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All-electron mixed basis GW calculations of TiO2 and ZnO crystals
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In transition metal oxide systems, there exists a serious discrepancy between the theoretical quasiparticle
energies and the experimental photoemission energies. To improve the accuracy of electronic structure
calculations for these systems, we use the all-electron mixed basis GW method, in which single-particle wave
functions are accurately described by the linear combinations of plane waves and atomic orbitals. We adopt the
full ω integration to evaluate the correlation part of the self-energy and compare the results with those obtained
by plasmon pole models. We present the quasiparticle energies and band gap of titanium dioxide (TiO2) and zinc
oxide (ZnO) within the one-shot GW approximation. The results are in reasonable agreement with experimental
data in the case of TiO2 but underestimated by about 0.6–1.4 eV from experimental data in the case of ZnO,
although our results are comparable to previous one-shot GW calculations. We also explain a new approach to
perform ω integration very efficiently and accurately.
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I. INTRODUCTION

Because of their unique band structure properties, the
transition metal oxides have wide applications in electronics
and optoelectronics. The unusual properties are due to the
unique nature of the outer d electrons, which enlarges local
electron correlations.

Titanium dioxide (TiO2) is one of the most investigated
transition metal oxides, useful for a wide variety of photocat-
alytic, thermoelectric, solar cell, biosensing, and gas sensing
applications. It exhibits several phases. The experimental band
gap of anatase TiO2 is known to be 3.2 eV [1] or 3.4 eV [2],
while that of rutile TiO2 has a quite large degree of uncertainty:
3.3 ± 0.5 eV [3], 3.6 ± 0.2 eV [4], and 4.0 eV [5].

Zinc oxide (ZnO) is a II–VI compound transition metal
oxide having wide electronic and optoelectronic applications,
such as in transparent electrodes, light-emitting diodes, and
solar cells. ZnO crystallizes in two main forms, hexagonal
wurtzite and cubic zincblende. The experimental band gap of
hexagonal wurtzite ZnO is about 3.6 eV [6,7] or 3.437 eV [8].
The band gap of cubic zincblende ZnO is 3.44 eV at low
temperatures [9,10] and 3.37 eV at room temperature [10].
All these data were obtained by photoemission spectroscopy
measurements.

Although TiO2 and ZnO have been studied for many
decades, it is still challenging to theoretically reproduce
their electronic structures correctly. Transition metal oxides
have open d-electron shells, where electrons occupy localized
orbitals. Electrons experience strong Coulombic repulsion
because of their spatial confinement in those orbitals. Most
calculations of the electronic structure of transition metal
oxides have been done within the density-functional theory
(DFT) [11]. However, the Kohn-Sham (KS) eigenvalues
underestimate the band gap compared with the experimental
(inverse) photoemission data, due to the well-known deficiency
that the KS eigenvalues are not the quasiparticle (QP) energies.
In order to discuss the physical band gap, the QP energies
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are needed [12]. The QP picture is based on the many-body
Green’s function theory. The GW approximation [12–15] is
the most commonly used QP Green’s function method on the
basis of many-body perturbation theory (MBPT) [13].

The one-shot GW approximation solves the QP equation
within the first-order approximation for the difference between
the self-energy and the LDA potential. It has been successfully
applied for a broad class of materials ranging from bulk
insulators to semiconductors [14–17]. Some GW calculations
of TiO2 and ZnO have been reported (see also Table I): For
anatase TiO2, Kang and Hybertsen [18] reported an X-�
indirect band gap of 3.56 eV in a one-shot GW calculation.
Patrick and Giustino [19] obtained a 3.3-eV band gap starting
from DFT + U . For rutile TiO2, the band gap values of
3.34 eV [18], 4.8 eV [20], and 3.59 eV [21] were reported by
the one-shot GW method. The use of the generalized plasmon
pole (GPP) model [15] overestimates the band gap at 4.48
eV [18]. We have also performed a one-shot GW calculation
for rutile TiO2 with and without Nb impurities [22] (hereafter
we refer to Ref. [22] as “I”) and obtained 3.30 eV for the band
gap for pure rutile TiO2. Schilfgaarde et al. [23,24] performed
a full-potential LMTO-based self-consistent GW calculation
and obtained 3.78 eV. Lany [25] used the self-consistent GW
calculation with a fixed GGA + U wave function and obtained
4.48 eV. He also obtained TDDFT-based local-field-corrected
values of 3.11 and 3.4 eV by introducing the empirical
d-orbital on-site energy. For wurtzite ZnO, band-gap values of
2.44 eV [26] and 4.23 eV [27] were reported earlier using the
one-shot GW method and the model GW method, respectively.
More recently, Shih et al. [28] claimed that the conventional
one-shot GW method can give a band gap that is very close
to the experimental value, if one uses enough high-cutoff
energies, many empty states, and the GPP model. However,
Friedrich et al. [29,30] and Stankovski et al. [31] showed that
this agreement is an artifact of using the GPP model; see also
Ref. [32]. In particular, Friedrich et al. [29,30], in a careful
comparison with previous all-electron GW results concerning
the number of levels and basis set, obtained a one-shot GW
band gap of 2.83 eV for wurtzite ZnO. Their results were
still far smaller than the experimental band gap. Thus, there
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TABLE I. Band gaps of TiO2 and ZnO calculated by the LDA and GW methods (in eV). For “previous GW” results, values without an
explanation in parentheses denote the one-shot GW method, while scGW denotes the self-consistent GW method, and so on. GPP, one-shot GW
method using the GPP model; vLH, plasmon pole model of von der Linden–Horsch [39]; ω′-int., ω′ integration.

LDA Present GW

GPP vLH ω′-int. Previous GW Expt.

Anatase TiO2 1.70 5.73 4.46 3.44 3.56,a 3.3(GW with DFT + U )b 3.4c

Rutile TiO2 1.76 4.0 3.3 3.30 4.48(GPP),a 3.34,a 4.8,d 3.59,e 3.30,f 3.78(scGW),g 3.3 ± 0.5i

4.48(scGW with GGA + U )h

Wurtzite ZnO 1.10 4.54 3.91 2.82 2.44,j 4.23(model GW),k 3.4(GPP),l 3.6(GPP/LDA + U ),l 3.4q

2.83,m 2.352,n 2.56,o 3.88(GW�1)p

Zincblende ZnO 1.07 3.50 2.61 2.01 2.12,r 2.54(GW0),r 3.0(GW0),s 3.2(scGW)r,s 3.4t

aFrom Ref. [18].
bFrom Ref. [19].
cFrom Ref. [2].
dFrom Ref. [20].
eFrom Ref. [21].
fFrom Ref. [22].
gFrom Refs. [23] and [24].
hFrom Ref. [25].
iFrom Ref. [3].
jFrom Ref. [26].
kFrom Ref. [27].
lFrom Ref. [28].
mFrom Ref. [30].
nFrom Ref. [31].
oFrom Ref. [32].
pFrom Ref. [33].
qFrom Ref. [8].
rFrom Ref. [34].
sFrom Ref. [35].
tFrom Ref. [10].

has been debate over this GW band-gap issue. To improve
the calculation method, Crüneis et al. [33] adopted the GW�1

method, i.e., partially self-consistent GWTC-TC@HSE +
single-shot vertex correction for the self-energy and obtained
a 3.88-eV band gap. This is, however, about 0.44 eV larger
than the experimental value [8]. For zincblende ZnO, Shishkin
and Kresse [34,35] reported a 2.12-eV band gap in the
one-shot GW method, 2.54 and 3.0 eV in the GW 0 method,
3.2 eV in the GW method, and 3.2 eV for the self-consistent
GW with (e-h) attractive electron-hole interaction (TC-TC
approximation in W ). In these calculations of ZnO, however,
the results do not satisfactorily agree with the experimental
data even when self-consistent GW calculations and the GW�1

method were performed. This means that the self-consistent
GW method does not improve the one-shot GW results in the
sense that the former does not satisfy the Ward-Takahashi
identity, i.e., the gauge invariance or the local charge
continuity [36].

However, even within the same method, the values of
the GW band gap are very scattered. There are two main
reasons. (i) Local fields [37,38] play an important role in
the calculation of the dielectric function ε(ω) and can cause
a significant reduction in the dielectric function. The GPP
model, introduced by Hybertsen and Louie [14,15], treats
local-field effects [the off-diagonal elements of the dielectric
matrix εG,G′(ω) for reciprocal lattice vectors G, G′] as a simple
function, whose imaginary part is a symmetric delta function

for positive and negative ω and real part reproduces its static
value in the limit ω → 0 and the first frequency moment
ω2χ (r,r′; ω) in the limit ω → ∞ so as to satisfy Johnson’s
sum rule. This treatment still needs the double summation
with respect to G, G′ in the evaluation of the expectation
values of the self-energy. von der Linden and Horsch [39]
showed that it is possible to convert this double summation
into a single summation with respect to the plasmon poles,
which is related to the eigenvalue of the dielectric matrix
εG,G′(ω) in the limit of ω → 0. In either way, the QP energies
of typical semiconductors have been successfully reproduced
to within 0.1 to 0.4 eV. However, when there exists a strong
structure in the ω dependence of εG,G′(ω), which cannot be
represented by a single plasmon pole, the use of the GPP model
or other plasmon pole model is not justified for describing the
dynamical dielectric response [18]. In the case of rutile TiO2,
for example, the GPP model leads to too large a band gap
([18]; see also I).

(ii) The one-shot GW quasiparticle energy is determined
by KS eigenvalues and wave functions. Therefore different
pseudopotentials and exchange-correlation functionals may
lead to GW band-gap differences. The problem in generating
good pseudopotentials is related to the fact that the core
contribution to the exchange-correlation potential is not simply
an additive quantity. Moreover, it is not easy to create efficient
pseudopotentials, which require only a small number of plane
waves (PWs).
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In order to obtain an accurate band gap of TiO2 and ZnO
within the one-shot GW approximation, we adopt the all-
electron mixed basis GW method, in which the single-particle
wave functions are accurately described by both PWs and
atomic orbitals (AOs). The present approach is capable of
describing spatially localized states as well as extended states
quite well. We use the standard Perdew-Zunger’s exchange-
correlation functional [40] and the full ω integration as well
as the plasmon pole models to evaluate the correlation part of
the self-energy.

The paper is organized as follows: in Sec. II we describe
the theory; computational details are described in Sec. III. In
Sec. IV we report the results for TiO2 and ZnO. Section V
is devoted to discussion, and finally, in Sec. VI we draw our
conclusions.

II. THEORY

The QP energies ε
QP
nk and wave functions ψnk are obtained

by solving the QP equation [12,13],

(T + Vext + VH )ψnk(r) +
∫

dr′�xc

(
r,r′; εQP

nk

)
ψnk(r′)

= ε
QP
nk ψnk(r), (1)

where T , Vext, VH , and �xc are the kinetic energy operator,
the nuclear Coulomb potential, the Hartree potential, and the
exchange-correlation part of the nonlocal, energy-dependent
self-energy, respectively. For comparison, the KS equation is
given by

(T + Vext + VH )ψLDA
nk (r) + V LDA

xc ψLDA
nk (r) = εLDA

nk ψLDA
nk (r),

(2)
where V LDA

xc is the exchange-correlation potential. In the QP
equation, the exchange-correlation part of the self-energy �xc

replaces the exchange-correlation potential V LDA
xc in the KS

equation.
A formally exact way of calculating the self-energy is

given by a set of coupled equations, known as Hedin’s
equations [12,13]. Hedin’s equations are a closed set of
integrodifferential equations that relate the Green function
G, the polarizability P , the Coulomb interaction between
electrons v, the dynamically screened Coulomb interaction
W , the self-energy (including the Hartree potential) �, and
the vertex function �. In the GW approximation, the vertex
function � is replaced by its zeroth-order approximation, i.e.,
unity. So the set of Hedin’s equations becomes

�(1,2) = iG(1,2)W (1+,2), (3)

G(1,2) = G0(1,2) +
∫∫

d(3)d(4)G0(1,3)�(3,4)G(4,2),

(4)

W (1,2) = ν(1,2) +
∫∫

d(3)d(4)v(1,3)P (3,4)W (4,2), (5)

P (1,2) = −iG(1,2)G(2,1), (6)

G(r,r′; ε) =
∑
nk

ψnk(r)ψ∗
nk(r′)

ε − ε
QP
nk − iδnk

, (7)

where G0 is the noninteracting Green function and δnk stands
for 0+ for occupied states and 0− for empty states. A
compressed notation is used in which 1 ≡ (r1,t1) are space-
time coordinates for quasiparticle 1 and 1+ ≡ (r1,t1 + 0+).
For simplicity, we have omitted spin indices.

Using the one-shot GW approximation, the quasiparticle
equation can be solved within the first-order approximation
in (�GW

xc − V LDA
xc ). The KS wave functions ψLDA

nk and the true
QP wave functions ψnk(r) are usually sufficiently close, so
that the first-order estimate of the self-energy correction to the
DFT eigenvalues is still efficient [15]. So the GW quasiparticle
energy ε

QP
nk is then obtained as

ε
QP
nk = εLDA

nk + Znk
〈
ψLDA

nk

∣∣ �GW
xc

(
εLDA
nk

) − V LDA
xc

∣∣ψLDA
nk

〉
, (8)

with the renormalization factor as

Znk =
[

1 − ∂�GW
xc (ε)

∂ε

]−1

ε=εLDA
nk

. (9)

The GW self-energy can be separated into the exchange
part �x and the correlation part �c (�GW

xc = �x + �c). The
exchange part is given by

�x(r,r′) = −
occ∑
nk

ψnk(r)ψ∗
nk(r′)

|r − r′| . (10)

The symbol “occ” in the sum means that the summation is
taken over the occupied states only. The on-site contribution
to the Fock exchange matrix elements composed of four
AOs centered at the same nucleus is evaluated analytically
(numerically in the radial direction by using a logarithmic
mesh) in real space. This treatment guarantees the accuracy
of the Fock exchange contribution. On the other hand, the
core states are not taken into account in the summation over
occupied states in the evaluation of the polarization function
and the correlation part of the self-energy. The correlation part
of the self-energy, �c(r,r′; ω), is evaluated either by using the
plasmon pole models or by using the full ω′ integration [41]:

�c(r,r′; ω) = i

2π

∫
dω′e−iω0+

G(r,r′; ω − ω′)

×[W (r,r′; ω′) − ν(r − r′)]. (11)

In Eq. (11), it is difficult to perform the ω′ integral along the
real axis, since W and G have a strong structure on this axis.
In order to avoid this difficulty, Godby et al. [16,17,42,43]
restricted the values of ω to small imaginary numbers and
changed the contour of the ω′ integral from the real axis to the
imaginary axis. Then, by analytic continuation, the resulting
Taylor series is used to estimate the matrix elements for real
values of ω. (There is also a method that does not use analytic
continuation by keeping the Hermiticity of W .)

Ishii and Ohno [41,44] suggested that this integration
method employed by Godby et al. [16,17,42,43] can be
extended rather easily to real numbers of ω by slightly
modifying the contour. The contour along the real ω′ axis
from −∞ to +∞ for the integral in Eq. (11) can be replaced
by the contour C shown in Fig. 1 when ω < 0. Here we further
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use the symmetry W (ω) = W (−ω) to reduce the contour
to the positive real and imaginary parts only; see also I.

The diagonal matrix element of the correlation part of the
self-energy becomes

〈n,k| �c(r,r′; ω) |n,k〉 =
∑
n′

∑
q

∑
G,G′

〈n,k|ei(q+G)·r|n′,k − q〉 × 〈n′k − q|e−i(q+G)·r|n,k〉 i

2π

∫
C ′

dω′[WG,G′(q,ω′)

−(4π/G2)δG,G′]

(
1

ω + ω′ − εnk−q − iδnk−q
+ 1

ω − ω′ − εnk−q − iδnk−q

)
(12)

in the case when we only perform the contour integration
along the positive (real and imaginary) parts C ′ of the contour
C shown in Fig. 1. If we use the original contour C, the second
term in parentheses of the integrand in Eq. (12) does not appear.

This contour is justified as follows: The important point is
that the polarization function

P 0(r,r′; ω′) = 2
∑
nk

∑
n′k′

ψnk(r)ψ∗
n′k′(r)ψ∗

nk(r′)ψn′k′(r′)
ω′ − εnk + εn′k′ − iδnk

×[f (εn′k′) − f (εnk)] (13)

[2 is the spin duplicity and f (x) is the Fermi distribution
function], and therefore W (ω′) also have poles only in the
regions [Re(ω′) > 0, Im(ω′) < 0)] and [Re(ω′) < 0, Im(ω′) >

0]. There are also poles from the Green’s function G(ω′ + ω)
in the regions [Re(ω′) > −ω, Im(ω′) < 0] and [Re(ω′) < −ω,
Im(ω′) < 0] when we set the Fermi energy at 0. Therefore,
poles exist in the combined regions [Re(ω′) > 0, Im(ω′) <

0] and [Re(ω′) < −ω, Im(ω′) > 0] for ω < 0. These poles
are illustrated as X’s in Fig. 1. Therefore, we can bend the
contour 90◦ along the real ω′ axis to the axis parallel to the
imaginary ω′ axis at ω′ = ±ω1. Therefore, ω1 should be set
at max(ω), and −ω1 should be set at min(ω). Since ω is set
at εnk, the contour on the real axis (−ω1,ω1) must enclose
the whole region where we need to evaluate the QP spectra.
But, nevertheless, this deformed contour integration is very
simple and can be further simplified onto the positive real axis
(0,ω1) and positive imaginary axis shifted to ω′ = ω1, i.e.,
(ω1,ω1 + iA), where A is a large positive number. This method

FIG. 1. Contour C of the ω′ integration in Eq. (11).

of performing ω integration is very efficient and accurate; see
also I.

III. COMPUTATIONAL DETAILS

The electronic structures of TiO2 and ZnO are calculated by
the one-shot GW method as in I using the all-electron mixed
basis code, TOMBO [45,46]. In order to treat periodic systems
as well as isolated systems within an all-electron formalism,
we have developed this all-electron mixed basis approach
[47–49], where single-electron wave functions are expressed
as a linear combination of PWs and AOs, and implemented the
GW routine [48,50,51]. The PW basis set can most accurately
describe the empty states. In contrast, the AO basis set works
better than the PW basis set to describe the electrons in the
core region accurately. The all-electron mixed basis approach,
using both PWs and AOs as a basis set in a combined way,
meets the requirements to describe both spatially extended and
localized states:

ψv(r) = 1√


∑
G

cPW
v (G)eiG·r

+
∑

j

∑
nlm

cAO
v (jnlm)φAO

jnlm(r − Rj ). (14)

Here,  is the volume of the unit cell, G’s are the reciprocal
lattice vectors, and c’s are the expansion coefficients. In TOMBO

code, AOs are numerically confined inside the nonoverlapping
atomic spheres by subtracting a parabolic function smoothly
connecting with the true AO (the subtracted part as well as the
true AO outside the nonoverlapping sphere is well described
by PWs), and the radial part is treated using the logarithmic
mesh.

The lattice parameters of TiO2 and ZnO are set as follows:
a = b = 3.78 Å, c = 9.50 Å, u = 0.208 for anatase TiO2 [52];
a = b = 4.59 Å, c = 2.96 Å, u = 0.305 for rutile TiO2 [53];
a = b = 3.25 Å, c = 5.21 Å, u = 0.382 for wurzite
ZnO [54]; and a = b = c = 4.62 Å, u = 0.433 for zincblende
ZnO [55]. The GW calculations using TOMBO require the
following settings: The correlation part of the self-energy, �c,
is calculated by performing the full ω integration using 201
points at 0.1 + 0.2n (eV) and 20.1 + (1 + 2n)i (eV) for n =
0 and 100 along the positive real axis and then rotated 90◦
parallel to the positive imaginary axis as in I; see Fig. 1. In this
work, we treat 1s22s22p63s23p6 as core states for the Ti and
Zn atoms (AOs confined within a radius of 0.8 Å) and 1s2 for
O atoms (AOs confined within a radius of 0.65 Å). The crystal
structure, the first Brillouin zone (BZ), and special k points are
shown in Fig. 2 and Fig. 3, respectively, for TiO2 and ZnO. For
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(a)anatase TiO2 (b)rutile TiO2 (c)1st BZ of anatase
TiO2

(d)1st BZ of rutile
TiO2

FIG. 2. Crystal structure of (a) anatase TiO2 and (b) rutileTiO2; first Brillouin zone (BZ) and special k points of (c) anatase TiO2 and (d)
rutile TiO2. Red atoms, oxygen; yellow atoms, titanium.

anatase TiO2, the cutoff energies are set at 18.29 Ry for PWs,
73.14 for Fock exchange, and 9.33 Ry for correlation. For
LDA calculations, 4 × 4 × 4 k points are used. To calculate
the polarization function, k-point sampling is performed for
the (3 × 3 × 3) points including the � point in the whole
BZ. The number of levels used in the summation is 500. The
exchange and correlation parts of the self-energy are evaluated
by taking four q-point (� grid) samplings in the irreducible
BZ. For rutile TiO2, wurtzite ZnO, and zincblende ZnO,
5 × 5 × 8, 6 × 6 × 6, and 4 × 4 × 4 k points are used for LDA
calculations, respectively; 3 × 3 × 5 points, 3 × 3 × 3, and
3 × 3 × 3 k points including the � point are used to calculate
the polarization function, respectively. The cutoff energies
of PWs, Fock exchange, and correlation are set at 33.58,
170.01, and 13.12 Ry for rutile TiO2; 205.23, 603.14, and
104.71 Ry for wurtzite ZnO; and 127.54, 510.17, and 127.54
Ry for zincblende ZnO, respectively. These quite high cutoff
energies are required to represent fully occupied localized 3d

orbitals of Zn atoms in the mixed basis representation. Six q
points and 400 levels are used in rutile TiO2 calculations; eight
q points and 1000 levels are used in wurtzite ZnO calculations;
and five q points and 1000 levels are used in zincblende ZnO
calculations. We checked that all these values are needed to
obtain convergence of the band energies.

IV. RESULTS

Table I summarizes the band gaps of TiO2 and ZnO
calculated using the LDA and GW methods together with the
results of the previous GW calculations mentioned in Sec. I,
and the band structures are shown in Fig. 4. Although the
GW QP energies are plotted at several k points only, we can

see that the GW and LDA valence bands are similar to each
other, while the GW and LDA conduction bands are quite
different for all these crystals. The band gaps of anatase TiO2

and rutile TiO2 are 1.70 and 1.76 eV in the LDA calculation and
3.44 eV (indirect band gap from the Z point to the � points) and
3.30 eV (indirect band gap from the � to the R points) in the
GW calculation, respectively. For wurtzite ZnO and zincblende
ZnO, the LDA band gaps are 1.10 and 1.07 eV, and the GW
band gaps are 2.82 eV (direct band gap at the � point) and
2.01 eV (direct at the � point), respectively. For wurtzite ZnO,
our result of 2.82 eV is comparable to the best (asymptotically
fitted) one-shot GW band gap of 2.83 eV reported by Friedrich
et al. [30].

Compared with the experimental data, the LDA results
seriously underestimate the band gap. Due to the 3d orbitals,
there exist local electron correlations in TiO2 and ZnO. In
the LDA calculation, the band structures are not improved
by the energy-independent and local exchange correlations.
Compared to the LDA results, the self-energy �GW

xc enlarges
the band gap in the GW calculation, and the results are close
to experimental data also in the case of TiO2.

Several band gap values of the preexisting GW calculations
are also listed in Table I. Compared with the one-shot GW
results, there exists a quite large degree of differences. Our GW
calculation result for anatase TiO2 is 3.44 eV, which agrees
well with experimental data [2]. In the case of rutile TiO2,
there exist strong local-field effects, and the use of the GPP
model overestimates the band gap by about 1 eV ([18]; see
also I). Due to the complex structure of the loss function in
the rutile TiO2 crystal, which causes a significant reduction
in the dielectric function. These values of the GW band gap
are very scattered, but our all-electron one-shot GW result of

(a)wurtzite ZnO (b)zincblende ZnO (c)1st BZ of wurtzite ZnO (d)1st BZ of zincblende
ZnO

FIG. 3. Crystal structure of (a) wurtzite ZnO and (b) zincblende ZnO; first Brillouin zone (BZ) and special k points of (c) wurtzite ZnO
and (d) zincblende ZnO. Red atoms, oxygen; gray atoms, zinc.
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(a)anatase TiO2 (b)rutile TiO2

(c)wurtzite ZnO (d)zincblende ZnO

FIG. 4. Band structure of (a) anatase TiO2, (b) rutile TiO2 (same as I), (c) wurtzite ZnO, and (d) zincblende ZnO. Lines, the LDA; circles,
GW calculation. The zero of energy is placed at the top of the valence band (VBM). (α, β, γ ) indicates k = αb1 + βb2 + γ b3, with b1, b2, b3

as the primitive reciprocal lattice vectors.

3.30 eV using the full ω integration is close to the experimental
data [3].

There is a significant deviation from the experimental band
gap in ZnO systems. The previous one-shot GW results are
2.44 eV [26], 2.83 eV [30], 2.352 eV [31], and 2.56 eV [32]
for wurtzite ZnO and 2.12 eV for zincblende ZnO [34]. So
far, no one has succeeded in obtaining good ZnO results,
even using the self-consistent GW method and the GW�1

method. Crüneis et al. [33] used the GW�1 approximation
and obtained 3.88 eV for the band gap. Shishkin et al. [35]
adopted the TC-TC corrections in W and obtained 3.2 eV
for the band gap. However, these band-gap values do not
accord with the experimental data. Our result (2.82 eV for
wurtzite ZnO evaluated by ω′ integration) is comparable to the
previous one-shot GW calculations [26,29,31,32]. In practice,
Kohn-Sham orbitals and eigenvalues are used as input for a
one-shot GW calculation. The pseudopotential or the choice
of the exchange-correlation functional (including the use of
DFT + U ) may affect the QP energies in the GW calculation. In
our calculations, single-electron wave functions are accurately
described by PWs and AOs. We set very high cutoff energies
for PWs, Fock exchange, and correlations which are capable of

describing spatially localized 3d states in ZnO systems well.
Thus we expect that our all-electron mixed basis calculations
give accurate enough QP energies within the one-shot GW
approximation.

V. DISCUSSION

In the GW calculations for anatase TiO2 and rutile TiO2,
QP energy contributions from the LDA exchange-correlation
V LDA

xc , the exchange (�x), and the correlation (�c) parts of
the self-energy �GW

xc are listed in Table II. The values of
the LDA exchange correlation V LDA

xc in the valence band
maximum (VBM) and the conduction band minimum (CBM)
are very close. The self-energy �GW

xc values for anatase TiO2

and rutile TiO2 are −18.71 and −19.30 eV in the VBM;
these values become −15.82 and −17.79 eV in the CBM.
The difference �GW

xc − V LDA
xc is larger in the CBM than in

the VBM. Consequently, the GW method increases the gap
between the valence and the conduction states and improves
the underestimated LDA results.

Table III lists the QP energy contributions in the GW
calculations for wurtzite ZnO and zincblende ZnO. The
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TABLE II. Contributions to the quasiparticle energies of anatase
and rutile TiO2 at the conduction band minimum (CBM) and valence
band maximum (VBM) (in eV).

State �x �c �GW
xc V LDA

xc εLDA εGW

Anatase
CBM − 11.98 − 3.84 − 15.82 − 21.23 9.10 12.88
VBM − 21.43 2.72 − 18.71 − 21.21 7.40 9.44

Rutile
CBM − 13.16 − 4.63 − 17.79 − 21.90 10.52 13.78
VBM − 22.21 2.91 − 19.30 − 21.58 8.76 10.48

LDA results also underestimate the band gap, while the GW
approximation increases the band gap, producing better results.
The value for the exchange part of the self-energy �x of
wurtzite ZnO in the CBM is −9.20 eV, and that of zincblende
ZnO is −9.38 eV. Compared with Table II, the �x value of
anatase TiO2 and rutile TiO2 in the CBM are −11.98 and
−13.16 eV. The absolute values of �x for ZnO in the CBM
are much smaller than that for TiO2. From Eq. (10), the �x

value is estimated with the following equation:〈
ψnk

∣∣ �x(r,r′)
∣∣ψnk

〉

= −
occ∑
n′k′

∫∫
ψ∗

nk(r)ψn′k′(r)ψ∗
n′k′(r′)ψnk(r′)

|r − r′| drdr′. (15)

Since the summation runs over the occupied states only, if
|ψnk〉 is an occupied state, the �x value is a large negative;
on the other hand, if |ψnk〉 is an empty state, there is no
large overlap between ψnk and ψn′k′ , leading to a small
negative value of �x . These tendencies are well observed
in both Table II and Table III. There is much less overlap
of the occupied states of ZnO than of TiO2, with the
unoccupied states in the CBM. This is because the electron
configuration is 1s22s22p63s23p63d24s2 for Ti atoms and
1s22s22p63s23p63d104s2 for Zn atoms, and 3d orbitals are
fully occupied in Zn atoms but not in Ti atoms.

Similarly, the absolute value for the correlation part of the
self-energy �c of ZnO in the CBM is smaller than that of TiO2,
reflecting the fact that the electron screening effect becomes
larger as the absolute value of the exchange part �x becomes
larger. It is also interesting to note that the values of �c for the
VBM, i.e., for the occupied states, are all positive and not small
numbers. This indicates again that the electron screening effect
to reduce the exchange interaction is strong in these materials.

TABLE III. Contributions to the quasiparticle energies of wurtzite
and zincblende ZnO at the conduction band minimum (CBM) and
valence band maximum (VBM) (in eV).

State �x �c �GW
xc V LDA

xc εLDA εGW

Wurtzite
CBM − 9.20 − 3.07 − 12.27 − 13.27 10.01 11.01
VBM − 32.07 3.74 − 28.33 − 27.87 8.91 8.19

Zincblende
CBM − 9.38 − 2.55 − 11.93 − 14.11 9.14 11.32
VBM − 28.28 2.21 − 26.07 − 27.32 8.07 9.31

Our LDA band gap of ZnO is a bit larger compared
with the preexisting results. In the all-electron mixed basis
approach, AOs exceeding the nonoverlapping atomic sphere
are modified by subtracting smooth polynomial functions
to be confined inside this sphere. The polynomial functions
smoothly connecting to the original AOs outside this sphere
can be well expressed by PWs. If we remove valence Zn 3d

valence AOs from the calculations, the resulting LDA energy
gap becomes 0. Therefore, the inclusion of Zn 3d AOs is
essential to obtain a finite energy gap as well as O 2s and O
2p valence AOs.

Now we focus on the core states in order to discuss the effect
of the all-electron mixed basis calculation in the case of the
wurtzite ZnO crystal in particular. LDA core-state eigenvalues
of an isolated atom without relativistic effect (“isolated atom”)
and those of a wurtzite ZnO crystal (“εLDA”) are listed in
Table IV, in Hartree atomic units. Also, the values of AO-AO
Hamiltonian matrix elements with and without semirelativistic
effect are listed in the same table, as well as the semirelativistic
effect itself. The values are at the � point, although there is no
difference even at other k points. The final eigenvalues εLDA

include the PW contributions also. The values in columns 2
and 3 (“Isolated atom” and “〈AO|H |AO〉”), without relativistic
correction, are very close to each other, which means that the
spherical part of the potential is similar to that of the isolated
atoms. The semirelativistic correction 〈AO|R|AO〉 includes
Darwin and mass-velocity terms and is larger in s orbitals than
in p orbitals as expected. The difference between 〈AO|H +
R|AO〉 and εLDA is mainly due to the PW contributions to
the corresponding state. Although the PW contributions may
have a large semirelativistic effect for the Zn 1s state, these
two values are not so very different except for Zn 1s. The
difference becomes larger for Zn 3s and 3p, indicating that a
frozen core approximation cannot be used for these orbitals.

In our result, we did not take into account the effect
of the off-diagonal elements of the self-energy correction
〈nk|�GW

xc − V DFT
xc |n′k〉, because usually it is ignored in the

one-shot GW calculation. We calculated the off-diagonal el-
ements of the self-energy correction, 〈nk|�GW

xc − V DFT
xc |n′k〉.

For the N (N − 1)/2(= 1770) off-diagonal elements with N =
60, Table V lists the histogram data for the magnitude of
the off-diagonal elements. In this table, one can see that the
off-diagonal elements of ZnO are slightly larger than those of
TiO2. However, there is no big difference between them. This
probably indicates that not only the off-diagonal elements but
also the higher-order diagram contributions are important in
ZnO crystals.

VI. CONCLUSION

The QP band structure of anatase TiO2, rutile TiO2,
wurtzite ZnO, and zincblende ZnO were calculated using
the all-electron mixed basis one-shot GW method with our
original full ω-integration technique, which is very efficient
and accurate. The LDA gives too small band gaps as usual. In
the GW calculations, the difference �GW

xc − V LDA
xc evaluated

in the CBM becomes larger than that in the VBM, which
leads to a large change in quasiparticle energy between the
VBM and the CBM. Consequently, the GW method enlarges
the gap between the valence and the conduction states and
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TABLE IV. LDA core-state eigenvalues of an isolated atom without relativistic effect and those of a wurtzite ZnO crystal with semirelativistic
effect (εLDA) (in Hartree atomic units). Also, the values of AO-AO Hamiltonian matrix elements with and without semirelativistic effect
〈AO|R|AO〉 are listed, respectively, as 〈AO|H + R|AO〉 and 〈AO|H |AO〉.

Isolated atom 〈AO|H |AO〉 〈AO|R|AO〉 〈AO|H + R|AO〉 εLDA

Zn 1s − 344.971 − 344.938 − 5.137 − 350.075 − 350.490
Zn 2s − 41.532 − 41.542 − 1.143 − 42.685 − 42.747
Zn 2p − 36.649 − 36.084 − 0.791 − 36.875 − 36.884
O 1s − 18.759 − 17.920 − 0.024 − 17.944 − 17.948
Zn 3s − 4.573 − 4.139 − 0.310 − 4.449 − 4.215
Zn 3p − 3.022 − 2.279 − 0.048 − 2.237 − 2.525× 4

improves the underestimated LDA results. Thus we found
that our method of electronic structure calculation using the
all-electron mixed basis one-shot GW approximation produces
reasonable band-gap results for both the TiO2 and the ZnO
systems, and the agreement with the experimental band gap is
excellent especially for TiO2 systems. We have discussed the
core contributions in the LDA level and off-diagonal elements
of the self-energy correction in the GW level.

TABLE V. Histogram table of the off-diagonal elements
〈nk|�GW

xc − V DFT
xc |n′k〉.

eV TiO2 anatase TiO2 rutile ZnO wurtzite ZnO zincblende

0.0–1.0 1739 1742 1714 1728
1.0–2.0 17 17 41 22
2.0–3.0 11 10 8 9
3.0–4.0 3 0 5 8
4.0–5.0 0 1 1 3
5.0–6.0 0 0 0 0
6.0–7.0 0 0 1 0

In Zn atoms, 3d orbitals are fully occupied by narrow
energy bands. In such localized states, the effect of electron
correlations becomes generally very important. Therefore, it
is difficult to accurately describe the QP wave functions in
ZnO systems, which leads to the failure of ZnO calculations.
In our method, the QP wave functions are described by PWs
and AOs, and we obtained better results than the previous
one-shot GW calculations in ZnO systems. In order to further
improve the results, it would be necessary to perform a fully
self-consistent GW� calculation. Although such a high-level
calculation is desirable, the present GW method may help us
to better understand the electronic structure of transition metal
oxides that are not strongly correlated.
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