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Light propagation in stratified media with soft interfaces
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The propagation of light through materials in which the density of charge carriers varies smoothly on a scale
smaller than or comparable to the wavelength requires a description that goes beyond the commonly used Fresnel
equations. We propose a method to solve Maxwell’s equations in such a way that any linear response theory for
the bulk material can be combined with a given smooth density profile for the (free or bound) charge carriers.
This method is implemented for linearly polarized monochromatic light impinging on inhomogeneous multilayer
systems, leading to a fast algorithm that yields reflectance and transmittance for such systems. We apply our
algorithm to investigate the difference in optical response between smooth interfaces and abrupt interfaces in
stratified systems where the materials can have complex bulk permittivities, and find that the smoothening of the
interface on a wavelength scale significantly reduces reflection in favor of absorption. This result is of importance
to current experiments that aim to detect metallic hydrogen and deuterium films using their optical response. Our
results show that for a correct interpretation of these experiments it is important to consider the smoothness of
the density profile of the metallic layer. Also, for nonabsorbing layers, a smooth, rather than abrupt transition,
can have an important impact on the design of optical filters.
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I. INTRODUCTION

The study of the optical properties of inhomogeneous thin
films and coatings has a long history [1], and remains a
very active topic of experimental and theoretical research.
Practical applications are abundant and range from impedance
matching [2], optical fibers [3], and blu-ray players [4] to
antireflection coatings [5,6].

When changes in the dielectric constant take place over
a distance smaller than the wavelength of the light, the
Fresnel equations can be used to knit together the solutions
of Maxwell’s equations for neighboring layers with each layer
having constant permittivity [7]. When many such layers are
present, matrix methods can be successfully used to find the
reflection and transmission coefficients [8]. Although most
descriptions focus on nonabsorbing materials, more recent
work has attempted to generalize this procedure to complex
permittivities [9].

Much less attention has been paid to the case when the vari-
ation of the permittivity takes place on distances smaller than
or comparable to the wavelength of the light. Except for some
specific profiles of the dielectric functions [10,11], analytical
results are not available. Amplitude-phase methods have been
put to use to tackle this problem numerically [12,13], yielding
nonlinear differential equations either for the amplitude or
for the phase. Thus far, these methods focus on transparent
materials in order to determine and optimize reflectance prop-
erties of films and coatings [14]. Nevertheless, many systems
exhibit a complex dielectric response varying on distances of
the size of the wavelength, such as, e.g, systems in plasma
physics [15], doped semiconductors [16], and laser-heated
metals in high-pressure experiments [17]. While theories of the
response of the homogeneous electron gas and other materials
grow ever more detailed, the effect of smooth transitions
remains insufficiently understood [18] and is neglected in most

descriptions. The calculated response functions are typically
used in conjunction with the approximation of an abrupt
interface [19,20].

Here, we present a numerical method based on linear
differential equations, to calculate efficiently the propagation
of electromagnetic waves through an inhomogeneous medium
with a continuous complex dielectric function that varies along
the direction of propagation. We use our method to investigate
inhomogeneous metal films where the electron density varies
over a distance of the order of the wavelength. In particular we
compare the optical response for media with inhomogeneous
dielectric functions as a function of length scale to the usual
approximation of a slab with a uniform dielectric function in
the direction of propagation. For this purpose, we apply our
method to two models: (1) a single slab with a smoothed-out
interface (e.g., by diffusion into its environment) and (2)
a model of a diamond anvil cell used in the search for
metallic hydrogen, containing a position-dependent mixture
of molecular and metallic hydrogen.

II. METHODOLOGY

A. General formalism

Light propagation in a continuous medium is commonly
described by the classical, microscopic Maxwell equations for
scalar and vector potentials, where these fields are written
as a sum of the externally applied fields (e.g., the incoming
electromagnetic wave), and the induced fields, arising from
the response of the material: φ = φext + φind and A = Aext +
Aind. In our formalism, the inhomogeneity of the materials
is incorporated at the level of the response functions through
the density of charge carriers that participate in creating the
induced fields. We write this density as n(r) = f (r)n0 where
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n0 is the bulk charge carrier density. The inhomogeneity in the
density is taken into account by the “profile function” f (r).

The charge carriers can be free electrons or holes, or
bound charges allowing polarization. When subject to the
total fields φ and A, the individual charge carriers at time
t and position r are displaced over a distance X(r,t). The
calculation of this displacement field (not to be confused
with the electric displacement field D) is the goal of response
theory. The only restriction that we impose on the choice of
response theory is that the response is linear in the electric
field. For monochromatic fields of frequency ω, the linearity
requirement leads to

X(r,ω) = α(ω)E(r,ω), (1)

with α(ω) a (complex) proportionality constant. For example,
solving the Lagrangian equation of motion of an electron using
the Drude formalism for metallic materials results in

αDrude = e

mω(ω + i/τ )
, (2)

with m the electron mass, e its charge, and with τ the Drude
relaxation time. In general, the proportionality constant α

can be written in terms of the relative bulk permittivity εm

through en0α/ε0 = 1 − εm with ε0 the vacuum permittivity.
Any response formalism capable of calculating εm can be used
instead of the Drude example above.

The displacements of the charge carriers lead to a po-
larization field that is modulated by the profile function,
P(r,ω) = −n0ef (r)X(r,ω). Hence, the induced charge density
and current can be calculated from the displacement field via

ρ ind(r,ω) = en0∇ · [f (r)X(r,ω)], (3)

Jind(r,ω) = iωn0f (r)X(r,ω). (4)

In turn, the induced fields φind and Aind are determined
by the Maxwell equations with the induced charges and
currents as source terms. Eliminating the induced charges and
currents from these equations yields the following differential
equations:

�φind(r,ω) = ε0(1 − εm){∇f (r) · [−∇φ(r,ω) + iωA(r,ω)]

− f (r)�φ(r,ω)}, (5)(
� + ω2

c2

)
Aind(r,ω) = i

ω

c2
(1 − εm)f (r)[∇φ(r,ω)

− iωA(r,ω)] − i
ω

c2
∇φ. (6)

These equations are given in SI units rather than in cgs, and
c is the velocity of light in vacuum. The Coulomb gauge
∇ · A = 0 has been used. Given an external perturbation
(described by φext, Aext) and a profile function f (r), the
solution for the induced fields φind, Aind can be found and
used to calculate transmittance, reflectance, and absorptance.
In the next subsection, we present a numerical scheme that
solves this for a one-dimensional inhomogeneous geometry.

B. Discretization

The specific models discussed in this paper are one-
dimensional, with the x axis along the direction of the beam
propagation. The incoming wave is a linearly polarized plane
wave with φext = 0 and Aext = exp(+ikx)ey .

Rewriting the differential Eqs. (5) and (6) for this system
quickly shows that the solution will have φind = Aind

x = Aind
z =

0, leaving only Aind
y to be determined from

{� + k2[1 − (1 − εm)f (x)]}Aind
y (x,ω)

= k2(1 − εm)f (x)eikx . (7)

Discretization on a grid using N grid points with spacing δx

(a nonuniform grid is a trivial extension) yields

uj+1 = {2 − [1 − (1 − εm)fj ]k2δx2}uj − uj−1

+ (1 − εm)fjk
2δx2eikxj . (8)

Here uj (with j = 1 . . . N) is the solution array for Aind
y . The

density profile at the j th grid point is fj , and the position of
this grid point is given by xj .

The first and last two grid points should be situated well
outside the inhomogeneous thin film. This ensures that the
solution u for the induced vector potential at the first grid
points describes the reflected wave. Hence, these must be of the
form u1 = CR and u2 = CRexp(−ikδx), with CR an a priori
unknown complex coefficient connected to the reflectance
through R = |CR|2.

Having fixed the first two grid points, we obtain the entire
solution array u from the recurrence relation (8) as a function of
CR . The algorithm that we propose consists in determining CR

by requiring that the induced vector potential at the last couple
of grid points, at the other side of the thin film, represents
a purely outgoing wave. Since at the end of the grid, the
induced potential is an outgoing wave, it should not contain
contributions of the form exp(−ikx), resulting in a measure

D(u) = |uN−1exp(ikδx) − uN | (9)

that indicates the goodness of the solution u. By minimizing
D[u(CR)] with respect to CR , we obtain the reflectance. We
also find the value for the induced vector potential at the
last grid point, uN = CT exp(+ikxN ). The coefficient CT of
this outgoing wave (in combination with the external wave)
determines the transmittance through T = |1 + CT |2.

C. Multiple materials

For some applications it is necessary to include multiple
materials and mixtures of materials with different properties.
When the overall response remains additive in the densities of
charge carriers in the different materials, the extension of the
formalism is straightforward. Indexing the bulk permittivities
ε

m and profile functions f 
(r) for the different materials by


, the solution for the induced fields can be found by simply
replacing

(1 − εm)f (r) →
∑




(
1 − ε


m

)
f 
(r) (10)
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in Eqs. (5) and (6). In the discretized equation for the one-
dimensional (1D) case, this leads to

uj+1 =
[

2 −
(

1 −
∑




(
1 − ε


m

)
f 


j

)
k2δx2

]
uj − uj−1

+
∑




(
1 − ε


m

)
f 


j k2δx2eikxj , (11)

where 
 runs over the different materials. This obviously
also works when the film consists of several nonoverlapping
materials. For mixtures, this corresponds to a weighted
averaging of the ε


m. When the bulk permittivities differ
strongly, a better approximation consists in averaging the cube
root of the ε


m [21]:

∑



ε

mf 
(r) →

(∑



f 
(r)
(
ε

m

)1/3

)3

, (12)

where we assume
∑


 f 
(r) = 1.

D. Jumping over homogeneous layers

If the film contains a layer of thickness � through which the
density of charge carriers is uniform, it is possible to speed up
the implementation without loss of accuracy by incorporating
the known analytic solution for the induced field in such
a homogeneous layer. Setting f equal to 1, the differential
Eq. (7) has the well-known solution,

Aind
y = −eikx + c1 cos(kx

√
εm) + c2 sin(kx

√
εm). (13)

Using two calculated values uj and uj+1 within the layer,
the unknown coefficients c1 and c2 can be found. Next, the
analytical solution can be used to calculate u(xj + �) and
u(xj + � + δx) for arbitrary large �, traversing slabs with
constant εm, after which Eq. (8) can be used to resume the
calculation with varying f .

III. RESULTS

A. Single soft-edged slab

Consider a slab of a material with permittivity εm =
−1.47 + 13.6i (similar to that of metallic hydrogen [20])
in a vacuum environment. The density profile of the slab is
described by

fslab(x) = 1

2

exp
(

d
κ

)
cosh

(
d
κ

) + cosh
(
2 x−x0

κ

) , (14)

where d indicates the thickness, κ the smoothing, and x0 the
position of the center of the slab. This profile is shown in inset
(b) of Fig. 1 for κ = 5 nm and several values of d. If κ → 0, the
profile becomes a hard-wall (step) profile, and the calculation
gives the same values as the analytical Fresnel equations [7]
for sharp interfaces. For κ sufficiently small as compared to d

the integrated value of the smooth profile is the same as that of
the unit step (κ = 0), so that changing κ does not change the
amount of charge carriers. However, if κ becomes too large as
compared to d, the profile will no longer reach 1 in the center
and the integral will diminish.

The reflectance for this system is shown in Fig. 1 as a
function of the thickness for several values of κ . This clearly
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FIG. 1. Reflectance of a slab with εm = −1.47 + 13.6i, as a
function of thickness d and for various values of κ: 0 nm (disks),
5 nm (squares), 10 nm (triangles), and 15 nm (diamonds). The solid
line represents the analytical result for a sharp edged profile. The
dashed line on the main figure shows the transmittance which is not
affected by changing κ . Inset (a) shows the reflectance of a large
500-nm thick slab as a function of κ . Inset (b) demonstrates three
profiles with κ = 5 nm but different thicknesses. The reflectances of
these profiles are indicated by the arrows. These calculations have
been performed with λ = 500 nm.

shows that the reflectance drops as the extent of the smoothness
increases, which means that absorption must increase since the
transmittance does not change. The decrease of the reflectance
as a function of κ is also shown in inset (a) of Fig. 1, which
clearly shows that for very large κ the reflectance can differ
substantially from the bulk reflectance and even go to zero
meaning that almost all the energy is absorbed.

Figure 1 also demonstrates the behavior of the optical
properties of slabs as their dimensions become smaller. For a
thick slab, transmission is zero and the reflectance is constant
for thicknesses greater than a certain value, which is about
60 nm for an abrupt interface (κ = 0) in the case shown
in Fig. 1. However, the value of the thick film reflectance
depends on κ , and the threshold for the changeover to thin film
reflectance is lowered if the profile is smoother (κ larger).

The change in reflectance is also dependent on the bulk
permittivity of the material as demonstrated in Fig. 2(a), which
shows the ratio between the reflectance for κ = 15 nm and
κ = 0 nm for different bulk permittivities and for a film
of thickness 100 nm. Negative but real bulk permittivities
show no difference in reflectance between the sharp and
smoothed profiles. The largest difference occurs for positive
permittivities, where oscillations occur due to interference
between multiple reflections in the film. Figure 2(b) shows
the reflectance for both profiles in this oscillatory region.
Smoothing the profile changes how well the light fits in the
cavity and thus the constructive or destructive nature of the
interference. In this case the influence of the profile is largest
and reflectance can be both promoted and suppressed.

B. Multilayer films

As a second example of this algorithm we present a model
inspired by the recent search for metallic hydrogen [22]

155129-3



VAN DEN BROECK, BROSENS, TEMPERE, AND SILVERA PHYSICAL REVIEW B 93, 155129 (2016)

15 10 5 0 5 10 15
0

5

10

15

0.2

0.4

0.6

0.8

1.0

Re (ε)

Im
 (ε

)

0 20 40 60 80 100
0.0

0.25

0.5

0.75

1.0

R
ef

le
ct

an
ce

Re (ε)

 κ = 0 nm
 κ = 15 nm

FIG. 2. (a) Contour plot showing the ratio between the reflectance
calculated with κ = 15 nm and κ = 0 nm for different permittivities
and for d = 100 nm. Light colors mean almost no difference; dark
colors mean the reflectance drops for larger κ . (b) Reflectance for
κ = 15 nm (dashed) and κ = 0 (solid) for positive permittivities
with negligible imaginary part. Calculations are performed for λ =
500 nm.

at static pressures using a diamond anvil cell with pulsed
laser heating, and metallic deuterium [23] using programmed
shock compression. The transition from molecular to metallic
hydrogen is accompanied by a change in the optical properties,
notably an abrupt change in reflectance and transmittance
when a phase line is crossed from liquid molecular to atomic
metallic hydrogen. The sudden change in optical properties
is used to experimentally characterize the transition. In the
laser heated diamond anvil cell the thickness of the metallic
film varies from a few nm to ∼50–100 nm depending on
the temperature, and the reflectance increases to a thick film
saturation value of ∼0.55. Since this is the value expected for
bulk metallic hydrogen our analysis implies that the electron
density of the film rapidly rises and there is little smoothing,
so the profile must be that of a sharp block, according to Fig. 1.

The shocked deuterium sample is much thicker, about
10 μm, and at the end of the ramp it is expected to be
completely transformed to a metallic liquid. A monochromatic
beam of light passes through the deuterium and reflects back
off of an Al surface; when the deuterium is metallic the
reflectance of the beam is about 0.45. However, during the
ramp up in pressure and temperature, the reflected beam
is strongly attenuated and then recovers to reach 0.45.
This attenuation was interpreted as being due to interband
transitions of the molecular deuterium. However, the spectrum
was not measured, to confirm this. The authors state that during

the compression to the metallic state there is probably spatial
heterogeneity in the density. Using our analysis, an alternate
explanation is that during the formation of the thick metallic
film an inhomogeneous liquid metal develops with a large
value of κ as in Fig. 1, so that the reflectance approaches zero
and recovers as the inhomogeneity collapses into a uniform
slab of metal.

Modeling the diamond anvil cell setup requires including
several layers of materials and a mixture of molecular and
metallic hydrogen. A tungsten film is present as a heating
source for the experiment, and is separated from the hydrogen
by a transparent cladding layer for which we assume vacuum
permittivity. The materials used in the calculations are tungsten
with εW = 4.28 + 18.3i [24], molecular hydrogen with εH2 =
6.27 [25] (calculated for 150 GPa), and metallic hydrogen with
εMH = −1.47 + 13.6i [20]. All calculations are preformed
with λ = 500 nm. The thickness of the tungsten film, as
reported in the experiment [22], is ∼8.5 nm. The experiment
also characterized the optical properties of the tungsten film
approximately: R = 0.25, T = 0.25, and A = 0.5. Using the
algorithm presented here, we find that these optical properties
are achieved for a tungsten film with a thickness of 8.8 nm, in
accordance with the reported thickness. An additional layer of
vacuum is added on the left-hand side of the grid in order to
place u1, u2, uN−1, and uN outside the stack of films as required
by our algorithm. The resulting DAC forms a cavity mode, so
that the results are sensitive to how well standing waves fit in
between its edges. In order to mitigate this effect the results
shown are averages over DAC widths within a wavelength
interval.

As the exact density profile of the metallic hydrogen film is
not known, we compare two extreme cases: (1) a sharp-edged
block and (2) an exponential decay away from the heater and
into the molecular hydrogen. The profile functions for the two
cases are illustrated in the insets of Fig. 3, where the dot-dashed
curves represent the profile for the tungsten, the full curve that
for metallic hydrogen, and the dashed line that of molecular
hydrogen.

In Fig. 3 we show the results for the reflectance R(d) and
transmittance T (d) as a function of the thickness d of the
layer. Both quantities are normalized by their value (due to the
tungsten film) at d = 0, when no metallic hydrogen is present.
The presence of the metallic hydrogen increases the reflectance
(upper two curves, red), and decreases the transmittance (lower
two curves, blue). To compare the sharp-edged block (dashed
curves) with the exponentially decaying profile (full curves),
we choose a decay length such that the integrated density
of the MH is the same in both cases. In agreement with the
results from the previous subsection, we find that smoothing
the profile reduces reflectance and, to a lesser extent, also
transmittance. Note that for the smoothed metallic hydrogen
our formalism enables us to take into account the molecular
hydrogen at the smoothed interface.

The true density profile of the layer of metallic hydrogen
is unknown, and will depend on the specific experimental
procedure followed. It is likely to be in between the extremes of
a hard wall and an exponential smooth profile. Hence, the true
reflectance and transmittance are expected to lie in between
the dashed curves and the full curves. This region (shaded in
Fig. 3) indicates the uncertainty stemming from not knowing
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FIG. 3. The upper two curves show the reflectance R(d), normal-
ized to R(0), as a function of the thickness d of the metallic hydrogen
film, for (1) a smooth, exponential density profile (full curve) and
(2) a hard-wall profile (dashed curve). These profiles are shown in
the inset (full curves), along with the profile for the tungsten heating
layer (dash-dotted curve) and the molecular hydrogen (dashed curve).
The lower two curves show the same results, but for the transmittance
T (d), again normalized to T (0). The dash-dotted line shows the result
for the intermediate case of a layer that first grows with a smooth
profile until it reaches 8 nm, and then thickens by growing a uniform
metallic hydrogen layer.

the true density profile of the film of metallic hydrogen. The
dash-dotted curve in Fig. 3 shows an “intermediate” case,
lying in this region. It represents a layer that starts to grow as
a smooth interface between metallic and molecular hydrogen,
until this interface reaches 8 nm in thickness. Then it continues
to grow by adding a uniform density layer of metallic hydrogen
behind the smooth interface. This appears to describe the
profile of the experimentally produced metallic hydrogen for
which the reflectance rises to the expected bulk value for
thicker films.

Several recent papers have made improvements in the
calculation of the dielectric function for bulk metallic hydro-
gen [19,20], and relate these results to the reflectance and
transmittance via the Fresnel equations for abrupt interfaces.
However, the present results indicate that the experimental
verification of these improvements in the response theory of
metallic hydrogen will require a more careful analysis of the
density profile.

IV. CONCLUSIONS

By separating the density profile from the bulk properties
of materials we have derived general differential equations for

the optical response of a system with smoothly varying density
profiles, and we have proposed a numerical discretization
and minimization algorithm to solve these equations in a
one-dimensional system. The resulting algorithm is fast, easy
to implement, and powerful, capable of handling large systems,
multiple materials with arbitrary density profiles, and even
mixtures of materials.

Using the algorithm, we find that there is a significant
difference in response between a layer with an abrupt interface
and a layer with a smoothly varying charge carrier density.
Qualitatively, the reflectance is lowered in favor of the
absorption when smoothing the transition between two layers,
one of which has complex bulk permittivity. Interfaces with
large smoothing can completely suppress reflection, which can
be of use for creating high-absorbing structures. A very strong
impact is also found for materials with permittivities with
positive real part and negligible imaginary part. The optical
response of films of such materials are already dependent
on the distance between their interfaces, as in a Fabry-Pérot
interferometer. Smoothing the edges directly impacts the
interference between the interfaces.

Finally, we note that the results presented here are of
importance to the interpretation of ongoing experiments
searching for the transition between molecular and metallic
hydrogen by detecting a change in the optical properties.
These experiments produce metallic hydrogen by pulsed laser
heating, which is not expected to create a uniform slab with
an abrupt interface. We estimate that discrepancies as large as
10% in reflectance can be expected when assuming an abrupt
interface. Many more applications of this algorithm can be
conceived, e.g., in the area of plasmas where the density is
important and may vary spatially, in semiconductors where
doping alters the density or when pn junctions are created,
and for systems with negative refractive index materials. The
algorithm presented here opens a new way of investigating the
optical properties of smoothly varying density profiles on a
nanoscopic scale.
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