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Stochastic series expansion simulation of the t-V model

Lei Wang,1,2 Ye-Hua Liu,1 and Matthias Troyer1

1Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland
2Beijing National Lab for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 15 February 2016; revised manuscript received 24 March 2016; published 11 April 2016)

We present an algorithm for the efficient simulation of the half-filled spinless t-V model on bipartite lattices,
which combines the stochastic series expansion method with determinantal quantum Monte Carlo techniques
widely used in fermionic simulations. The algorithm scales linearly in the inverse temperature, cubically with
the system size, and is free from the time-discretization error. We use it to map out the finite-temperature phase
diagram of the spinless t-V model on the honeycomb lattice and observe a suppression of the critical temperature
of the charge-density-wave phase in the vicinity of a fermionic quantum critical point.
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I. INTRODUCTION

The stochastic series expansion (SSE) method [1] is an
efficient and versatile numerical method for unbiased simula-
tions of quantum many-body systems. It performs stochastic
sampling of the Taylor series expansion of the partition
function. Combined with nonlocal Monte Carlo updates [2–4],
SSE is the method of choice1 for the simulation of unfrustrated
quantum-spin models and hard-core bosons [5,6].

The fermion sign problem prevents a direct application
of the SSE method to fermionic systems beyond one spa-
tial dimension [7]. Fermion exchange processes in higher
dimension give rise to a fluctuating sign and thus prevent
efficient Monte Carlo sampling. To alleviate the fermion sign
problem, a common choice for fermionic simulations is the
determinantal quantum Monte Carlo (QMC) approach, in both
the traditional discrete-time formulation [8] and more recent
continuous-time formulations [9–12]. Both approaches map
an interacting fermion problem to noninteracting fermions
subjected to imaginary-time-dependent actions. By tracing
out these free fermions, one is able to resume a factorially
large number of fermion exchange processes into a single
determinant. Although in general this resummation does not
completely solve the fermion sign problem, in special cases
the determinant has a definite sign due to symmetry. For
example, the determinant can be non-negative either due to
the time-reversal symmetry [13–15] or due to a more recently
discovered split orthogonal group symmetry [16].

In this paper, we present an algorithm combining the SSE
and determinantal QMC techniques. When applicable, the
method can avoid the fermion sign problem in the conventional
SSE approach [1] and outperform conventional determinantal
approaches [8–12]. After presenting the algorithm, we will
use it to map out the finite-temperature phase diagram of
the spinless t-V model on the honeycomb lattice, whose
Hamiltonian reads

Ĥ =
∑
〈i,j 〉

−t(ĉ†i ĉj + ĉ
†
j ĉi) + V

(
n̂i − 1

2

)(
n̂j − 1

2

)
, (1)

1For systems with large diagonal terms (such as spins in magnetic
field or soft core bosons with onsite energy), the worm algorithm in
the path-integral representation is advantageous [50].

where ĉi is the fermion annihilation operator on site i, and n̂i =
ĉ
†
i ĉi is the occupation number operator. V > 0 denotes the

repulsive interaction. On bipartite lattices the sign of hopping
amplitude t is irrelevant. For definiteness we let t > 0 in the
following discussion.

In one dimension the model (1) can be mapped to a spin-1/2
XXZ model through a Jordan-Wigner transformation, which al-
lows for efficient SSE simulations. However, SSE simulations
in higher dimensions suffer from a fermion sign problem. The
model also suffers from a severe fermion sign problem even
in the conventional determinantal QMC method [18,19]. The
meron-cluster method solves the sign problem for V � 2t [20].
For general V > 0 the sign problem has recently been solved
by the continuous-time interaction expansion method [10]
using the Fermi bag idea [21]2 and in the discrete-time method
[8] by using the Majorana fermion representation [22]. These
two solutions have been unified by revealing the underlying
Lie group structure of the determinantal QMC methods [16]
and therefore provides a useful guiding principle for sign-free
QMC simulations. Very recently, Ref. [23] further extends
these solutions via considering Majorana reflection positivity
conditions. Reference [24] systematizes the idea of [22] via
classifying a set of antiunitary and mutually anticommuting
operations in the Majorana basis. Based on these developments
[20–22], the Ising phase transition of staggered fermions
[25,26], the fermionic quantum critical point of the model
on honeycomb and π -flux lattices [12,27,28], and the Rényi
entanglement entropy across thermal and quantum phase
transitions [29,30] have been studied.

The SSE method presented in this paper is a further
algorithmic development. It solves the sign problem of the
model (1) for the whole range of repulsive interaction V > 0,
is free from the time-discretization errors, and allows for more
efficient implementations compared to previous simulations
[12,27,28]. Using this algorithm we obtain unbiased results for
over a thousand lattice sites and map out the finite-temperature
phase diagram on the honeycomb lattice as shown in Fig. 1.
The system is in a staggered charge-density-wave (CDW)
phase in the shaded strong-coupling and low-temperature

2Later it was realized that the model (1) is naturally sign-problem-
free in the continuous-time interaction expansion methods [12,27].
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FIG. 1. Phase diagram of the model (1) on the honeycomb lattice.
Shaded region is in the CDW phase. The critical temperature Tc

approaches zero at the quantum critical point between the CDW
and Dirac semimetal states. The red solid line is a fit of the critical
temperature to Tc = A(V − Vc)νz. The dashed black line indicating
the critical temperature of the Ising limit Tc = 0.38 V [17] applies to
the strong-coupling limit V � t .

region. The CDW critical temperature approaches zero at a
fermionic quantum critical point found in Refs. [12,27,28].

II. THE DETERMINENTAL SSE ALGORITHM

Observing the Hamiltonian (1) to be a summation of
local terms defined on lattice bonds, we introduce the bond
index b = 〈i,j 〉 and hopping operator for each bond ôb =
ĉ
†
i ĉj + ĉ

†
j ĉi . The bipartite nature of the lattice implies that

the two sites i,j belong to two different sublattices. Since
ô3

b = ôb and ô4
b = ô2

b = n̂i + n̂j − 2n̂i n̂j , one has eλôb = 1 +
sinh(λ)ôb + [cosh(λ) − 1]ô2

b. Using these relations we can
rewrite the Hamiltonian (1) into a summation of exponentials
of bilinear fermion operators

Ĥ = −t

sinh(λ)

Nb∑
b=1

eλôb + const, (2)

where λ = ln[(2t + V )/(2t − V )] and Nb is the total number
of bonds of the lattice. Rewriting the Hamiltonian in the form
of Eq. (2) allows one to trace out the exponentials of quadratic
fermion terms in the Taylor series expansion of the partition
function

Z =
∞∑

n=0

1

n!

(
βt

sinh(λ)

)n Nb∑
{b�}=1

det

(
I +

n∏
�=1

e�b�

)
, (3)

where β = 1/(kBT ) is the inverse temperature. The second
summation runs over the bond indices b� ∈ [1,Nb]. For each
bond index b = 〈i,j 〉, the matrix �b has only two nonzero
elements at the two sites connected by the bond, i.e., (�b)pq =
λ(δpiδjq + δpj δiq). The matrix size is Ns × Ns , where Ns is
the number of lattice sites. The matrix product in Eq. (3) is a
sequence of hyperbolic rotations in which each vertex matrix
e�b lies in the split orthogonal group [16]. Physically, the
matrix determinant in Eq. (3) is the partition function of a
sequence of hopping events in the imaginary time.

The expansion (3) has a number of interesting properties.
In the limit of t → 0, λ → iπ and t/sinh(λ) → −V/4. The
vertex matrix is diagonal, (e�b )pq = δpq − 2δpiδiq − 2δpj δjq ,
and the matrix determinant in Eq. (3) can be evaluated
analytically. Since a nonvanishing matrix determinant implies
that every site appears even number of times in the product,
Eq. (3) reduces to the high-temperature series expansion of
the two-dimensional (2D) classical Ising model [31] (as it
should). More importantly, each term in the expansion is
non-negative for finite repulsive interaction strength V/t > 0
and is thus amenable to Monte Carlo sampling. For example,
when V < 2t the matrix determinant is non-negative for any
{b�} because the matrix product

∏n
�=1 e�b� belongs to the

identity component of the split orthogonal group [16]. For
V > 2t the matrix determinant flips sign between even and
odd expansion orders [16]. However, this sign is canceled by
sinh(λ) < 0 in the prefactor. The point V = 2t is singular in
Eq. (3) because λ diverges. However, this can be solved with
a slightly modified algorithm described in Appendix A.

To sample the series (3) we use the SSE algorithm [1–3].
First we truncate the series expansion to a maximal expansion
order M and then pad identity matrices into the matrix product.
This truncation is determined in the equilibration phase of the
simulation and does not introduce any bias into the simulation.
Taking into account the distribution of these identity matrices
in the fixed-length matrix sequence, the expansion (3) reads

Z =
M∑

n=0

(M − n)!

M!

(
βt

sinh(λ)

)n Nb∑
{b�}=0

det

(
I +

M∏
�=1

e�b�

)
,

(4)

where in the second summation we extend the bond type to
include identity vertex matrices e�b=0 = I . Figure 2 shows an
example of one of the configurations in this sum. Equation (4)
has the structure of the standard SSE method, except for
the appearance of the matrix determinant, which motivates
the use of determinantal QMC techniques for an efficient
simulation. Note that although the sequence of matrix product
in Eq. (4) resembles the traditional discrete-time formulation
of the determinantal QMC approach [8], there is no time-
discretization error in the SSE formalism.

To update the Monte Carlo configurations we sweep
through the matrix sequence and for each matrix either propose
to change its bond index from b� = 0 to b� = b ∈ [1,Nb], or

= eΛb

L R

FIG. 2. A Monte Carlo configuration of the truncated series
expansion Eq. (4). There are M = 12 fixed number of slots. Each
slot either holds a vertex matrix with bond type b� ∈ [1,Nb] (denoted
by colored vertices) or an identity matrix if b� = 0 (denoted by an
empty slot). The red vertex with an arrow indicates an insertion
update. Before the update, there are n = 5 vertices, and L,R denotes
the partial matrix products of the embraced slots.
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vice versa. Let n denote the number of nonidentity matrices
before the update, and L = ∏M

�=k+1 e�b� and R = ∏k
�=1 e�b�

denote the partial matrix products up to the kth slot which is
under consideration, shown in Fig. 2. The Metropolis-Hastings
[32,33] acceptance rate of the insertion update is

p0→b = min

{
1,

Nbβt

(M − n) sinh(λ)

det(I + Le�bR)

det(I + LR)

}
, (5)

and

pb→0 = min

{
1,

(M − n + 1) sinh(λ)

Nbβt

det(I + Le−�bR)

det(I + LR)

}
(6)

for the removal update. Conceptually, these updates are similar
to the “diagonal update” in the standard SSE algorithm [2,3],
but here they are actually sufficient to ensure ergodicity. By
keeping track of the Green’s function G = (I + RL)−1 and
making use of the sparseness of the vertex matrix e�b , one
can compute the acceptance rates Eqs. (5) and (6) in constant
time. The Green’s function also facilities measurements of
the physical observables, similarly to conventional determi-
nantal QMC methods [8,34,35] and recent linear-β scaling
continuous-time quantum Monte Carlo (LCT-QMC) methods
[11,12]. We describe implementation details of an efficient
simulation in Appendix B.

Similar to standard SSE simulation [1], the average expan-
sion order is related to the expectation value of the total energy

〈n〉 = −β 〈Ĥ 〉 + βNbt
2/V, (7)

where the last term accounts for the constant offset in Eq. (2).
The noninteracting limit is a singular point of the series
expansion (3), i.e., the average expansion order diverges at
V = 0 even for finite systems at finite inverse temperature.
Nevertheless, the present method is still advantageous in the
physically interesting region V ∼ t , where the series is well
behaved. According to Eq. (7) the truncation M has to grow
as O(βNs) to accommodate these numbers of nonidentity
matrices. Combined with the O(N2

s ) fast update of the Green’s
function (Appendix B), the present SSE algorithm exhibits an
overall O(βN3

s ) scaling, the same as the LCT-QMC methods
[11,12] and the traditional discrete-time algorithm [8].

III. RESULTS

We start by discussing the general behavior of physical
observables in a wide parameter range. Figure 3 shows the
staggered CDW structure factor

M2 = 1

N2
s

〈(N̂A − N̂B)2〉 (8)

and the compressibility calculated from the total density
fluctuation

κ = β

Ns

(〈N̂2〉 − 〈N̂〉2), (9)

where N̂A(B) = ∑
i∈A(B) n̂i is the total particle number in

the A(B) sublattice, and N̂ = N̂A + N̂B is the total particle
number on a honeycomb lattice with Ns = 2L2 sites. We have
chosen L = 10 in Fig. 3 to avoid a finite compressibility in the

FIG. 3. (a) CDW structure factor (8) and (b) compressibility (9)
of the model (1) on a L = 10 honeycomb lattice.

weak-coupling region, which is an artifact due to finite density
of states at zero energy of the clusters with L = 0 mod 3.
The CDW structure factor M2 shown in Fig. 3(a) is related
to the square of the CDW order parameter and increases in
the low-temperature and strong-coupling limit (lower-right
corner). In the same parameter region the compressibility
shown in Fig. 3(b) is suppressed because the CDW state is
gapped. These features can be used to detect the CDW phase
in an experimental realization. In the strong-coupling limit
the temperature scale of the CDW transition is set by the
interaction strength V instead of the superexchange scale, like
in the Hubbard model. This makes it particularly promising in
the ultracold atom setups, where the onset of the short-range
magnetic correlation and suppression of compressibility have
been observed for the Hubbard model [36–40].

We next proceed to accurately determine the critical tem-
perature based on scaling behavior of the density correlations.
At the critical temperature, they decay algebraically at large
distances as

C(i,j ) =
〈(

n̂i − 1

2

)(
n̂j − 1

2

)〉
∼ 1

|i − j |η , (10)

where |i − j | denotes the distance between the sites i,j and
η = 1/4 is the critical exponent of a 2D Ising transition.
Away from the critical temperature, the correlation function
decays exponentially to either zero in the disordered phase
or a finite value in the ordered phase (which is the square of
the CDW order parameter). Figure 4 shows the scaled density
correlation function at the largest distance Rmax = 4L/3 on
the honeycomb lattice for L = 12,15,18,21,24 and various
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FIG. 4. Scaled density correlation at the maximum distance (10) versus the inverse system length for various interaction strengths. At the
critical temperature C(Rmax)L1/4 reaches a size-independent value.

interaction strengths. At the critical temperature, the scaled
density correlation C(Rmax)Lη reaches a size-independent
value as L grows. Based on this we determine the critical
temperatures for various interaction strengths shown in phase
diagram of Fig. 1. The error bars on the critical temperature
indicate the upturn and downturn of the scaled density
correlations in Fig. 4.

We see that in the strong-coupling limit V � t , the
critical temperature asymptotically approaches the dashed
black line Tc = 0.38V , corresponding to the classical Ising
model on the honeycomb lattice [17]. Quantum fluctuations
substantially suppress the critical temperature away from this
strong-coupling limit and the critical temperature drops to
zero at the quantum critical point between the CDW and the
Dirac semimetal state [12,27,28]. Fitting the critical temper-
ature around the quantum critical region to the form Tc =
A(V − Vc)νz gives Vc/t = 1.36(3),νz = 0.72(9). Extracting
quantum critical properties in this way is certainly indirect,
but it provides a consistency check against previous results
[12,27,28]. Setting z = 1 due to the relativistic invariance of
the model, these estimates are consistent with the ground-state
LCT-QMC results Vc/t = 1.356(1),ν = 0.80(3) [12,27] and
also the results of [28]. See Refs. [41] and [42] for detailed
comparisons of QMC estimates and field theory predictions of
the critical exponents. Along the transition line, the nature of
the phase transition undergoes a crossover from a fermionic
quantum critical point to a 2D Ising phase transition.

IV. DISCUSSION AND OUTLOOK

The proposed SSE approach applies as well to the ground-
state projection scheme [43]. The approach also allows for
easy computation of quantum information quantities such as
the fidelity susceptibility [44] and the Rényi entanglement
entropy [45,46].

In principle, the presented calculations for the t-V model
could have been performed using the O(βN3

s ) scaling LCT-
QMC methods [11,12] or the traditional discrete-time method
[22,28], or even the continuous-time interaction expansion
method with a suboptimal O(β3N3

s ) scaling [21,27]. Our

SSE approach shows the best performance of all available
methods in the vicinity of the quantum critical point. The SSE
implementation requires fewer numerical operations, despite
its larger expansion order compared to the continuous-time
interaction expansion methods [9–12]. (See Appendixes A and
B for detailed discussions.) Simulations presented in this paper
have reached a maximum cutoff M ≈ 150 000 for the L = 24
lattice at V/t = 1.4 and βt = 25. As a comparison, to match
this performance in the traditional discrete-time approach [8],
one needs to use a (too-large) time step �τt = 0.3 to have a
comparable number of auxiliary fields Nbβ/�τ = 144 000 to
sum up.

Our work points to several interesting possibilities. One
may wonder whether it is possible to apply this hybrid
SSE/determinantal approach to a broader range of fermionic
models. It may seem that the rewriting in Eq. (2) puts a
rather strong constraint on the type of Hamiltonians. However,
using the approach of Refs. [47] and [48] it is possible to
decompose the most general form of two-body interactions
(including quantum-chemistry Hamiltonians) into a summa-
tion of exponentials of fermion bilinear terms. The difficulty is
avoiding the fermion sign problem. For the specific case of the
spinless t-V model the sign problem is completely eliminated
by using the split orthogonal group property of the fermionic
determinant [16]. For other problems that are known to be sign-
problem-free (such as the half-filled repulsive Hubbard model
on bipartite lattices) in the determinantal QMC methods, it is
as yet unclear how to devise a similar SSE approach. Unlike
determinantal QMC methods [8–12], here the key is a proper
treatment of the single-particle hopping terms. Nevertheless,
even if a sign-free simulation is not possible in general, the
sign problem in the hybrid determinantal/SSE approach may
still be less severe than the direct application of the standard
SSE algorithm, since by tracing out the fermions many of
the fermion exchange processes are taken into account by the
matrix determinant.

Specific to the spinless t-V model considered in this paper,
it will be interesting to see whether there exists an even
more efficient O(Ns) scaling algorithm by utilizing the special
properties of the matrix determinant in Eq. (3). If possible,
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the resulting method will be as efficient as the meron-cluster
approach [20], which only applies to V � 2t . Finally, solving
the fermionic problem in the SSE framework also makes one
wonder whether it is possible to construct nonlocal Monte
Carlo updates for fermionic Hamiltonians [2–4].

We end by noting an independent study of the model (1)
by Hesselmann and Wessel [42] using the continuous-time
interaction expansion method [10,21,27]. When there is an
overlap, our results are in full agreement with theirs.
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APPENDIX A: AN IMPROVED ALGORITHM FOR V ∼ 2t

The algorithm presented above does not apply to the case
V = 2t because λ = ln ( 2t+V

2t−V
) diverges at this point. Moreover,

the vertex matrices will have a large condition number and
impair the numerical stability of the simulation even at V ∼ 2t .
Here we present an improved algorithm to solve these two
problems. In practice, only minor modifications to the original
algorithm are needed.

The solution is to split the interaction term into two parts
V = V1 + V2 and treat them separately. The first part is
combined with the hopping term, as was done in Eq. (2),
while the second part is written as an exponential of fermion
bilinear by its own [12,16],

Ĥ =
Nb∑
b=1

( −t

sinh(λ1)
eλ1ôb + V2

4
eλ2ôb

)
+ const, (A1)

where λ1 = ln ( 2t+V1
2t−V1

) and λ2 = iπ . Such a splitting doubles
the total number of bond types. Including the identity matrices,
the truncated series expansion reads

Z =
M∑

n=0

(M − n)!

M!

(
βt

sinh(λ1)

)n1
(−βV2

4

)n2

×
2Nb∑

{b�}=0

det

(
I +

M∏
�=1

e�b�

)
, (A2)

where n = n1 + n2 is the total number of nonidentity matrices.
There are n1 bonds with b� ∈ [1,Nb] and n2 bonds with
b� ∈ [Nb + 1,2Nb]. In the matrix �b nonzero matrix elements
may now be either λ1 or λ2 depending on the bond type.
The acceptance rates Eqs. (5) and (6) need to be modified
accordingly. Given V1 > 0,V2 > 0 the splitting does not
introduce a sign problem since each term of Eq. (A2) is
non-negative thanks to the split orthogonal group condition
[16].

Splitting of the terms in Eq. (A1) provides a useful tuning
knob to the algorithm. By choosing V1 
= 2t one can avoid

the singularity at V = 2t . Moreover, the vertex matrices are
better conditioned at smaller V1/t because λ1 is smaller. The
simulation is thus more stable. On the other hand, since

〈n〉 = −β 〈Ĥ 〉 + βNbt
2/V1, (A3)

the price to pay is a larger average expansion order at smaller
V1. For all results presented in this paper, we use V1 = 0.5t

for a balanced performance.
The averages 〈n1〉 and 〈n2〉 are related to the relative weight

of the two terms in the Hamiltonian Eq. (A1). To optimize
performance, we adjust the propose probability of the bond
type in insertion updates according to the measured 〈n1〉 and
〈n2〉 in the equilibration phase.

APPENDIX B: FAST-UPDATE FORMULA

For completeness, we include the formula for efficient
manipulation of the matrices. These are standard techniques
ported from the determinantal QMC methods [8,34,35].
The following techniques were used in recent LCT-QMC
simulations [12,51].

The determinant ratio in the acceptance rate Eq. (5) can be
calculated in terms of the Green’s function G = (I + RL)−1,

det(I + Le�bR)

det(I + LR)
= det[I + (e�b − I )(I − G)]

= det[I + PT (e�b − I )PPT (I − G)P],

(B1)

where P is a Ns × 2 matrix that projects to the two sites
connected by the bond b = 〈i,j 〉. In the second line we used
the identity (e�b − I ) = PPT (e�b − I )PPT and moved the
first P to the end using the cyclic property in such a matrix
determinant. Finally the determinant ratio is evaluated as a
2 × 2 matrix determinant.

If the move is accepted, we update the Green’s function
using the Woodbury matrix identity,

G′ = (I + e�bRL)−1

= G − GP
{

1

PT [(e�b − I )−1 + (I − G)]P

}
PT (I − G).

(B2)

The matrix in the curly braces is of size 2 × 2. It is multiplied
from the left by a Ns × 2 matrix and from the right by a 2 × Ns

matrix. So overall the update of G can be done with O(N2
s )

operations. The removal update is implemented similarly by
replacing the vertex matrix with its inverse e−�b in Eqs. (B1)
and (B2).

Furthermore, when we sweep through the matrix sequence,
G is updated by a similarity transformation like the standard
determinantal QMC method [8,34,35]. Using the sparseness
of the vertex matrix, this can be done in O(Ns) operations.
Since there is no need to rotate to the eigenbasis of the single-
particle Hamiltonian, both the calculation of the determinant
ratio Eq. (B1) and the update of G [Eq. (B2)] are more efficient
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than the corresponding calculations in the LCT-QMC methods
[11,12].

In principle, keeping track of G instead of the partial matrix
products L and R is sufficient for the simulation. In the
practical implementation, however, we still store the results of
the singular value decomposition (SVD) of L = ULDLVL and
R = URDRVR and use them to recompute the Green’s function
regularly [12,34,35]. Specifically, following Ref. [34], one
calculates RL = UR(DRVRULDL)VL = (URU1)D1(V1VL) =

UD1V , and

G = (I + UD1V )−1 = V −1(U−1V −1 + D1)−1U−1

= V −1(U2D2V2)−1U−1 = (V2V )−1(D2)−1(UU2)−1, (B3)

where we have preformed the SVD operations twice, i.e.,
DRVRULDL = U1D1V1 and U−1V −1 + D1 = U2D2V2. The
brackets in Eq. (B3) indicate the order of matrix multiplica-
tions. These stabilization steps cost O(βN3

s ) operations.
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