and adding new states by repeated
application of the Hamiltonian, say Nh times. All translations
of these states on the infinite lattice are included. Hereafter, we
refer to such variational approaches based on exact diagonal-
ization as VED [35–42]. We will also apply a self-consistent
VED (SC-VED) scheme, which has successfully been used to
investigate the (extended) Holstein model [38,39]. In the SC-
VED framework, we first generate a relatively small basis set
and calculate the ground-state energy and the wave function.
Then the states with highest probability were identified and
the basis is optimized by only applying the Hamiltonian
on the chosen (highly probable) states. Accordingly, the size
of the basis is increased. Then the ground-state energy and the
wave function are calculated again. This process is continued
self-consistently by increasing the basis size at each cycle till
the desired accuracy in the ground-state energy is obtained. To
test the accuracy and efficiency of the SC-VED method, we
have recalculated the ground-state energy for a single electron
in the 1D Edwards model, a problem that has been solved
previously [27]. Table I demonstrates the high precision of
the SC-VED data, in spite of using a much smaller basis
space. For comparison, the VED results included in Table I
were obtained within a variational space of 18 054 141 states,
corresponding to Nh = 18. Actually, the SC-VED scheme
gives even a lower ground-state energy. Note that keeping
constant the computational effort, the numerical accuracy of
our data depends on the model parameters, as well as on the
momentum. Similarly to the Holstein model [40], a higher
precision can be reached with less resources if the number
of phonons involved is smaller. For the Edwards (Holstein)
model this is the strong-correlation (weak-coupling) case,
realized at small λ and large ω0 (small polaron-binding-energy
phonon-frequency ratio). That one achieves a lesser accuracy
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FIG. 1. Pointwise convergence of the weight of the m-boson state
in the ground state, |Cm

0 |2, for k = 0 (top) and k = π (bottom),
where tf = 20, ω0 = 0.5 (left) and tf = 1, ω0 = 2 (right). � specifies
the absolute value of the difference between the first (red triangles
up), second (green diamonds), third (blue squares), fourth (violet
circles) iteration step and the final result obtained—with the requested
accuracy—after five iterations. (Insets) Converged values of |Cm

0 |2
(filled black circles).

for large momenta was observed for Holstein polaron model
as well [40]. The reason is the extent of the lattice deformation
(size of the polaron), which increases as k approaches the
Brillouin-zone boundary, thereby making any finite-cluster
calculation more susceptible to finite-size effects.

To ensure that the basis contains an adequate number of
bosons for a given parameter set, the weight of the m-boson
state in the ground state, |Cm

0 |2 (for definition, see Refs.
[43,44]), has to be monitored. The main panel of Fig. 1
illustrates the convergence of |Cm

0 |2 in the course of the VED
iteration process. Beyond that, one recognizes that most bosons
are required in the limit of small boson frequencies ω0 (see
inset). We note by now that the limit of ω0 → 0 substantially
differs from the adiabatic limit of the Holstein polaron model
[45], in that the fermions in the Edwards model do not couple to
an (optical) phonon which leads to a static lattice displacement
as the frequency of the vibrational mode goes to zero.

Let us emphasize that the VED method allows for a (de
facto) continuous variation of the momentum k. This is because
all translations of the basis states, generated by “acting” Nh

times with the “off-diagonal” hopping and fermion-boson
coupling terms of the Hamiltonian on an initial root state, on an
infinite lattice are included [14,40]. Treating the 1D Edwards
model with Nh = 18 means that a single bosonic excitation 18
lattice sites away from the fermion is still taken into account.
That is why a small Edwards (Holstein or SSH) polaron never
feels the boundary in reality. This advantage of the VED
persists in the SC-VED scheme [38]. What happens if we
now apply periodic boundary conditions (PBC)? Generating
the VED basis set on a 1D lattice with 35 sites and PBC,
the Edwards polaron, will be unaffected by the boundary
conditions until Nh = 17. The PBC comes first into play at

FIG. 2. Comparison of polaron dispersion with VED and VED-
PBC basis set for 3D and 1D (inset) Edwards polaron for tb = 1 and
ω0 = 1 for small values of tf . Nh = 8 basis set has been used for
3D polaron with basis sizes 1 755 748 for VED and 1 500 868 for
VED-PBC (on a 9 × 9 lattice). The basis size for 1D Edwards with
VED is 18 054 141 (Nh = 18) and for VED-PBC is 41 485 (Nh = 11).
The basis size for Nh = 11 with VED is 41 488.

the 18th basis generation step, but even here, states having
18 bosons but no bosonic excitation at the boundary remain
unaffected. This argument holds also in higher dimensions,
albeit to a weaker extent. Constructing an Nh = 9 basis set on
a 2D 9 × 9 lattice with open and periodic boundary conditions,
a difference arises at Nh = 5. To substantiate our reasonings,
Fig. 2 shows the Edwards polaron band dispersion for the
3D and 1D (inset) cases, comparing the VED and VED-PBC
schemes. Apparently, the data match very well; in 3D (1D) the
first 3 (9) decimals agree. Since the physically most important
processes take place in the immediate vicinity of the polaronic
quasiparticle, the smaller the radius of the Edwards polaron the
better is the agreement of the approaches. Hence the VED-PBC
based on small lattices becomes highly efficient, whenever the
Edwards polaron is rather small, i.e., the background medium
is strongly correlated.

Next, just to show that our numerical scheme also admits
the calculation of excited states and spectral properties, Fig. 3
displays the dispersion E1(k) of the first excited state [besides
those of the ground state E0(k)], and the single-particle spectral
function,

A(k,ω) =
∑

n

∣∣〈ψ (1)
n

∣∣f †
k |0〉∣∣2

δ(ω − ω0), (3)

in the strongly correlated regime. In Eq. (3), |ψ (1)
n 〉 is the

wave function of the n-th excited state in the one-particle
sector and |0〉 is the vacuum. Since the particle motion in
this parameter regime is essentially determined by the boson-
assisted hopping, we find well separated peaks in the spectrum
of all the selected k sectors [27]. Of course, the ground-state
band dispersion follows those of the first peak in A(k,ω).
Note that the peak corresponding to the first excited state has
only tiny spectral weight, and therefore is hardly visible in the
spectral function.
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FIG. 3. Spectral function A(k,ω) (top) and band dispersion
(bottom) of the 1D Edwards model in the first Brillouin zone. Results
are given for tf = 0.1 and ω0 = 2. In the upper panels, vertical
red lines indicate the position of the first excited state (located at
ω � 0.63). All calculations were performed with a VED basis set of
18 054 141 states (Nh = 18).

Concerning the computational resources, our 1D VED
single-electron calculation takes a basis constructed with
Nh = 18. Then, for a lattice with 37 sites, the matrix dimension
is of the order of 18 millions. For comparison, in 2D (3D), we
will take Nh = 10 (8), which means a dimension of about 11
millions for a 9 × 9 (5 × 5 × 5) lattice. In what follows, we
employ the SC-VED scheme to obtain a better convergence
(in the k = 0 sector) for all spatial dimensions.

III. RESULTS AND DISCUSSION

A. Polaron band dispersion

We first explore the quasiparticle energies E(k) in the
Edwards model. Figure 4 gives the polaron band dispersion
in the regime where strong correlations in the background
hinder the particle motion. Such a situation is realized at
large values of ω0, where the bosonic excitations that are
inherently connected to particle hopping are costly in terms
of energy, and at small tf , i.e., at small λ, when the ability
of the background to relax is low. As a result, the (coherent)
bandwidth, defined by the difference between the maximum
and minimum of E(k) in the first Brillouin zone, is strongly
reduced compared to the free-particle’s one. Clearly, a “true”
polaron band E(k) becomes only apparent if its bandwidth
is smaller than the distance to the polaron-plus-one-boson
continuum. In other words, the (lowest) quasiparticle band
is well-separated from the incoherent part of the spectrum (or
higher quasiparticle bands). This obviously is achieved in the
parameter regime used for Fig. 4. We furthermore see that
the polaron’s bandwidth becomes larger as the dimensionality
of the system increases from 2D to 3D. This is not difficult
to understand because a string of bosonic excitations tends
to bind the particle to the place where it starts its excursion.
In higher dimensions, there are more ways to unwind such a

FIG. 4. Polaronic band dispersion (E(k) − E0) of the 1D, 2D,
and 3D Edwards model in the small-tf large-ω0 regime.

string. Interestingly, coherent motion is nevertheless possible
in 1D, and even for tf = 0, because there exists a six-step
vacuum-restoring process [27] which is a 1D representative of
the 2D “Trugman path” [28] observed in a 2D Néel-ordered
spin background, see Fig. 5. Since any hop of the particle
changes the boson number by one, any vacuum-restoring
process has to be in relationship to an even number of hopping
events. It is worth noting that the strong correlations in the
background medium give rise to a boson-modulated hopping
that triggers a doubling of the unit cell (halving of the Brillouin
zone). When tf = 0 (i.e., λ = 0, and only vacuum-restoring
hopping processes are allowed) the backfolding becomes
perfect. This has been previously observed in 1D [27] and
2D [33]. Figure 4 demonstrates that E(k) is (π,π,π )-periodic
also in 3D. The resulting dispersion reflects the developing
many-body correlations in the background medium. Since the
coherent bandwidth (and the effective mass, see Sec. III C) is
dominated by the sequence of vacuum-restoring closed-loop
hopping processes (which are two-dimensional in 3D as well,
cf. Fig. 5), the 2D and 3D bandwidths do not differ much. The
new periodicity of the Brillouin zone at tf = 0 is illustrated
by the contour plots Figs. 6 and 7 for the 2D and 3D Edwards
model, respectively. Of course, any finite tf will weaken the
backfolding of the polaron band dispersion (see Fig. 6, right
panel).

B. Quasiparticle weight

Further information about the nature of the polaronic
quasiparticle in the Edwards model can be obtained by
computing the quasiparticle residue,

Z(k) = ∣∣〈ψ (1)
k

∣∣f †
k |0〉∣∣2

, (4)

which measures the overlap (squared) between the bare
particle’s band state f

†
k |0〉 and the polaron ground-state wave

function |ψ (1)
k 〉 [33,40]. Figure 8 gives Z(k) along lines of

high symmetry in the Brillouin zone. First, we note that Z(k)
is significantly reduced compared to free particle value (one).
That is the Edwards polaron is heavily dressed by a cloud
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3D

FIG. 5. Sketch of the lowest-order vacuum-restoring processes
in the Edwards model. The top panel illustrates the three-boson,
three-site sequence of process that gives rise to an effective second
nearest-neighbor fermion hopping in 1D [27]. The site occupied by
a fermion is blue and the arrow indicates the direction of the next tb
hopping. Any fermion hopping either creates a boson (drawn as a red
asterisk) at the site the particle leaves or absorbs a boson from the
site it enters. While only collinear hops are allowed in 1D, collinear,
noncollinear round the corner [33], and closed loop processes are
allowed in 2D (middle panel). Note that, in 3D, any hopping process to
the next nearest-neighbor body-diagonal site contains an odd number
of hops and therefore is not vacuum restoring (both points belong to
disconnected vacuum states). Vacuum-restoring hopping processes
are only possible to the second nearest-neighbor body diagonal
site, see bottom panel. Again these processes are composed of 1D
collinear, noncollinear, and/or 2D closed loop hops; they are of much
higher (18th) order in tb, however.

of bosonic excitations. Even so, it is much less renormalized
than the Holstein polaron [14,46,47]. Obviously, in the strong
correlation regime, the Edwards polaron rather behaves as a
spin polaron. Second, while Z(k) has a similar profile as E(k)
throughout the Brillouin zone (cf. Fig. 4), it changes very little
in real terms. This has been already observed for the 2D case
within the momentum average approximation [33], and retains
it validity, as the exact data of Fig. 8 indicate, in 1D and 3D as
well. We note that at finite tf , the quasiparticle weight is larger
[smaller] at (0,[0,0]) [(π,[π,π ])] than the corresponding tf =
0-value. This is because the effective next-nearest-neighbor
vacuum-restoring hopping process becomes less important if
tf > 0.

C. Effective mass

Being able to calculate E(k) with high precision for
continuously varying k, we can compute the effective mass of
the Edwards polaron for a d-dimensional hypercubic lattice,

FIG. 6. Ground-state energy shift, E(kx,ky)-E0, as a function of
(kx,ky) for the 2D Edwards model with ω0 = 1 and tf = 0 [note
the band folding along the (1,1) direction in reciprocal space] (left),
tf = 0.1 (right).

using the standard formula

m

m∗ = 1

d

[
d∑

i=1

∂2E(�k)

∂ki
2

]
ki=0

, (5)

where m denotes the “reference” mass, describing a situation
when both hopping channels are of equal importance (i.e.,
tf = tb = 1).

Figure 9 displays the results obtained for the Edwards
polaron’s effective mass in 1D, 2D, and 3D. We first note
that a finite m∗ results even if the “‘free particle” has an
infinite mass (tf = 0). The Edwards polaron transition is
always continuous. By contrast, in the SSH model, a sharp
transition might appear when the coupling depends not only on
phonon momentum but also on the electron momentum [26].
Considerable differences are also observed compared to the
Holstein model. For example, the dimensionality affects the
polaron crossover in a different manner (cf. the results given for
the Holstein model in Ref. [48]). While the crossover becomes
more defined in higher dimensions for the Holstein case,
the opposite tendency is observed for the Edwards polaron.
Moreover, for the small Holstein polaron, the inverse effective
mass obtained from Eq. (5) differs from Z(k = 0) by less
than 1% [40]. As can be seen by comparing Figs. 8 and 9, this

FIG. 7. Contour plot of E(kx,ky,kz)-E0 as a function of (kx,ky)
at kz = 0,±π for the 3D Edwards model. Again, tf = 0 and ω = 2
[note the band folding along the (1,1,1) direction in reciprocal space].
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FIG. 8. Quasiparticle weight, Z(k), along the major directions of
the Brillouin zone for the 1D (top), 2D (middle), and 3D (bottom)
Edwards model at ω0 = 1, and tf = 0 (red), tf = 0.01 (blue). The
inset gives Z(k) at ω0 = 2 for the 1D case.

difference is much larger (up to a factor of 100) for the Edwards
polaron when tf → 0 in the strongly correlated regime. In the
case of boson-assisted transport, the dynamical generation of
the effective mass is dominated by contributions from closed
loops, which are comparably important in 2D and 3D (we
already discussed in Sec. III A that, in 3D, the lowest-order
vacuum-restoring processes are basically the same as in 2D.)

Two more comments are in order here. First, in the
“diffusive” or “fluctuation-dominated” transport regimes [27]
of small ω0, the mass enhancement is considerably smaller.
In this regimes, the quasiparticle band picture may even break
down for the Edwards model (mainly because E(k) is no longer
separated from the polaron-plus-one-boson continuum). Sec-
ond, as tf considerably exceeds tb, we enter the quasifree
transport regime. Of course, for tf → ∞, m∗ (measured in
units of the reference mass m) tends to zero.

FIG. 9. Effective mass m∗/m in dependence on tf for the 1D,
2D, and 3D Edwards model (from top to bottom). Insets magnify the
region of very small tf .

FIG. 10. Drude weight D scaled to the kinetic energy Ekin as a
function of tf for the 1D, 2D, and 3D Edwards model. Insets magnify
the small-tf regime.

D. Drude weight

In situations where electrical transport differs entirely from
free particle motion, the Drude weight is typically used to
characterize transport [49,50]. The Drude weight D serves as
a measure of coherent, free-particle-like transport, and fulfills
the f -sum rule. We have −D/Ekin = 1/2 for a free particle,
where Ekin is the kinetic energy. By contrast, −D/Ekin 

1/2 for diffusive transport. For our fermion-boson system, the
Drude weight can be obtained by adding the same phase factor
on the hopping matrix elements along the spatial directions of
the hypercubic lattice (tf → tf eiφ , tb → tbe

iφ , which breaks
time-reversal symmetry), and then exploit the relation [42,49]:

D = ∂2E0(φ)

∂φ2

∣∣∣∣
φ=0

(6)

(in units of πe2), where E0(φ) is the ground-state energy in
the presence of a nonvanishing phase φ.

Figure 10 shows the dependence of −D/Ekin on tf at
different values of ω0. The 1D results are in excellent
agreement with those of Ref. [27]. Here, the data for ω0 = 2
indicate that transport is quasifree with −D/Ekin � 1/2 in a
wide range of tf . For ω0 = 2 and tf = 0, D increases by about
a factor of two (three) in going from 1D to 2D (3D), which
is basically due to the increasing coordination numbers of the
corresponding hypercubic lattices. When ω0 decreases, the
particle will be strongly scattered by background fluctuations,
and −D/Ekin tends to its asymptotic value 1/2 as tf → ∞
much slower. This characterizes the incoherent regime. On
the other hand, for very small tf , boson-assisted hopping
is the dominant transport channel. Here, D increases with
decreasing ω0 (see insets). Interestingly, for tf = 0, it can
be shown analytically [50], that D remains finite as ω0 → 0.
These overall trends persist in 2D and 3D. However, there are
subtle distinctions relative to the 1D case, for instance, in the
regime of small ω0: while −D/Ekin stays almost constant for
tf 
 1 when going from 1D to 3D, in higher dimensions,
it significantly exceeds its value at 1D for larger tf (note
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FIG. 11. Particle-boson density-density correlation function
χ (i − j ) for the 1D Edwards model.

the different scales of the abscissae in Fig. 10). That means,
opening more hopping channels, the system approaches much
faster the free-electron value in the diffusive regime (e.g., D

increases by a factor of 7–8, when going from 1D to 3D at
ω0 = 0.5, tf = 2).

E. Particle-boson correlations

The ground-state expectation value

χ (r) = 〈ψ0|f †
i fi(b

†
i+rbi+r)|ψ0〉 (7)

captures the density-density correlation between the fermionic
particle located at a certain site i and the bosons in its proxim-
ity. Figures 11, 12, and 13 show χ (r) for the one-, two-, and
three-dimensional cases, respectively. In the incoherent, diffu-

FIG. 12. Particle-boson density-density correlation function
χ (x,y) for the 2D Edwards model with ω0 = 0.5, tf = 2 (top) and
ω0 = 2, tf = 0 (bottom).

FIG. 13. Particle-boson density-density correlation function for
the 3D Edwards model with ω0 = 0.5, tf = 2 (left) and tf = 0, ω0 =
2 (right). The distance from the particle-site is measured in lattice
spacing along the (1,0,0) [black circles], (1,1,0) [red squares], and
(1,1,1) [blue diamonds] direction.

sive transport regime (i.e., at rather small ω0, tf >1), the bosons
form a cloud surrounding the fermion. Here, the maximum of
χ coincides with the position of the fermionic particle and
the bosons are only weakly correlated. In total, many bosons
are excited at the fermion site and in its neighborhood. To a
certain extent, this resembles the situation for a large Holstein
polaron. By contrast, in the boson-assisted transport regime,
realized at large ω0 and very small or zero tf , the particle-boson
correlations are large at the nearest-neighbor sites. A boson
existing on a site next to the particle triggers transport because,
according to the second term in Hb, the particle can hop to this
site and will thereby lower the total energy of the system by
annihilating the bosonic excitation in the background. The
same mechanism will strengthen hopping processes along the
coordinate directions in higher dimensions too, whereupon,
in 3D, transport along the body diagonal is not supported.
This reveals once more the importance of closed loops for
the dynamical generation of the effective mass in the strongly
correlated regime (cf. the results of Ref. [33] for the 2D case).
We would like to point out that the nearest-neighbor particle-
boson correlations are even more pronounced in 3D (and 2D)
than in 1D (cf., the discussion of Fig. 10 in Sec. III B).

IV. CONCLUSIONS

To summarize, we have investigated the formation of
polarons in the Edwards fermion-boson model, placing spe-
cial emphasis on transport and dimensionality effects. The
Edwards model features two transport channels, a coherent
and an incoherent one. Exploiting unbiased (variational)
diagonalization techniques, we presented numerically exact
results for the Edwards model, including correlation functions
and quantities that characterize transport, in spatial dimensions
one through three.

It turned out that an Edwards polaron mainly develops when
the background is stiff (highly correlated). Then coherent
particle transport takes place on a strongly reduced energy
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scale. Entirely different from the Holstein- and SSH-type
models, where the bosons are phonons and only (small)
lattice polarons, comprising many phonons, will be formed
(in D > 1) [14,48], the Edwards polaron is a few-boson
state in the regime of boson-assisted transport [27] when
vacuum-restoring processes play a dominant role. In that
case, the Edwards polaron is confined to a few lattice sites
with pronounced nearest-neighbor particle-boson correlations.
Edwards polaron formation requires a sizable mass enhance-
ment, just as in the case of Holstein- or SSH-polarons.
Likewise, the Edwards polaron transition is always continuous,
i.e., a crossover, triggered—in a self-induced way—by the
strength of the background correlations. Interestingly, the
inverse effective mass of the Edwards polaron substantially
differs from the quasiparticle weight which, of course, is
reduced from one, but rather moderate if compared to the
Holstein polaron. For the dynamical generation of the Edwards
polaron’s effective mass, closed loops are important in all
spatial dimensions. In the opposite limit, when the background
heavily fluctuates, the particle will be strongly scattered by the
bosonic fluctuations. This might enable transport when the
“free” hopping channel (∝ tf ) is absent, but at the same time
limits transport. In either case, the Drude weight is finite, even
if the energy of the background excitations (∝ ω0) tends to
zero. We note that the limit ω → 0 thoroughly differs from
the adiabatic limit of the Holstein model [45] (for the SSH
model the polaron crossover is unaffected by the adiabaticity
ratio [25]). If, at small values of ω0, the “free” hopping
channel is well-developed, the Drude weight (scaled to the

kinetic energy) approaches its free-particle limiting value more
readily in higher dimensions. Here, the boson cloud around
the particle is spread but weakly correlated. Obviously, the
Edwards model captures very different transport regimes, and
the dimensionality noticeably affects the properties of the
system.

Since the charge carriers in a rich variety of materials
with strong electronic correlation, including 1D MX chains,
2D high-Tc cuprates, and 3D colossal magnetoresistive man-
ganates feature polaronic properties, our results contribute, at
least qualitatively, to a better understanding of lattice, spin or
orbital polaron formation in these materials, where particles
move through an ordered insulator.
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