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Chiral pumping effect induced by rotating electric fields
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We propose an experimental setup using 3D Dirac semimetals to access a novel phenomenon induced by the
chiral anomaly. We show that the combination of a magnetic field and a circularly polarized laser induces a
finite charge density with an accompanying axial current. This is because the circularly polarized laser breaks
time-reversal symmetry and the Dirac point splits into two Weyl points, which results in an axial-vector field.
We elucidate the appearance of the axial-vector field with the help of the Floquet theory by deriving an effective
Hamiltonian for high-frequency electric fields. This anomalous charge density, i.e., the chiral pumping effect, is a
phenomenon reminiscent of the chiral magnetic effect with a chiral chemical potential. We explicitly compute the
pumped density and the axial-current expectation value. We also take account of coupling to the chiral magnetic
effect to calculate a balanced distribution of charge and chirality in a material that behaves as a chiral battery.
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I. INTRODUCTION

Quantum anomaly [1,2] is one of the most fundamental con-
cepts in quantum field theory and anomaly-related phenomena
appear in various physical systems from elementary particle
reactions at high energy to tabletop experiments in condensed
matter physics. Thus, it would offer tremendous opportunities
in theory and experiment to seek for novel manifestation of
quantum anomaly.

Recently, the chiral magnetic effect (CME) has been
attracting broad interest, which was first triggered in the
research field of the ultrarelativistic heavy-ion collision [3].
Later on, the CME theory has been formulated in terms of the
chiral (axial) chemical potential μA [4] and in this way the
application opportunities of the CME have opened to a wider
range of the research fields. Although it is still challenging
to confirm any smoking-gun experiment through the charge
asymmetry fluctuations in the heavy-ion collision [5], materi-
als in condensed matter systems would provide us with more
controllable environments. Recently, the material realization
of 3D Dirac fermions [6–9] and Weyl fermions [10–14] has
been established. In fact, it is claimed that an evidence for
the CME has been observed in Zr Te5 with parallel electric
and magnetic fields, for which the magnetoconductance has
quadratic dependence on the magnetic field [15].

In the present paper, we propose another manifestation of
quantum anomaly which we call the “chiral pumping effect”
(CPE). This effect can be understood as a cousin of the CME
originating from a variant of anomaly relation. First, let us
recall that the CME relation [4] is given by a compact formula:

jz = e2μA

2π2
Bz ∝ ε3012A0

5F
12 (CME) , (1)

where εμνρσ represents the Levi-Civita symbol. This relation
states that a charge current jz is induced in parallel to the
applied magnetic field Bz = F 12, provided that the chiral
chemical potential A0

5 (=μA) is nonzero. We can anticipate the
CPE by exchanging the 3 and 0 indices in the above relation,

which leads to the following relation for a charge density:

j 0 ∝ A5 · B (CPE) . (2)

Of course, the net charge must be conserved, so we must
understand this relation in an open system setup. This means
that the charge is pumped into the system from the surrounding
reservoir, and the change is proportional to the inner product of
the axial-vector field A5 and the magnetic field. In the language
of Weyl semimetals, A5 corresponds to the displacement of
two Weyl points. Since the CPE originates from quantum
anomaly similarly to the CME, we expect that the coefficient
in the relation (2) should be renormalization free.

Here, let us mention on a related approach with an
inhomogeneous axion term θ (x,t)E · B [16,17]. The Chern-
Simons-Maxwell equations suggest that a charge density,
j0 ∝ (∇θ ) · B, is induced [18]. On the algebraic level this
is almost equivalent to Eq. (2) once ∇θ is identified with A5.
The crucial difference in physics is that θ (x,t) should usually
belong to the property of the material, whereas our A5 in Eq. (2)
is an external field that is experimentally adjustable as we see
later. It is actually quite nontrivial how to implement such
axial-vector field using electromagnetic devices. In the case of
experimental confirmation of the CME, in fact, it is technically
difficult to control μA and so the formula (1) cannot work as
it appears for the experimental signature. It should be noted
that θ (t) = μAt in the Chern-Simons-Maxwell theory would
immediately lead to Eq. (1) as pointed out originally in the very
first CME paper [4] and later in the context of Weyl semimetals
also [19]. In contrast, our case of the CPE has an advantage
that we can easily manipulate A5. Moreover, the balanced
configuration of charge and axial-charge (i.e., chirality) turns
out to be a system of capacitor of chirality which should be
useful for more direct CME studies.

The aim of this paper is to propose a tractable experimental
setup to manifest the CPE in 3D Dirac systems. A key step to
realize the axial-vector field A5 experimentally is, as discussed
below, that we utilize a rotating electric field, i.e., circularly
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FIG. 1. Experimental setup with the magnetic field and the
circularly polarized laser onto a 3D Dirac semimetal.

polarized laser rotating in a two-dimensional plane (see Fig. 1
for a schematic illustration). We also refer to a related idea with
circular polarizations in 3D Dirac semimetals [20] and more
general photoinduced effects [21]. Using a simple fermionic
description, we will show that the Dirac point splits into two
Weyl points. With an additional magnetic field [22], a finite
density arises from the lowest Landau level (LLL) of one
chirality, which manifests a concrete picture of the CPE in
(1+1)-dimensionally reduced theory of fermions [23].

This paper is organized as follows. In Sec. II we discuss the
Floquet effective Hamiltonian to confirm an axial-vector field.
In Sec. III we consider a combination with a magnetic field
and perform explicit calculations for the charge density and
the axial current. Inhomogeneous electric charge and chirality
should be balanced with each other. We solve these coupled
equations of the CPE and the CME to obtain a balanced
distribution of the electric charge and the chirality in Sec. IV.
Finally, Sec. V is devoted to our discussions and conclusions.

II. FLOQUET EFFECTIVE HAMILTONIAN
AND AXIAL-VECTOR FIELD

We explain how to realize the axial-vector field in a
3D gapless Dirac system by applying a circularly polarized
laser. We note that concrete calculations below are known
ones, but a clear recognition of the axial-vector field has not
been established. When continuous laser fields are imposed
externally, the Hamiltonian H (t) becomes periodically time
dependent, i.e., H (t + T ) = H (t) where T = 2π/� is the
periodicity. Quantum states in time periodic driving are
described by the Floquet theory [24,25], that is, a temporal
version of the Bloch theorem. The essence of the Floquet
theory is a mapping between the time-dependent Schrödinger
equation and a static eigenvalue problem. The eigenvalue is
called the Floquet pseudoenergy and plays a role similar to the
energy in a static system. Applications of the Floquet theory to
periodically driven systems with topology changing has been
a recent hot topic [26–29] and experiments have also been
done [30–33].

To make this paper as self-contained as possible, in this
section, we derive the effective Hamiltonian in an explicit
way, though the final result is not very new but already known.

Let us consider a Hamiltonian, Htot = H0 + Hint, with

H0 = γ 0γ · p + γ 0m, Hint = −eγ 0γ · A, (3)

that describes the one-particle Dirac system coupled to an
external gauge field and γ μ are the Dirac matrices satisfying
{γ μ,γ ν} = 2ημν . In an electric field with circular polarization
in the x-y plane, we can write the time-dependent vector
potentials down as

Ax = E

�
cos(�t), Ay = E

�
sin(�t) Az = 0, (4)

where � is the frequency. We can conveniently decompose the
interaction part of the Hamiltonian into two pieces as Hint =
ei�tH− + e−i�tH+ where H± = −(eE/�)γ 0γ ± with γ ± =
1
2 (γ x ± iγ y). Now we assume that the period T = 2π/� of
the circular polarization is small enough as compared to the
typical observation timescale. We can then expand the theory
in terms of ω/� (with ω being a frequency corresponding to
some excitation energy). Taking the average over T we can
readily find the following effective Hamiltonian [27,34–36]:

Heff = i

T
ln[T e−i

∫ T

0 dt H (t)] � H0 + 1

�
[H−,H+] , (5)

to the first order in the expansion. We can also find the same
form from the Floquet Hamiltonian using the Van Vleck
perturbation theory [37]. Interestingly we can express the
induced term as

Hind ≡ 1

�
[H−,H+] = − (eE)2

�3
iγ xγ y = −βγ 0γ zγ5 , (6)

where we defined β ≡ (eE)2/�3. This means that the circular
polarized electric field would induce an axial-vector back-
ground field A5 = β ẑ perpendicular to the polarization plane.
Essentially the same expression was obtained in the context
of “Floquet Weyl semimetal” and the corresponding Floquet
bands were figured out [29]. The physics is basically the same
as this preceding work [29], but we use a different language
here and, for completeness, we shall see the energy dispersion
relations in the rest of this section.

The effect of finite β is easily understandable from the
energy dispersion relations. We can immediately diagonalize
Heff and the four pseudoenergies read:

ε±(p) =
√

p2
x + p2

y + (√
p2

z + m2 ± β
)2

(7)

and −ε±(p). We display low-lying ±ε−(p) in Fig. 2. which
shows that the Dirac point splits into two Weyl points with a
displacement given by

�p =
√

β2 − m2 . (8)

In fact, β is nothing but a momentum shift along the z axis
that is positive for the right chirality state (i.e., γ5ψR = +ψR)
and negative for the left chirality state (i.e., γ5ψL = −ψL).
We point out that time-resolved ARPES should be able to
see this splitting of Weyl points in a similar manner as the
gap opening [26] of the 2D Dirac point already observed
experimentally [32]. In order that the Weyl point splitting, β =
(eE)2/�3, is large while keeping small expanding parameter,
eE/�2, in Eq. (6), we should choose large enough E and �. If
we take E ∼ 1015 V/m and � ∼ 1018 Hz, for example, which
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FIG. 2. Pseudoenergies ±ε−(p) as a function of px,y =
√
p2

x + p2
y

and pz for β > m [in the figure (m,β) = (1,5) was chosen].

could be available from The European X-Ray Laser Project
XFEL at DESY and also Extreme Light Infrastructure (ELI),
the resulting Weyl node splitting is estimated as β ∼ 108 m−1,
which is of the same order as the observed one of ordinary Weyl
semimetals [12,13] and should be experimentally observable.
If experiments could resolve smaller Weyl node splitting,
smaller E and � may be possible. We also note that, if
we treat the Floquet Hamiltonian without expansion, we can
still anticipate qualitatively same (and more sizable) effects
for even smaller �. Interestingly, as long as β > m, the
pseudoenergy always has two Weyl points (if they are inside of
the Brillouin zone) even for m > 0. Therefore, we do not have
to require strict masslessness to realize gapless dispersions,
which should be a quite useful feature for practical applications
including the Schwinger or Landau-Zener effect. In what
follows below, we limit ourselves to the m = 0 case just for
technical simplicity.

The generalization from the one-particle Hamiltonian to
the many-body field theory is straightforward. It is then more
convenient to work with the Lagrangian density corresponding
to Heff, that we can express as

Leff = ψ̄(p/ − m)ψ + βψ̄γ zγ5ψ + μAψ̄γ 0γ5ψ . (9)

Here we include μA for completeness, which is a necessary
ingredient for the CME. It is clear from this Hamiltonian
that we should identify β as a parameter representing what
is called the chiral shift [38,39]. We should emphasize a
crucial difference from the idea of the chiral shift that is
not directly controllable but secondarily generated by finite-
density effects. In our present problem, however, β is an
external parameter that we can control with the amplitude
and/or the frequency of the circular polarized electric field.
What we will see is that, conversely to discussions on the chiral
shift [38,39], a finite density is generated by this externally
given β �= 0.

III. RESPONSE TO THE MAGNETIC FIELD

It is the most essential point that we can regard β as the z

component of an axial-vector field; β ∼ Az
5. Then, if we further

impose an external magnetic field Bz = F 12 on this system,
we should expect the following anomaly relation; j 0 ∝ βB,

FIG. 3. Energy dispersion relations of the LLL (i.e., px = py =
0) with (a) chiral chemical potential μA relevant for the CME and
(b) chiral shift β relevant for the CPE. Filled (blank) dots represent
states that are newly occupied (unoccupied).

immediately from the CPE or Eq. (2). We will confirm this
expectation with explicit calculations, but before going into
details, let us consider an intuitive interpretation to understand
Eq. (2).

For the purpose of comprehensible illustration it would be
useful to sketch the dispersion relations in the same way as in a
CME literature [4]. Figure 3(a) shows the dispersion relations
of the lowest Landau levels (LLLs) relevant for the CME with
β = 0 and μA �= 0. In this case with μA > 0 the energies of
the right-handed (R) particles are decreased, while those of the
left-handed (L) particles are increased. Note that only one spin
state is chosen out for the LLL depending on the sign of eB.
Therefore, a positive μA favors more R than L. This explains
how a finite chiral density is accumulated, while a net density
remains vanishing. Also we see that the CME current flows
from the LLL with μA and gives an intuitive picture for the
anomaly relation (1). In contrast, as seen in Fig. 3(b) for β > 0,
the energy dispersion of R (and L) is shifted positively (and
negatively, respectively) along the pz axis. Thus, assuming
that particles can flow in through the pz-integration edges
[as indicated by the dashed lines in Fig. 3(b)], both L and R

LLL states increase their occupation. This is the mechanism of
how a finite density develops from a combination of β and B

(that causes the dimensional reduction) through the anomaly
relation (2). The argument at the same time tells us that a R

excess in pz < 0 and an L excess in pz > 0 contribute to a
negative flow of the net chirality, which is an analogue of the
CME current. Summarizing the above discussions we should
expect nonzero 〈j 0〉 and 〈jz

A〉.
Now we shall make sure of our qualitative argument by

performing explicit calculations and identify the coefficient of
Eq. (2) following the calculations done previously [38,39]. We
set μA = 0 in the following and concentrate on the CPE only.
The fermion propagator with β in the presence of eB > 0 is

G(x ∼ 0) � G−
0 (x)P− +

∞∑
n=1

[G+
n (x)P+ + G−

n (x)P−] (10)

near the coincidence limit, where P± ≡ 1
2 (1 ± iγ xγ y) is the

spin projection operator and the first term, G−
0 P−, is the

LLL contribution. The (Feynman) propagator for each Landau
mode is

G±
n (x ∼ 0) = ieBγ 0

2π

∫
dω dp

(2π )2
[Kn(ω,±(p + β))P −

5

+Kn(ω, ∓ (p − β))P +
5 ] . (11)
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Here, P ±
5 ≡ 1

2 (1 ± γ5) is the chirality projection operator and
we defined

Kn(ω,p) = ω + p

ω2 − 2eBn − p2 + iε
. (12)

Using this form of the propagator we can express the current
expectation value as

〈j 0〉 = −e lim
t→0+

tr[γ 0G(t)] . (13)

We can simplify the calculation by noting that tr(P ±
5 P±) =

1
4 tr[(1 ± γ5)(1 ± iγ xγ y)] = 1 where two ± are independent.
Because ω in the numerator should be vanishing after the ω

integration, it is straightforward to check that tr(γ 0G+
n P+) +

tr(γ 0G−
n P−) = 0. Therefore only the LLL contribution sur-

vives, which yields:

〈j 0〉 = − e2B

2(2π )

∫
dp

2π

(
− p + β

|p + β| + p − β

|p − β|
)

(14)

after the ω integration. The above is a finite integral only from
−β � pz � β. Actually, this simple expression is precisely
a concrete realization of our qualitative argument based on
Fig. 3(b). Finally, after the p integration, we recover the same
result as previously obtained one [38]:

〈j 0〉 = e2βB

2π2
, (15)

which is quite reminiscent of the formula for the CME current,
namely, 〈jz〉 = e2μAB/(2π2). This compact formula itself is
a known one, but the fact that the above 〈j 0〉 can be easily
realized with a circularly polarized laser is our main claim in
this paper.

Remembering our qualitative argument, we can in turn ex-
pect an axial current 〈jz

A〉 which is similar to what is called the
chiral separation effect; 〈jz

A〉 ∝ μB [40]. To see this, let us per-
form an explicit calculation using 〈jz

A〉 = −e tr[γ zγ5G(0+)].
In this case we use tr(γ zγ5γ

0P ±
5 P±) = 1

4 tr[γ zγ5γ
0(1 ±

γ5)(1 ± iγ xγ y)] = ± i
4 tr(γ zγ5γ

0γ xγ y) = ±1, where the last
± refers to ± of P±. Then, the LLL contribution is completely
identical to that for 〈j 0〉 except for the overall sign, that
means, 〈jz

A〉(LLL) = −〈j 0〉. We can immediately explain this
proportionality for the LLL from the property of the two-
dimensional Dirac matrices; γ zγ

(2)
5 = γ 0 where γ

(2)
5 is the

two-dimensional counterpart defined by γ 0γ z. In this case,
however, some complication appears from nonzero Landau
levels as is the case for the chiral shift [38,39]. We can write
those contributions down explicitly as

〈
jz

A

〉
(n>0) = e2B

2π

∫
dp

2π

∑
n

×
(
− p + β√

2eBn + (p+β)2
+ p − β√

2eBn + (p−β)2

)
.

(16)

This is a subtle expression whose precise value depends on how
to organize the infinity in the Landau sum and the momentum
integration. For example, if we take the Landau sum up to N

and the momentum integration within |p| < � in such a way
that 2eBN � �2, then the p integration is easy to perform

and we find 〈jz
A〉(n>0) = −2N〈j 0〉. For more general situation

N should be replaced with (�/eB)(
√

2eBN + �2 − �),
which approaches

√
2N�2/eB in the opposite limit of

�2 � 2eBN . In reality these cutoffs should be fixed by the
microscopic properties of the material, especially the Debye
mass and the Brillouin zone structures. The conclusion is
that the system comes to have a finite axial-current as given
by

〈
jz

A

〉 = −α
e2βB

2π2
, (17)

the coefficient α of which is not anomaly protected unlike
Eq. (15) and it is a material-dependent problem to fix α.

IV. STATIC CHARGE DISTRIBUTION

So far, we assumed an infinitely large system. Imposing
surface boundary conditions with a finite extent, we should
take account of the polarization and screening effects to find
a balanced distribution of the charge and the chirality density.
Let us consider a finite-size material whose thickness in the
z direction is d; we take the z coordinate so that the material
is placed in a range −d/2 � z � +d/2. Then, because of
the surface effects, we should introduce z dependent μ(z)
and μA(z), the determination of which is the goal of this
section.

In the presence of μA(z), the CME current should follow
from Eq. (1). In equilibrium, however, there should be no
current and the CME current should be canceled by the
polarization effect, i.e.,

jz
total = e2B

2π2
μA(z) + σ

∫
dz j 0(z) , (18)

where the second term in the right-hand side appears from
Ohm’s law with the electric conductivity σ > 0. In fact,∫

dz j 0(z) is nothing but an electric field associated with the
polarization or the charge distribution j 0(z). Qualitatively, this
last term represents a flow to flatten the charge distribution. For
the balance equation for jz

A we postulate the same structure as
Eq. (18) with the replacement of jμ ↔ j

μ

A and μ ↔ μA (i.e.,
the chiral separation effect [40]):

jz
A ,total = e2B

2π2
μ(z) − e2B

2π2
αβ − λ∂zj

0
A(z) , (19)

where we added the last term to consider diffusion processes
of chirality introducing a diffusion constant λ > 0. Intuitively,
this last term represents movement of chirality to decrease
the chirality gradient (i.e., chiral diffusion). The microscopic
process of chiral diffusion is described by electron scatterings,
and as long as the parity-odd effects are subleading, the chiral
diffusion coefficient λ (which can be defined by axial current
correlation function according to the Kubo formula) can be
approximated as the ordinary diffusion constant of electric
charge. The densities, j 0 and j 0

A, are given as

j 0 = e2B

2π2
β + e

3π2
μ(z)3, j 0

A = e

3π2
μA(z)3 , (20)

where a CPE contribution to j 0 is added to the standard
density-chemical potential relation. We plug these expressions
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to the conservation laws; ∂μjμ = 0 and ∂μj
μ

A = 0 (note that
there is no E · B with our electromagnetic configuration).
Since we are interested in the static profile only, we can drop
the time derivatives to reach finally:

e2B

2π2
∂zμA(z) + σ

e2B

2π2
β + eσ

3π2
μ(z)3 = 0, (21)

e2B

2π2
∂zμ(z) − eλ

3π2
∂2
z μA(z)3 = 0 . (22)

We should solve these differential equations under the follow-
ing constraints;

∫ d/2
−d/2 dz j 0(z) = (e2B/2π2)βd, which leads

to μA(d/2) − μA(−d/2) = −βσd. If the thickness d of the
material is sufficiently small, we can find an approximate
solution by expanding the solutions in terms of z, that is,

μ(z) � −2β3σ 3λ

eB
z2, μA(z) � −βσz . (23)

Here, we further used a condition to impose zero net chirality.
It should be noted that these are leading-order results and,
to satisfy Eq. (21) strictly for example, we should consider a
term ∝z7 in μA(z) which we neglect. Moreover, σ may have μ

dependence due to polarization effects, but this is higher-order
correction and we treat σ as a given constant. The thickness
d should be such small that the higher-order corrections
are smaller than this leading-order results in Eq. (23). This
condition demands: d6 � (eB)4/(σ 9λ3β8). If we use typical
values, B ∼ 1 T,e2σ ∼ 106 S/m (electric conductivity in
metals), λ ∼ 10−12 m2/s (electric diffusion coefficient in
metals), and β ∼ 108 m−1 (observable Weyl node splitting),
the thickness is estimated as d < 10−5 m. Equation (23)
indicates that the charge density is more screened near the
surface at large |z| unlike an ordinary conductor, while there
are more R (and L) near the bottom at negatively large z

(and near the top at positively large z, respectively). This is
a very interesting result; the system behaves as a capacitor of
chirality or the chiral battery in which a nonzero slope in the
chirality distribution is sustained by the CPE as well as a finite
net density. Such a realization of the chiral battery should be
useful for more quantitative investigations of the CME and
related phenomena, e.g., the chiral plasma instability [41] for
instance. We note that the idea of the chiral battery can be
traced back to the original work [4] and extensively discussed
as chiral electronics [42].

V. DISCUSSIONS AND SUMMARY

The anomalously induced charge density 〈j 0〉 given by
Eq. (2) or (15) is an experimentally detectable quantity.
One possible way to observe this is using transient grating
techniques [43]. The grating of the circularly polarized field
would lead to inhomogeneous charge distribution, and the
dynamics afterward can be measured.

It is also an interesting possibility to make use of Eq. (17)
instead of Eq. (15) since α could take a large number (involving
some cutoffs at least in a naive estimate). In the two-component
spinor representation, jz

A = φ∗
Rσ zφR + φ∗

Lσ zφL is nothing but
the spin expectation value. Hence, for systems with gapless
Dirac particles, Eq. (17) indicates not only the dynamical flow

of chirality but also the spin polarization. Spin polarization
can be probed by pump-probe magneto-optical Kerr effect. In
addition, when topological current or density exists in general,
there can be some photoemission processes via anomaly as
discussed in Refs. [44,45]. It deserves further investigations
to quantify emitted photon spectra associated with the CME
and the CPE. We will leave them for interesting future
problems.

In summary, we formulated the CPE that generates a
finite density from the combination of the circularly polarized
electric field and the magnetic field. The interesting point in
this setup is that the externally imposed electric and magnetic
fields are always pointing orthogonal to each other and there
is no inner product of E · B which is usually the source of
topological charge and parity breaking. Instead, the circular
polarization breaks the parity symmetry, and so it alone can
take care of the role of E · B. Besides, thanks to rotating
electric field, we do not need to subtract a huge background
due to ordinary electric current that obeys Ohm’s law.

We gave intuitive arguments on the generation of the density
and the axial current and confirmed our expectations by explicit
calculations recovering previously known expressions. We saw
that the density 〈j 0〉 is expressed in a compact form similar to
the CME and its coefficient is anomaly protected. In contrast
to this, 〈jz

A〉 has complicated contributions that need some
ultraviolet regularization or physical cutoff. We would here
emphasize the following point: Each building block for our
conclusion was known; the appearance of a γ xγ y term from
the Floquet Weyl semimetal and the topologically induced
density from the chiral shift were all “re-derived” in this work,
but our novelty is found in a combination of them. The most
important is that our controlling parameter β is given externally
unlike the axion term associated with intrinsic properties of the
material.

Although it is difficult to determine the coefficient of 〈jz
A〉, it

is still proportional to β or a combination of (eE)2/�3 (as long
as � is large enough to justify the leading-order expansion as
we did in this paper). This characteristic dependence of �−3

should give a consistency check for anomalously induced 〈j 0〉
and 〈jz

A〉.
Fortunately, such ambiguity in 〈jz

A〉 does not enter the
determination of the static charge and chirality distribution
in the material. Our study implies that the induced 〈j 0〉 gets
slightly smaller near the material surface. The most interesting
is that the chirality has a nontrivial distribution also and the
chirality separation is sustained by the CPE, which realizes a
system of the chiral battery. The experimental confirmation of
the CPE itself is quite challenging, and furthermore, the CPE
opens a new possibility for more direct CME studies using the
chiral battery.
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