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We study the density of states (DOS) in diffusive superconductors with pointlike magnetic impurities of
arbitrary strength described by the Poissonian statistics. The mean-field theory predicts a nontrivial structure of
the DOS with the continuum of quasiparticle states and (possibly) the impurity band. In this approximation, all the
spectral edges are hard, marking distinct boundaries between spectral regions of finite and zero DOS. Considering
instantons in the replica sigma-model technique, we calculate the average DOS beyond the mean-field level and
determine the smearing of the spectral edges due interplay of fluctuations of potential and nonpotential disorder.
The latter, represented by inhomogeneity in the concentration of magnetic impurities, affects the subgap DOS in
two ways: via fluctuations of the pair-breaking strength and via induced fluctuations of the order parameter. In
limiting cases, we reproduce previously reported results for the subgap DOS in disordered superconductors with
strong magnetic impurities.
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I. INTRODUCTION

The influence of local inhomogeneities on the density of
states (DOS) in superconductors depends on the nature of
disorder. In s-wave superconductors, potential impurities do
not change the BCS DOS [1,2], while magnetic impurities cut
the coherence peak and suppress the superconducting gap. In
the simplest model of weak magnetic impurities (Born limit)
studied by Abrikosov and Gor’kov (AG) [3], the spectral gap
Eg is reduced compared to the order parameter �, and the
BCS edge singularity ρ(E) ∝ (E − �)−1/2 is replaced by the
square-root vanishing behavior ρ(E) ∝ (E − Eg)1/2.

The effect of magnetic impurities on the superconducting
state becomes more fascinating beyond the Born limit. In
this case, a single magnetic impurity produces a localized
state inside the BCS gap [4–7], which can be visualized
experimentally [8–11]. At finite concentration of magnetic
impurities, the states localized on different impurities overlap
and form an impurity band. As the concentration grows,
the band becomes wider. If it merges with the continuum
of quasiparticle states, then the AG-like regime is realized.
Alternatively, the impurity band can touch the Fermi energy
(E = 0) before merging with the continuum (see Ref. [12] for a
review). Although various structures of the DOS with several
spectral edges can be realized depending on the parameters
of magnetic disorder (strength of individual impurities and
their concentration), a general feature of the mean-field results
[3–7] is that all the gaps Egi in the spectrum remain hard,
sharply dividing energy regions with zero and finite [with
ρ(E) ∝ |E − Egi |1/2] DOS.

The square-root vanishing of the DOS is not specific to
superconductors with magnetic disorder. The same qualitative
behavior is observed, e.g., in the mean-field treatment of
proximity-coupled normal-superconducting (NS) structures
[13,14], in the model of a random Cooper-channel interaction
constant [15], in the random-matrix theory (Wigner semicircle)
[16,17], for imbalanced vacancies in graphene [18], etc.

Existence of the sharp spectral edge is an artefact of the
mean-field approximation. The exact treatment reveals a tail of

the subgap states formed in the classically gapped region. The
physical origin of these states is related to fluctuations, when
some rear disorder configurations, missed on the mean-field
level, lead to local shifts of the spectral edges. Averaging over
fluctuations then results in the spatially homogeneous nonzero
subgap DOS.

Fluctuation smearing of the gap edge was first consid-
ered by Larkin and Ovchinnikov (LO) in the model of a
diffusive superconductor with short-range disorder in the
Cooper-channel constant [15]. They described formation of
subgap states in the language of optimal fluctuations of the
order-parameter field �(r), generalizing the method originally
developed in the studies of doped semiconductors (for a review,
see Ref. [19]). The resulting average DOS decays with the
stretched-exponential law as a function of |E − Eg|, with
the width of the tail determined by the magnitude of �(r)
fluctuations.

A different approach to the description of the subgap states
in diffusive superconductors was elaborated in early 2000s
by Simons and co-authors [20–22], who considered instanton
configurations in the nonlinear sigma-model formalism. They
also obtained a stretched-exponential decay of the average
DOS as a function of the distance |E − Eg|. In contrast
to the LO theory, the smallness of this effect is controlled
by the large normal-state conductance, g, rather than by
the magnitude of �(r) fluctuations, indicating that the tail
obtained is determined solely by fluctuations of potential
disorder. The same type of instanton was shown to describe the
smearing of the minigap in SNS junctions [23]. Physically, the
subgap states obtained in Refs. [20–23] are due to mesoscopic
fluctuations originating from the randomness of potential
disorder. In this respect, they resemble the states beyond the
Wigner semicircle in the random-matrix theory [24]. This
analogy was exploited in Refs. [25,26], where tail formation in
zero-dimensional superconducting systems was studied. The
results by Simons et al. [20–22] can then be considered as
a direct generalization of previous random-matrix results to
nonzero dimensionalities.
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The apparent discrepancy between the results of Larkin and
Ovchinnikov [15] and Meyer and Simons [22] for the random-
coupling model was recently resolved in Ref. [27], where it
was demonstrated that the two different regimes correspond to
different limits of the same instanton solution. Sufficiently
close to the gap edge, at small |E − Eg|, fluctuations of
�(r) (nonpotential disorder) are more important, and the
subgap DOS is described by the LO theory. In the far
asymptotics realized at sufficiently large |E − Eg|, the DOS
tail is determined by more efficient mesoscopic fluctuations
(potential disorder). Mathematically, interplay of these two
different physical sources of disorder manifests itself as
the competition between two types of nonlinearities in the
instanton equations.

An important feature of disorder-induced gap smearing is
its large degree of universality in the vicinity of Eg , where any
type of nonpotential disorder can be mapped onto an effective
random order parameter (ROP) model [27]. This mapping
should be understood in a sense that the DOS smearing in
the original problem is equivalent to the DOS smearing in an
artificial model, where �(r) is the only fluctuating quantity
(even though the order parameter may not fluctuate in the
original problem). The parameters of the initial quenched
inhomogeneity are then encoded in the correlation function
f (q) = 〈〈��〉〉q in the artificial ROP model to be determined
for a particular problem. The ROP model thus provides a
universal account of the subgap DOS, describing the interplay
of fluctuations due to potential and nonpotential disorder.

The problem with infinitesimally weak magnetic impurities
was reduced to the ROP model in Ref. [27], where the
leading source of nonpotential fluctuations was identified as
disorder in local magnetization (triplet sector). Due to the
nonlinearity of the Usadel equation, this disorder translates
into fluctuations in the singlet sector, that are equivalent to
an emergent inhomogeneity of the effective order parameter.
This mechanism (referred to as direct in Ref. [27]) leads to a
sufficiently small ROP correlation function, so it is possible
to have a situation when the LO regime is unobservable and
the full tail is due to mesoscopic fluctuations as described by
Lamacraft and Simons [21].

Subgap states due to magnetic impurities in otherwise clean
superconductors were considered in Refs. [28,29]. We are
interested in the opposite situation, in which the underlying
electron dynamics (in the absence of magnetic impurities) is
diffusive due to potential scattering.

The purpose of the present paper is to extend the approach
of Ref. [27] to the case of strong magnetic impurities and to
quantitatively describe fluctuation smearing of the gap edges
(see Fig. 1). In the vicinity of the mean-field edge, we reduce
the problem to the ROP model and calculate the effective
correlation function f (0). The principal difference from the
Born limit is that now the primary source of disorder is due to
fluctuations of the concentration of magnetic impurities which
leads to a larger correlation function f (0) in the ROP model,
as it does not require excitations of the triplet modes. As a
consequence, the previous results by Marchetti and Simons
[20] describe only the far asymptotics of the DOS tails due
to mesoscopic fluctuations, whereas the main asymptotics is
given by the LO-type expression arising due to Poissonian
fluctuations of magnetic disorder. The importance of the
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FIG. 1. Schematic form of the average DOS. Mean-field hard
gaps at Egi are smeared due to fluctuations of the concentration
of magnetic impurities and/or mesoscopic fluctuations of potential
disorder.

Poissonian statistics of magnetic impurities was realized by
Silva and Ioffe [30], who found the main asymptotics of the
subgap DOS in the case of weak impurities (close to the Born
limit). We reproduce their result in the corresponding limiting
case.

The paper is organized as follows. In Sec. II, we for-
mulate the model and discuss the main results. In Sec. III,
we formulate our field-theoretical approach, underlining the
procedure of averaging over Poissonian statistics of magnetic
impurities. Section IV is devoted to description of the replica-
symmetry-breaking instanton solution, responsible for the
subgap DOS. We also map our problem to the ROP model. In
Sec. V, the developed approach is applied to several limiting
cases. Possibility of experimental observation of the predicted
DOS tails is discussed in Sec. VI. Finally, we present our
conclusions in Sec. VII. Some technical details are presented
in Appendices. Throughout the paper, we employ the units
with � = kB = 1.

II. MODEL AND RESULTS

A. Model of magnetic impurities

We consider a dirty s-wave superconductor with both poten-
tial and magnetic disorder. Scattering on potential impurities
preserving the electron spin is assumed to be the dominant
mechanism of momentum relaxation. On time scales larger
than the elastic mean free time τ , electron motion becomes
diffusive with the diffusion constant D. A much weaker
magnetic (spin-flip) scattering is described by the Hamiltonian

Hmag = J

∫
d3r ψ̂†

σ (r)S(r)σ ψ̂σ (r). (1)

We make the same assumptions about the magnetic disorder
as in Refs. [4–7,20]: (a) it is classical with the spin density

S(r) =
∑

i

δ(r − ri)Si , (2)

where the points ri have a Poisson distribution, and (b) spins
of different magnetic impurities are statistically independent
and the distribution over orientations is uniform, P ({Si}) =∏

i δ(S2
i − S2).
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Magnetic impurities are characterized by the two dimen-
sionless parameters: 0 < μ ≤ 1 and 0 < η. The parameter of
“unitarity” μ, defined as

μ = 2α

1 + α2
, α = (πνJS)2 (3)

(where ν is the DOS at the Fermi energy per one spin
projection), controls the strength of a single impurity (μ → 0
is the Born limit, and μ ∼ 1 is the unitary limit) [31], while
information about their concentration is contained in the
parameter

η = nsμ

πν�
, (4)

where ns is the average concentration of magnetic impurities.
In their original treatment, AG [3] considered the white-noise
magnetic disorder in the Born limit (many weak magnetic
scatterers) that corresponds to ns → ∞ and μ → 0 at fixed η

(in this limit η = 1/�τs , with τs being the electron spin-flip
time). Equation (3) predicts a duality between the weak (α <

1) and strong (α > 1) couplings: μ(α) = μ(1/α). However,
the strong-coupling physics is more involved due to partial
screening of the spin of a magnetic impurity by an unpaired
quasiparticle leading to the formation of a non-BCS ground
state [12,32]. To avoid this complication, below we work in
the weak coupling limit, α < 1.

In Eq. (4), � stands for the average value of the order
parameter in the presence of magnetic impurities. It is reduced
compared to the magnetic-disorder-free case and should be
determined self-consistently. Randomness in locations of
magnetic impurities induces spatial fluctuations of �(r) which
will be discussed in Sec. III C and Appendix B.

B. Mean-field theory

The results of the mean-field calculation of the DOS
by Abrikosov and Gor’kov [3], Shiba [6], and Rusinov
[7] (AGSR) can be summarized as follows. Abrikosov and
Gor’kov [3] considered suppression of the spectral gap Eg (the
lower edge for the continuum of Bogoliubov quasiparticles)
by weak magnetic impurities (μ → 0), finding

EAG
g = (1 − η2/3)3/2�. (5)

Later it was realized [4–7] that at a finite μ, a single magnetic
impurity creates a subgap state with the energy

E0 = �

√
1 − μ

1 + μ
= �

1 − α

1 + α
, (6)

localized at the length scale

L0 = ξ0
(
1 − E2

0

/
�2
)−1/4

. (7)

Equation (7) refers to diffusive superconductors [33], with ξ0

being the dirty-limit coherence length,

ξ0 =
√

D/2�. (8)

Adding more impurities leads to the overlap of the states local-
ized on different impurities, and a well-defined impurity band
between Eg1 and Eg2 is formed inside the superconducting
gap. The width of the band grows with increasing the impurity
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FIG. 2. Regions of various behavior of the mean-field DOS ρ(E)
in the (η, μ) plane. The AGSR DOS at E = 0 is zero (finite)
below (above) the solid blue line. The impurity band is resolved
(merged with the continuum) above (below) the dashed red line.
Insets illustrate typical behavior of ρ(E) in each region [34]. See
Appendix A for details.

concentration (i.e., increasing η). Shiba [6] and Rusinov [7]
described the properties of the impurity band and showed that
depending on the values of μ and η, four possible scenarios
indicated in Fig. 2 can be realized: (a) no gap edges, gapless
regime; (b) AG regime with one spectrum edge Eg1 (the impu-
rity band merged with the continuum); (c) the impurity band
touches zero, so the two spectrum edges are the upper edge of
the impurity band (Eg2) and the lower edge of the continuum
(Eg3); and (d) the impurity band is detached both from zero
and the continuum, so there are two edges of the impurity
band (Eg1 and Eg2) and the lower edge of the continuum
(Eg3). Evolution of the gap edges, Egi(η,μ), demonstrating
the transitions between the above regimes, is shown in Fig. 3.

FIG. 3. Position of the spectrum edges Egi (normalized to �) vs.
(η, μ). Depending on the (η, μ) values, the number of the spectrum
edges varies from zero to three (the corresponding three sheets on the
plot are denoted by Eg1, Eg2, and Eg3). The bold yellow line (lying in
the η = 0 plane) traces the position of the single-impurity localized
state E0 [Eq. (6)] and joins the Eg1 and Eg2 sheets. The bold blue
line lies in the E = 0 plane (it is exactly the solid blue line in Fig. 2)
and marks the appearance of finite DOS at zero energy; here the Eg1

sheet terminates. The bold red line marks merging of the impurity
band with the continuum (merging of the Eg2 and Eg3 sheets). This
line starts from E/� = 1 at η = μ = 0, and rises slightly above the
E/� = 1 level. Its projection on the (η, μ) plane is exactly the dashed
red line from Fig. 2.
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Technically, in the mean-field theory, the DOS ρ(E)
(normalized to the normal-metallic value ρ0) is given by

ρ(E)/ρ0 = Im sinh ψ, (9)

where the energy-dependent spectral angle ψ must be obtained
from the algebraic equation

F (ψ) = 0, (10)

with [3,6,7,20]

F (ψ) = −E

�
cosh ψ + sinh ψ − η

2

sinh 2ψ

1 − μ cosh 2ψ
. (11)

Since real ψ leads to a vanishing DOS, the disappearance of a
real solution of Eq. (10) marks a spectrum edge Eg (either of
the continuum or of the impurity band). The equation for the
determination of Eg and positions of the lines separating the
four regions in Fig. 2 are discussed in Appendix A.

Note that the mean-field DOS structures similar to the ones
presented in Fig. 2, might also be realized in a diffusive
superconductor with the order-parameter disorder, as shown
recently in Ref. [35]. At the same time, Ref. [35] treated
�(r) as an external field without taking the self-consistency
into account (similarly to the ROP model), while assuming
small-scale inhomogeneities (with scale much smaller than
the coherence length) and considering scattering on those
order-parameter “impurities” in all orders of the perturbation
theory (T -matrix approach). In our model, we take the self-
consistency into account, and such pointlike order-parameter
impurities are not realized.

C. Results: subgap states

Hard mean-field gap edges are smeared by fluctuations,
leading to the average DOS sketched in Fig. 1. Provided that
magnetic impurities are not too weak [see Eq. (24) for the
precise condition], the leading source of smearing at E →
Eg is due to fluctuations of their concentration. For larger
|E − Eg|, this mechanism becomes less effective and smearing
due to mesoscopic fluctuations of potential disorder might
dominate. In order to study the interplay of these mechanisms,
we map the problem to the random order parameter model
and calculate the average subgap DOS with the exponential
accuracy as

〈ρ(E)〉 ∝ exp(−Sinst), (12)

whereSinst is the action of the instanton with the broken replica
symmetry.

Though the original problem is three-dimensional, the
effective dimensionality of the instanton, d = 0,1,2, or 3,
is determined from comparison of the sample dimensions to
the instanton (optimal fluctuation) size LE given by Eq. (69)
below. In the present analysis, we restrict ourselves to the
three- and zero-dimensional geometries. The cases d = 1 and
d = 2 require special treatment due to the presence of multiple
instanton solutions and will be reconsidered elsewhere [36].

1. Summary of the random order parameter model

According to the general consideration of Ref. [27], subgap
states in a wide class of disordered superconducting systems
with a mean-field AG-like hard gap can be universally

described by the random-order-parameter (ROP) model. This
scheme relies on the observation that at E → Eg any source
of nonpotential disorder (random coupling constant [15,22],
mesoscopic fluctuations of the order parameter [37], infinites-
imally weak magnetic impurities [3,21]) effectively acts as a
Gaussian random order-parameter field, �(r) = � + �1(r),
characterized by an appropriate correlation function

f (q) = 〈�1�1〉q. (13)

Once the mapping to the ROP model is identified, one can
apply the known results [27] for the density of the subgap
states, which are briefly reviewed below.

In the ROP model, a nonzero DOS in the gapped region
originates from the interplay of potential disorder and disorder
in �(r), which is taken care of by the parameter K . The
instanton action Sinst is proportional [see Eq. (18)] to S0(K)
given by

S0(K) = 1

6

∫ (
φ3

2 − φ3
1

)
dd r̃, (14)

where the functions φ1(r̃) and φ2(r̃) should be obtained from
the system of coupled differential equations

−∇̃2φ1 + φ1 − φ2
1 = K(ε)(φ2 − φ1), (15a)

−∇̃2φ2 + φ2 − φ2
2 = K(ε)(φ2 − φ1). (15b)

The system (15) is characterized by a single dimensionless
parameter

K(ε) =
√

ε∗/ε, (16)

which is controlled by the dimensionless distance from the gap
edge

ε = |Eg − E|
�

� 1 (17)

(note that our definition of the dimensionless distance ε is
different from ε in Ref. [27], which was normalized by Eg;
since here we consider the problem with several gap edges, we
choose a more convenient normalization to �). The value of ε∗
in Eq. (16) is determined by the zero-momentum component
of the correlation function of nonpotential disorder, f (0) [see
Eq. (20)].

In general, Eqs. (14)–(16) determine the instanton action
for any relation between ε and ε∗. However, for an arbitrary
value of K , the system (15) allows only for a numerical
solution. Analytical treatment is possible in the limiting cases
of large K [close to the gap, ε � ε∗, see Eq. (21)] and small
K [sufficiently far from the gap, ε � ε∗, see Eq. (22)]. These
limits refer to the situations when the subgap states are due
to optimal fluctuations of either the nonpotential disorder (at
K → ∞) or potential disorder (at K → 0). The instanton at an
arbitrary K describes an optimal fluctuation due to combined
action of the potential and nonpotential disorder [27,37].

2. General results for magnetic impurities

As we demonstrate in Sec. IV, the problem of Poissonian
magnetic impurities also fits the phenomenology of the ROP
model. In order to apply the results of Ref. [27], one has (i)
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to generalize them to the case of an arbitrary function F (ψ)
[Eq. (11)], which determines the mean-field DOS (in Ref. [27]
only the AG case, μ = 0, was considered), and (ii) to translate
magnetic disorder to the language of the ROP model and to
calculate the effective correlation function f (q).

Below we present the general expression for the subgap
DOS, while the correlation function f (q) in the case of
magnetic impurities is discussed in Sec. II C 3. In the formulas
below, the effective dimensionality of the instanton may take
the values d = 3 and d = 0.

The instanton action

Sinst = 2gξ

(2ε cosh ψg)(6−d)/4

|F ′′(ψg)|(2+d)/4
S0(K) (18)

is proportional to S0(K) given by Eq. (14), with the prefactor
depending on the curvature of the function F (ψ) at ψg

corresponding to a gap edge Eg . In Eq. (18), gξ is the
dimensionless (in units of e2/h) conductance of the sample’s
section which is the hypercube of size ξ0 in d effective
dimensions, while being limited by the sample size in the
transverse directions. Denoting the volume of this section
as Vξ = A3−dξ

d
0 , where A3−d is the “cross section” in 3 − d

reduced dimensions, we can write

gξ = 8πν�Vξ � 1. (19)

Finally, the value of ε∗ entering the definition of K(ε) in
Eq. (16) is given by

ε∗ = g2
ξ

8

[
f (0)

�2Vξ

]2 sinh4 ψg

|F ′′(ψg)| cosh ψg

. (20)

Equations (12) and (18) provide a general description of
the fluctuation DOS in the vicinity of the mean-field gap. At
ε � ε∗, the subgap states are due to optimal fluctuations of
the concentration of magnetic impurities, and the result has a
universal form [15,27]

〈ρ(E)〉 ∝ exp

[
−αd (η,μ)

�2Vξ

f (0)
ε(8−d)/4

]
. (21)

As ε grows, the role of mesoscopic fluctuations becomes
increasingly important. In the regime of ε � ε∗ the subgap
states are solely due to optimal fluctuations of potential
disorder, with another universal behavior [20,27]

〈ρ(E)〉 ∝ exp
[−βd (η,μ) gξ ε(6−d)/4

]
. (22)

The dimensionless functions αd (η,μ) and βd (η,μ) are defined
in Eqs. (80) and (77), respectively. Several limiting cases of
Eqs. (21) and (22) will be discussed in Sec. V.

3. Parameter of the effective ROP model

Reducing the problem of magnetic impurities to the ROP
model valid in the vicinity of the mean-field gap is the most
delicate issue. The reason is that there exist several physically
distinct mechanisms which contribute to the effective corre-
lation function (13) characterizing the resulting ROP model.
One can distinguish three different contributions to f (q) which
enter additively (provided that the resulting gap smearing is

relatively weak):

f = fns︸︷︷︸
∝1/gξ

+ fs + f �
MF︸ ︷︷ ︸

∝1/g2
ξ

. (23)

The terms in this equation refer to the following types of
effective inhomogeneities: (1) fns

(q)—fluctuations due to
inhomogeneity of the concentration of magnetic impurities;
(2) fs(q)—fluctuations involving the triplet sector induced
by a random spin orientation of magnetic impurities; and (3)
f �

MF(q)—mesoscopic fluctuations of the order-parameter field
�(r) due to randomness in positions of potential impurities.

The last two contributions, fs(q) and f �
MF(q), were analyzed

in the case of infinitesimally weak magnetic impurities (μ →
0) in Ref. [27]. They are suppressed by the factor of 1/g2

ξ

typical for mesoscopic fluctuations [38] and thus are very small
for a good metal.

Here, we focus on the term fns
(q) which is proportional to

1/gξ but contains an additional small factor of μ, vanishing
in the Born limit (μ → 0). It gives the leading contribution
to the correlation function (23), provided magnetic impurities
are not too weak:

η1/3μ � 1/gξ , (24)

which will be assumed thereafter. Under this condition, the ef-
fective ROP correlation function f (q) ≈ fns

(q) is determined
by fluctuations of the concentration of magnetic impurities,
ns(r) = ns + δns(r). In the zero-momentum limit, it can be
written as

f (0) = ns[C(0) + C�(0)]2, (25)

where the first term in the sum is due to fluctuations of the
spin-flip scattering rate (at a constant �), whereas the second
term is due to fluctuations of �(r) (at a constant η). They
are combined additively in Eq. (25) since both are induced by
δns(r).

The resulting expression for C(0) is given by

C(0) =
(

�2Vξ

ns

8μη

gξ

)1/2
cosh ψg

1 − μ cosh 2ψg

, (26)

where ψg is the spectral angle at the gap edge [see Eq. (A1)
below]. The value of C(0) depends on the particular gap edge
considered, it is positive for Eg1 and negative for Eg2 and Eg3.
The implicit temperature dependence of C(0) originates from
that of ψg since the parameter η is expressed in terms of the
temperature-dependent �(T ) [Eq. (4)]. The results by Silva
and Ioffe [30] correspond to the contribution to the DOS from
C(0) in the limit μ3/2 � η � 1 (weak magnetic impurities in
the AG regime), see Sec. V A.

The kernel C�(q) describing the order-parameter fluc-
tuations induced by δns(r) is calculated in Appendix B
[Eq. (B10)]; it turns out to be positive. Since it involves the self-
consistency condition, the result is temperature dependent. In
the limit of zero momentum and small temperatures, C�(0) is
given by Eq. (B19). In the gapped phase [regions (b) and (d)
in Fig. 2], we find

C�(0) =
(

�2Vξ

ns

8μη

gξ

)1/2
π

2(1 + μ +
√

1 − μ2) − πη
.

(27)
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Contrary to C(0) [Eq. (26)], the parameter C�(0) describing
the order-parameter fluctuations is the same for different gap
edges Egi .

The relative magnitude of the two contributions, C(0) and
C�(0), depends on η and μ, and on a particular gap edge
considered. Each of them can dominate in a certain region of
parameters as discussed in Sec. V.

We emphasize here that our reduction to the effective ROP
model [Eqs. (25)–(27)] holds irrespective of the resulting
instanton dimensionality d [d-dependent quantities Vξ and gξ

in the definitions of C(0) and C�(0) cancel each other].
In order to find the average subgap DOS at given values of

η and μ in the vicinity of a particular gap edge Eg , one has to
calculate first the mean-field gap angles ψg [from Eq. (A1)],
the mean-field gaps Eg [from Eq. (A2)], and the derivative
F ′′(ψg) [from Eq. (11)]. These quantities determine the values
of f (0) [Eq. (25)], αd (η,μ) [Eq. (80)], and βd (η,μ) [Eq. (77)],
which govern the asymptotic behavior of the average DOS,
Eqs. (21) and (22). In some limiting cases, this procedure will
be carried out in Sec. V. Finally, we remark that the above
analysis was based on the mapping to the ROP model valid
at E → Eg . The condition of its validity will be discussed in
Sec. IV D.

III. FIELD-THEORETICAL APPROACH

A. Nonlinear sigma model

In order to study the DOS in disordered superconductors
with magnetic impurities, we employ the standard sigma-
model approach in the replica representation [39,40], appli-
cable in the dirty limit (�τ � 1). It is formulated in terms
of the matrix field Q describing the soft diffusive modes and
the superconducting order parameter field �. The field Q(r) is
a matrix in the tensor product of the Matsubara-energies (E),
replica (R), Nambu-Gor’kov (N), and spin (S) spaces. The
static (quantum fluctuations are neglected) order-parameter
field �a(r) also carries a replica index.

The problem formulation is the same as in the paper by
Marchetti and Simons [20], and, similarly to Simons and
co-workers [20–22], we employ the nonlinear sigma model
technique (but its replica version instead of supersymmetric
one). At the same time, we treat the Poissonian averaging
over magnetic impurities without any simplifications (see
Sec. III B), which is crucial for the correct determination
of the replica-symmetry-breaking solutions. The results of
Ref. [20] are then reproduced as a limiting case. Another
difference from Ref. [20] is that we also take into account order
parameter inhomogeneities induced by magnetic impurities.
To address that self-consistently, we are forced to utilize
the imaginary-time Matsubara version of the sigma model,
keeping the full energy space.

We consider the situation when the spin-flip scattering rate
is much smaller than the potential scattering rate, τ � τs ;
however, the strength of an individual magnetic impurity
(characterized by the parameter μ) is not necessarily weak. In
this case, it is convenient to postpone averaging over magnetic
disorder to the final step of the derivation. After averaging over
potential disorder and integrating over fermions, the standard
derivation [20,39,41] leads to the expression for the partition

function Z ,

Z =
∫

D�DQe−S[�,Q], (28)

written in terms of the imaginary-time action S:

S = S� + πν

8τ

∫
d3r tr Q2 − 1

2
Tr ln G−1, (29)

S� = ν

λT

n∑
a=1

∫
d3r |�a(r)|2. (30)

Here, λ is the Cooper-channel interaction constant, T is the
temperature, n is the number of replicas, tr stands for the
trace over E ⊗ R ⊗ N ⊗ S, while Tr acts also in the coordinate
space.

The inverse Green operator is given by

G−1 = G−1
0 + iετ3 + i�̂ − JSσ τ3, (31)

G−1
0 = − p2

2m
+ μF + i

2τ
Q, (32)

�̂ =
(

0 �

�∗ 0

)
N

, (33)

where ε is the Matsubara energy, and τi and σi are the
Pauli matrices in the Nambu and spin spaces, respectively.
The matrix Q is subject to the standard nonlinear constraint
Q2 = 1, and obeys the symmetry [42]

Q = τ1σ2Q
T τ1σ2, (34)

where the transposition acts in the energy space as well.
The average DOS can be extracted from 〈Qεε〉 analytically
continued to real energies E, see Eq. (58) below.

The next step in the derivation of the sigma model is the
expansion of the logarithm (justified by the diffusive limit). In
the case of strong magnetic impurities, however, we must keep
the magnetic part of the logarithm unexpanded [20]:

ln G−1 ≈ ln G−1
0 + iG0(ετ3 + �̂) + ln(1 − G0JSσ τ3).

(35)

The resulting sigma-model action can be written as

S = S� + SD + Smag, (36)

where SD is the standard diffusive action [43],

SD = πν

8

∫
d3r tr[D(∇Q)2 − 4(ετ3 + �τ1)Q] (37)

(we choose � to be real), and the magnetic part Smag originates
from the last term in Eq. (35) after averaging over magnetic
impurities. It will be considered below.

B. Averaging over magnetic disorder

If the distance between the magnetic impurities, n−1/3
s ,

is much larger than the mean free path due to potential
(nonmagnetic) disorder l [44], we can approximate

G0(ri ,rj ) ≈ −iπντ3Q(ri)δij . (38)
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Then the magnetic part of the action becomes separable in the
individual magnetic impurities [20]:

Smag ≈ −1

2

∑
i

tr ln(1 + i
√

α Q(ri)τ3σni), (39)

where the dimensionless parameter α is defined in Eq. (3).
Replacing the full action Smag by Eq. (39) is equivalent to the
self-consistent T -matrix approximation [45] for the magnetic
scattering, which treats all orders of scattering on a single
impurity but neglects diagrams with intersecting impurity
lines.

In what follows, we will neglect the effects of induced
spin magnetization and consider only the singlet sector of the
theory, Q = Q0σ0 [such an approximation is justified under
the condition (24) when the leading source of the effective
disorder is due to fluctuations in the positions of magnetic
impurities]. Then averaging over the direction of the impurity’s
magnetization ni becomes trivial and we obtain

Smag =−1

4

∑
i

tr ln[1 + αQ(ri)τ3Q(ri)τ3]

=−1

4

∫
d3r ns(r) tr ln[1 + α(Qτ3)2], (40)

where we introduced the concentration of magnetic impurities
[cf. Eq. (2)]:

ns(r) =
∑

i

δ(r − ri). (41)

Performing Poisson averaging over magnetic disorder with the
help of the relation [46]〈

exp

{∑
i

f (ri)

}〉
= exp

{
ns

∫
d3r[ef (r) − 1]

}
, (42)

where ns is the average concentration of magnetic impurities,
we find the magnetic contribution to the sigma-model action:

Sav
mag = −ns

∫
d3r

{
exp

tr ln[1 + α(Qτ3)2]

4
− 1

}
. (43)

An important feature of this expression (where one can easily
recognize the moment-generating function for the Poisson
distribution) is its nonlinear dependence on tr ln[1 + α(Qτ3)2],
which will be crucial for the analysis of subgap states.

Equation (43) is the point where our derivation starts to
deviate from the one by Marchetti and Simons [20]. Their
approach is equivalent to replacing the exact action Sav

mag by
Eq. (40), where ns(r) is substituted by its average value,
ns(r) �→ ns [see Eq. (51) below]. Such an approximation
completely discards all effects due to fluctuations of the con-
centration of magnetic impurities encoded in higher powers of
tr ln[1 + α(Qτ3)2]. This is justified only for replica-symmetric
configurations of Q (since each trace brings an additional
power of n which vanishes in the replica limit), thus making
it possible to reproduce the results of AGSR, but is generally
inapplicable for the analysis of the subgap states associated
with the replica-symmetry-breaking solutions.

In the problem of magnetic impurities, the field

δns(r) = ns(r) − ns (44)

can be identified as a primary fluctuator responsible for
the formation of the subgap states through the Larkin-
Ovchinnikov mechanism [15,27]. Its relevance for the problem
of Poissonian magnetic impurities was first recognized by
Silva and Ioffe [30].

Another point which distinguishes our treatment from the
analysis of Ref. [20] is the presence of the order-parameter
field �(r) that cannot be replaced by its average value. Indeed,
the field �(r) adapts to inhomogeneity of ns(r), thus acting
as an additional channel of disorder. Its role will be analyzed
below.

C. Inhomogeneous order parameter and effective action

The action (36) is a functional of the matter field Q(r) and
the order-parameter field �(r). Since the DOS is determined
by Q, our next task is to integrate out fluctuations of �(r) and
to derive an effective large-scale action Seff[Q]. A routine
approach would be to work with the magnetic part Sav

mag
[Eq. (43)] already averaged over disorder. However, we find
it more instructive to use Smag in the initial form of Eq. (40)
and perform the Poissonian averaging after elimination of the
order-parameter field. This scheme clearly demonstrates that it
is the field δns(r), which acts as a primary source of disorder,
both directly and via induced randomness in �(r).

Due to self-consistency, the order parameter adapts to
fluctuations of the concentration of magnetic impurities.
This can be described in terms of a (replica-symmetric)
linear response of �1(r) = �(r) − � to δns(r), which in the
momentum representation can be written as

�1(q) = −C�(q)δns(q). (45)

The temperature-dependent response kernel C�(q) is calcu-
lated in Appendix B [Eq. (B10)] by summation over Matsubara
energies. The kernel C�(q) is positive, and the sign in Eq. (45)
reflects that the order parameter is suppressed in the regions
where the concentration of magnetic impurities exceeds its
average value. In real space, the kernel decays at the scale of
the zero-temperature coherence length [47], which is much
smaller than the instanton size LE [Eq. (69)] in the vicinity
of the gap edge. For this reason, only the zero-momentum
limit of C�(q) will be relevant below. Then integrating out
order-parameter fluctuations in the action (36) produces the
local term:

SOPF = γ

∫
d3r δns(r) tr τ1Q, (46)

where

γ = πνC�(0)/2. (47)

Having eliminated fluctuations of the order-parameter field,
we arrive at the action S[Q] = SD + Smag + SOPF and are in a
position to perform the final averaging over magnetic disorder.
Both Smag and SOPF are linear in ns , representing two ways
inhomogeneities in the distribution of magnetic impurities
affect the system: through fluctuations of the overlap between
the localized states (Smag) and through the self-consistent
modification of � (SOPF).

Averaging Smag + SOPF over the Poissonian distribution
of ns(r) is straightforward, leading to the following term
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in the action [which in the absence of the order-parameter
fluctuations reduces to Sav

mag given by Eq. (43)]:

Sns
= −ns

∫
d3r

[
etr ln[1+α(Qτ3)2]

4 −γ tr τ1Q − 1 + γ tr τ1Q
]
.

(48)

Equation (48) should be considered as an effective action valid
for Q(r) which changes slowly at the scale ξ0. This condition
guarantees the local relation between Q(r) and δns(r) as given
by Eq. (46), which makes it possible to average the terms (46)
and (40) on the same footing. On the other hand, it should be
understood that contrary to ns(r), which is a set of δ functions,
�1(r) is a continuous function (a set of δ functions smeared at
the scale ξ0). For this reason, it is sufficient to keep the leading
term in � in Eq. (35), as subleading terms are small in �τ and
may be neglected as usual.

Combined with the standard diffusive action SD [Eq. (37)
with a constant �], Eq. (48) leads to the desired large-scale
effective action for the field Q:

Seff[Q] = SD + Sns
. (49)

D. Simplification near the gap edge

The nonlinear action Sns
simplifies significantly in the

vicinity of the spectrum edge, at E → Eg , where the replica
symmetry breaking (RSB) is weak, all traces in Eq. (48) are
small, and the magnetic part of the action can be expanded in
a power series:

Sns
= S (1)

mag + S (2)
mag + . . . , (50)

where

S (1)
mag = −ns

4

∫
d3r tr ln[1 + α(Qτ3)2], (51)

S (2)
mag = −ns

2

∫
d3r

(
tr

{
ln[1 + α(Qτ3)2]

4
− γ τ1Q

})2

,

(52)

and omitted terms contain higher powers of the trace. In
Sec. IV B, we will see that the first two terms in the action
(50) are sufficient to describe the subgap tail states in the
vicinity of the spectrum edge (an analogous simplification has
been recently carried out for the problem of vacancies in chiral
metals) [18]. For larger deviations from the edge, the action
Sns

should be retained in its full form (48).
The term S (2)

mag can be naturally interpreted as resulting from
averaging of the actionSmag + SOPF over Gaussian fluctuations
of δns specified by the correlation function

〈δns(r)δns(r′)〉 = nsδ(r − r′). (53)

The fact that the Poissonian distribution of magnetic impurities
can be effectively described by Gaussian fluctuations should
not be surprising. In the vicinity of a spectrum edge, E → Eg ,
the characteristic spatial scale [LE , see Eq. (69) below]
diverges and the corresponding instanton volume contains
many magnetic impurities, so that the central limit theorem
applies.

Hence, for sufficiently small ε (the conditions are formu-
lated in Sec. IV D below), the effective action (49) can be

approximated as

Seff[Q] ≈ SD + S (1)
mag + S (2)

mag. (54)

Here, the first two terms are linear in the trace and lead
to the AGSR theory at the replica-symmetric saddle point
(Sec. IV A), whereas the last term is quadratic in the trace and
is responsible for gap fluctuations due to fluctuations in ns(r).
The simplified action (54) will be used in Sec. IV B for the
universal description of subgap states near the gap edge.

IV. INSTANTONS AND SUBGAP STATES

A. Replica-symmetric saddle point

We start the analysis of the effective action (54) with
the simplest replica-symmetric case. The stationary replica-
diagonal spin-singlet saddle point can be parametrized in terms
of the spectral angle θa

ε as

Qab
εε′ = δεε′δab

(
τ3 cos θa

ε + τ1 sin θa
ε

)
σ0. (55)

Then only the linear-in-trace part of the action becomes
important:

SD + S (1)
mag =

∫
d3r

n∑
a=1

∑
ε

La, (56)

with the Lagrangian (written up to a constant term vanishing
in the replica limit)

L(θ ) = πν

2
[D(∇θ )2 − 4(ε cos θ + � sin θ )

− (�η/μ) ln(1 + μ cos 2θ )], (57)

where the parameter μ is defined in Eq. (3).
The average DOS is calculated as

〈ρ(E)〉
ρ0

= lim
n→0

Re
trR,N,S〈QEE〉τ3

4n
, (58)

where 〈QEE〉 is the expectation value of Q with the action S,
analytically continued to real energies: ε �→ −iE. To simplify
the analysis of the subgap states, it is convenient to switch to
a variable ψ [23]:

θ = π/2 + iψ. (59)

In terms of ψa
E , the Lagrangian L acquires the form

L(ψ) = −πν

2
[D(∇ψ)2 − 4(E sinh ψ − � cosh ψ)

+ (�η/μ) ln(1 − μ cosh 2ψ)]. (60)

Varying the action (56) and searching for the replica-
symmetric solution, we immediately obtain an equation
F (ψ) = 0, where the function F (ψ) is defined in Eq. (11).
Then Eq. (58) reduces to Eq. (9), and we reproduce the
results of AGSR discussed in Sec. II B. The action S (2)

mag
as well as higher-order terms in Eq. (48) do not affect the
replica-symmetric solution.

B. Universal description near the gap edge

Subgap states are known to be associated with the RSB
instantons [22,27]. In the present case with many Matsubara
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energies involved, we use the ansatz when the replica symme-
try is violated at a given energy ε0. To respect the symmetry
constraint (34) leading to ψε + ψ−ε = 0, we have to include
the energy −ε0 as well:

ψa
ε (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ1(r), ε = ε0 and a = 1;
ψ2(r), ε = ε0 and a = 2, . . . ,n;
−ψ1(r), ε = −ε0 and a = 1;
−ψ2(r), ε = −ε0 and a = 2, . . . ,n;
ψε(r), |ε| �= ε0.

(61)

(A similar form of the RSB in the energy space was considered
in the context of energy level statistics in random matrices
[48,49].) One can verify that such an ansatz is consistent
with the saddle-point equations for the action (49). Note
that although the replica symmetry is assumed to be broken
at the energies ±ε0, saddle-point solutions ψε(r) at other
energies acquire a nontrivial spatial dependence. However,
they do not influence equations for ψ1(r) and ψ2(r) at ε = ±ε0,
which are decoupled from other energies. Performing analytic
continuation, we can thus consider a single real energy E = iε0

[27], and the role of energy −ε0 would be to double the
contribution to the action in Eq. (63) [43].

In order to get the instanton equation for the fields ψ1(r) and
ψ2(r), one has to substitute the ansatz (61) into the saddle-point
equations for the action (49). The resulting system can be
written as

−ξ 2
0 ∇2ψa − E

�
cosh ψa +

(
1 + 2ηγ

μ

)
sinh ψa

± η

2μ

∂

∂ψa

[√
1 − μ cosh 2ψ1

1 − μ cosh 2ψ2
e−4γ (cosh ψ1−cosh ψ2)

]
= 0,

(62)

where the positive (negative) sign in front of the last term
corresponds to a = 1 (2). The instanton equations (62) are
quite cumbersome and in a general situation (arbitrary E) can
be treated only numerically.

Remarkably, the analysis simplifies considerably in the
vicinity of the spectral gap, E → Eg (the precise conditions
will be formulated in Sec. IV D below), where one can use the
simplified action (54) and map the system onto the ROP model
with a proper correlator f (0). The key point in this mapping
is that near the gap edge the RSB is weak, ψ1 and ψ2 are close
to each other, and the action (54) can thus be expanded in
ψ1 − ψ2.

In the replica limit (n → 0), the linear-in-trace part (56)
becomes

SD + S (1)
mag = 2

∫
d3r[L(ψ1) − L(ψ2)], (63)

where the factor of 2 accounts for the doublet {ε0,−ε0} in
Eq. (61) [43]. Near the gap, the Lagrangians L(ψi) can be
replaced by their Taylor series near the mean-field solution ψ0

[which satisfies F (ψ0) = 0]:

L(ψi) − L(ψ0) ≈ −πν�
[
ξ 2

0 (∇ψi)
2 + F ′(ψ0)(ψi − ψ0)2

+F ′′(ψ0)(ψi − ψ0)3/3
]
. (64)

The cubic term ought to be retained since the coefficient
in front of the quadratic term, F ′(ψ0) ≈ F ′′(ψg)(ψ0 − ψg),

vanishes at E = Eg:

F ′(ψ0) ≈
√

2
E − Eg

�
F ′′(ψg) cosh ψg ∝ ε1/2, (65)

where ε is defined in Eq. (17). Depending on the values of η

and μ, the mean-field spectrum can have up to three edges (see
Figs. 2 and 3, and Appendix A), with the mean-field gapped
regions corresponding to E < Eg1, E > Eg2, and E < Eg3.
It can be shown that F ′′(ψg) in all these cases has the same
sign as E − Eg , so that the expression under the square root
in Eq. (65) is always positive. Also with our accuracy we can
replace F ′′(ψ0) by F ′′(ψg) in Eq. (64) and replace the energy
argument E of this function by Eg [so, in our formulas F ′′(ψg)
is always taken at E = Eg].

To complete the mapping to the ROP model, consider the
quadratic-in-trace part S (2)

mag in the action (54). Though the Q

dependence of the two terms under the trace in Eq. (52) is
different, in the limit E → Eg both are proportional to ψ1 −
ψ2, which allows us to write

S (2)
mag ≈ −8(πν)2f (0) sinh2 ψg

∫
d3r (ψ1 − ψ2)2, (66)

where f (0) acquires the form of Eq. (25) with

C(0) = μ cosh ψg

(πν)(1 − μ cosh 2ψg)
. (67)

The form of the prefactor in Eq. (66) is chosen to emphasize
that the same replica-mixing term describes the ROP model
(13) near the gap edge.

To write the resulting action in the canonic form, we
introduce the new fields φ1,2 according to

ψ1,2(r) = ψ0 − 2F ′(ψ0)

F ′′(ψg)
φ1,2(r̃), (68)

and switch to the dimensionless coordinate r̃ = r/LE . Here,
the length scale

LE = ξ0√
F ′(ψ0)

∝ ε−1/4, (69)

where F ′(ψ0) is given by Eq. (65), determines the instanton
size which diverges at the gap edge. In terms of the new
variables, the action (54) acquires the form (18), with the
dimensionless action

S0(K) =
∫

dd r̃
[

(∇̃φ2)2

2
+ φ2

2

2
− φ3

2

3
− (∇̃φ1)2

2

− φ2
1

2
+ φ3

1

3
− K

(φ1 − φ2)2

2

]
. (70)

The strength of replica mixing is controlled by the dimension-
less parameter

K(ε) = 4πνf (0) sinh2 ψg

�F ′(ψ0)
=
√

ε∗
ε

, (71)

where the crossover scale ε∗ can be represented in the
form (20).

Varying the action (70), we arrive at the universal system
(15) of coupled differential equations for φ1,2(r̃). At the
solution, the action S0(K) can be written in the compact form
of Eq. (14).
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C. Instanton action versus K

Below, we briefly overview the properties of the system (15)
obtained in Refs. [27,37]. We consider only the d = 3 and d =
0 cases, while the ROP model with d = 1 and d = 2 will be
studied elsewhere [36]. Equations (15) can be easily analyzed
in the limits of small and large K , where analytic expressions
for S0(K) are possible [Eqs. (76) and (78), respectively].
For intermediate values of K , the system should be solved
numerically, with the instanton action gradually interpolating
between the limiting values. Following Refs. [15,20,21,30],
for d = 3 we consider only spherically-symmetric instanton
solutions. The existence of a less symmetric instanton with
a smaller action cannot be excluded a priori and requires a
separate investigation.

1. Zero-dimensional geometry

We start the analysis of the K dependence of the instanton
action with the simplest zero-dimensional case realized for
superconducting grains smaller than the instanton size, LE . In
this case, 〈ρ(E)〉 ∝ exp(−Sinst) gives the DOS averaged over
an ensemble of grains [26,30]. Neglecting the gradient terms
in Eqs. (15), we arrive at a system of algebraic equations which
can be easily solved:

φ1,2 = 1/2 ± K ∓
√

K2 + 1/4, (72)

where the signs are chosen in order to provide a positive action.
Calculating the instanton action with the help of Eq. (14), we
obtain

S0(K) = (4K2 + 1)3/2 − K(8K2 + 3)

6
. (73)

Evolution of the solutions φ1,2 and the action S0 with the
parameter K is shown in Fig. 4. The asymptotic behavior,

S0(K) =
{

1/6 − K/2 + . . . , K � 1;
1/32K + . . . , K � 1; (74)

is depicted by the dashed lines in Fig. 4(b).
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FIG. 4. Instanton in the small-grain geometry: (a) solutions φ1

(lower curve) and φ2 (upper curve) of the system (15) vs the parameter
K; (b) K dependence of the action S0(K) [dashed lines show the
asymptotic behavior, see Eq. (74)].

2. Instanton in the limit K → 0

In the limit K → 0 (i.e., far enough from the gap edge,
ε � ε∗), Eqs. (15) decouple, yielding a single equation

−∇̃2φ + φ − φ2 = 0 (75)

both for φ1(r̃) and φ2(r̃). This equation has a bounce so-
lution ϕ

(d)
inst(r̃) vanishing for r̃ → ∞ (in 1D, this solution

is known explicitly, while for other dimensions it can be
found numerically). The action (14) is minimized by taking
the trivial solution φ1(r̃) = 0 for the first replica and the
bounce solution, φ2(r̃) = ϕ

(d)
inst(r̃), for other replicas. The

dimensionless instanton action S0(0) = sd is then given by
the number [the value of s0 inferred from Eq. (74) is added
here for completeness]

sd ≡ 1

6

∫ [
ϕ

(d)
inst(r̃)

]3
dd r̃ =

{
1/6, d = 0,

43.7, d = 3.
(76)

Finally, with the help of Eq. (18), we obtain Eq. (22) for the
DOS, where

βd (η,μ) = 2sd

(2 cosh ψg)(6−d)/4

|F ′′(ψg)|(2+d)/4
. (77)

3. Instanton in the limit K → ∞
In the limit K → ∞ (i.e., close to the gap edge, ε � ε∗), the

RSB is weak: φ1 − φ2 → 0. Due to a remarkable dimensional
reduction [27,30], a nontrivial optimal fluctuation for φ(r̃) =
φ1(r̃) ≈ φ2(r̃) in d dimensions is just the bounce solution of
Eq. (75) in d − 2 dimensions [50]: φ(d)(r̃) = ϕ

(d−2)
inst (r̃). The

instanton action (14) in the limit K → ∞ then reads

S0(K) = cd/K, (78)

where cd is the dimensionality-dependent constant [27]
[the value of c0 inferred from Eq. (74) is added here for
completeness]:

cd = 2
∫ (

∂ϕ
(d−2)
inst (r̃)

∂r̃

)2
dd r̃
r̃2

=
{

1/32, d = 0,

24π/5, d = 3.
(79)

Substituting Eq. (78) into the action (18), we arrive at Eq. (21)
with

αd (η,μ) = 4cd

(2 cosh ψg)(8−d)/4

|F ′′(ψg)|d/4 sinh2 ψg

. (80)

D. Limits of the universal description

Here, we summarize conditions on ε which allow us to
derive the universal description near the gap edge developed
in Sec. IV B. This description is based on (i) an expansion of the
linear-in-trace action, defined by Eqs. (56) and (60), in powers
of (ψi − ψ0), and accompanying approximations leading to
the universal form, given by Eqs. (63) and (64), (ii) expansion
of the quadratic-in-trace action (52), leading to the universal
form of the replica-mixing term (66), (iii) simplification of the
full action (49) to the form (54), with only linear and quadratic
in trace terms being retained.
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Considering approximation (i), we immediately see that the
expansion in powers of (ψi − ψ0) requires

ε � ε1, ε1 ∼ |F ′′(ψg)|
cosh ψg

, (81)

with the characteristic value of ε1 estimated from Eqs. (65)
and (68). At the same time, one can check that approximation
(65) itself requires

ε � ε2, ε2 ∼ ε1

[tanh ψg + F ′′′(ψg)/F ′′(ψg)]2
. (82)

Actually, it can be shown that conditions (81) and (82)
also justify other approximations related to the linear-in-trace
action [neglecting the fourth-order (ψi − ψ0)4 term in Eq. (64)
and replacing F ′′(ψ0) at energy E by F ′′(ψg) at energy Eg].
For ε � ε1,ε2, the difference (ψi − ψ0) becomes larger than 1
and the hyperbolic functions in Eq. (60) should be retained in
their full form.

With parametrization (55) and (59), the quadratic-in-trace
action (52) at a single real energy E takes the form

S (2)
mag = −ns

2

∫
d3r [trR �(ψ)]2, (83)

with

�(ψ) = 1

2
ln(1 − μ cosh 2ψ) − 4γ cosh ψ. (84)

With this notation, approximation (ii) requiring that the cubic
(ψ1 − ψ2)3 term can be neglected in Eq. (66), imposes an
additional requirement

ε � ε3, ε3 ∼ ε1

[
�′(ψg)

�′′(ψg)

]2

. (85)

Finally, approximation (iii) implying that S (3)
mag can be

neglected, requires

ε � ε4, ε4 ∼ ε1

[
1

�′(ψg)

]2

. (86)

Thus the conditions (81), (82), (85), and (86) determine
the upper limit of applicability for our universal description
near the gap edge. On the other hand, the lower limit is set by
the condition Sinst � 1 ensuring validity of the saddle-point
approximation (this condition is violated in the fluctuation
region in very close vicinity of the mean-field gap edge).

V. SUBGAP STATES: LIMITING CASES

The results for the instanton action obtained above are valid
for arbitrary μ (strength of individual magnetic impurities)
and η (their concentration), and apply in the vicinity of any
of the three possible spectrum edges. The general recipe
for calculating the instanton action is outlined at the end of
Sec. II C.

In the Larkin-Ovchinnikov regime, at ε � ε∗, the subgap
DOS is determined by optimal fluctuations of the concentra-
tion of magnetic impurities characterized by the parameter
f (0) = ns[C(0) + C�(0)]2. The two terms here correspond
to fluctuations of the pair-breaking rate (η) and the order
parameter (�), both being induced by δns(r). The ratio of
these two contributions, C�(0)/C(0), calculated numerically
is presented in Fig. 5. It is positive for Eg1 and, quite
surprisingly, negative for Eg2 and Eg3, indicating that in the
latter cases fluctuations in η and � partially compensate each
other.

Different signs of C(0) and C�(0) for different gap edges
can be qualitatively understood by analyzing the mean-field
expressions for Eg available in the limiting cases: while Eg is
generally an increasing function of �, it decays with η for Eg1

[Eqs. (5) and (96)] and grows with η for Eg2 and Eg3 [Eqs. (96)
and (102)]. Since a local increase of δns(r) suppresses � and
enhances η, it leads to the decrease of Eg1, whereas its effect
on Eg2 and Eg3 is determined by the competition of two terms
with opposite signs. The two effects completely compensate
each other, C(0) + C�(0) = 0, at the red curve in Figs. 5(b)
and 5(c). In the language of optimal fluctuations, subgap states
originate from fluctuations of δns(r) which locally shift Eg to

FIG. 5. The ratio C�(0)/C(0) for the spectrum edges (a) Eg1, (b) Eg2, and (c) Eg3 as a function of η and μ at zero temperature. The
inset in panel (c) shows the region of small η and μ in logarithmic scale. Regions where gap smearing is mainly due to fluctuations of the
spin-flip scattering rate (of the order parameter) are shown by green (pink). The red line in (b) and (c) corresponds to C(0) + C�(0) = 0 when
both effects exactly compensate each other and f (0) = 0. In this case, gap smearing is completely determined by mesoscopic fluctuations of
potential disorder.
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the classically forbidden region. From the above analysis, it
follows that the optimal fluctuation in δns(r) is positive except
for narrow regions below the red curve in Figs. 5(b) and 5(c).
Further analytical progress is possible in certain limiting cases
discussed below.

Sufficiently far from the gap edge, at ε � ε∗ (while still
ε � ε1,ε2,ε3,ε4 so that our approximations are valid, see
Sec. IV D), the average DOS is given by Eq. (22). With
the expression (77) for βd (η,μ), we reproduce the results by
Marchetti and Simons [20,51]. This is only a far asymptotics
for the DOS due to very rare fluctuations of the potential
disorder, while the main part of the subgap DOS is determined
by the Larkin-Ovchinnikov-like contribution (21) due to
fluctuations in the concentration of magnetic impurities. The
effective instanton dimensionality below takes the values
d = 3 and d = 0.

A. Weak magnetic impurities (small μ)

Consider now the gapped AG regime (magnetic impurities
are weak, almost in the Born limit, so that there is only one
spectrum edge, Eg1):

μ � η2/3 < 1, (87)

corresponding to the bottom of the region (b) in Fig. 2. In this
limit, Eqs. (A1) and (A2) simplify and we obtain the standard
AG solution, cosh ψg ≈ 1/η1/3, with the gap EAG

g given by
Eq. (5) and F ′′(ψg) ≈ −3η1/3(1 − η2/3)1/2.

The parameter of the effective ROP model is given by
Eq. (25), where C�(0) is temperature-dependent. To simplify
the analysis, we consider the T = 0 case. Then using Eqs. (26)
and (27), we obtain

f (0)

�2Vξ

≈ 8μη1/3

gξ

(
1 + πη1/3

4 − πη

)2

, (88)

where the two terms in the brackets correspond to the
contribution of C(0) and C�(0), respectively. In the limit of
weak pair-breaking (η � 1), the value of f (0) is determined
mainly by C(0), which describes fluctuations of the overlap
of the states localized at different magnetic impurities due
to fluctuation in their concentration (fluctuations of η). On
the other hand, near the gap closing, at η ∼ 1, the order-
parameter fluctuations induced by magnetic impurities give
a comparable contribution [with a moderately large numerical
factor C�(0)/C(0) ≈ 3.6 as η → 1]. The ratio C�(0)/C(0)
for the spectrum edge Eg1 is shown in Fig. 5(a). With the help
of Eqs. (20) and (88), we obtain for the crossover energy:

ε∗ = 8μ2(1 − η2/3)3/2

3η2/3

(
1 + πη1/3

4 − πη

)4

. (89)

The main asymptotics of the DOS tail at ε � ε∗ is governed
by the action

Sinst = 16cd

6d/4(1 − η2/3)1+d/8

�2Vξ

f (0)
ε(8−d)/4, (90)

with f (0) given by Eq. (88). In the case of weak spin-flip
scattering, η � 1, Eq. (90) simplifies to

Sinst = cd

μ

2 · 6−d/4

η1/3
gξε

(8−d)/4 = ãd

nsVξ

η4/3
ε(8−d)/4, (91)

where ãd = 16 · 6−d/4cd . Equation (91) coincides (within a
few percent accuracy, probably due to numeric uncertainty in
the determination of the instanton action) with the result of
Silva and Ioffe [30], who considered the optimal fluctuation
of the concentration of magnetic impurities.

The far asymptotics of the DOS tail at ε � ε∗ is determined
by the instanton action

Sinst = sdgξ

4 · 6(2−d)/4

3η2/3(1 − η2/3)(2+d)/8
ε(6−d)/4, (92)

which exactly coincides with the result of Lamacraft and
Simons [21].

Analyzing the upper-bound applicability conditions for ε,
formulated in Sec. IV D, we find that the most restrictive one
is ε � ε2, while

ε∗
ε2

∼
(

μ

η2/3

)2

� 1. (93)

This means that our theory based on the universal description
(see Sec. IV B) can trace both the main asymptotics of the tail
due to magnetic disorder (at ε < ε∗) and its far asymptotics
due to potential disorder (at ε > ε∗).

The physical meaning of ε2 becomes transparent in the case
of weak spin-flip scattering, η � 1. In this limit, ε2 ∼ η2/3,
which is of the same order as the mean-field smearing of the
gap edge.

B. Small-concentration limit (small η)

Here, we consider the limit of small impurity concentration,

η2/3 � μ, (94)

corresponding to the left border of the region (d) in the phase
diagram of Fig. 2. In this regime, a narrow impurity band
is formed, and we study fluctuation smearing of its edges at
E → Eg1 − 0 and E → Eg2 + 0, as well as smearing of the
continuum hard-gap edge at E → Eg3 − 0.

1. Smearing of the impurity band (Eg1 and Eg2)

In the limit (94), the values of the spectral angles determin-
ing the mean-field edges of the impurity band are given by

ψg1,g2 ≈ 1

2
arccosh

1

μ
∓ (1 + μ)1/4

25/4μ3/4

√
η. (95)

The edges of the impurity band are then expressed as

Eg1,g2

�
≈ E0

�
∓ 23/4μ1/4

(1 + μ)3/4

√
η, (96)

where E0 is the energy of the single-impurity bound state,
Eq. (6). From Eq. (11), we find

F ′′(ψg1,g2) ≈ ∓ 211/4μ5/4

(1 + μ)3/4

1√
η
. (97)

Smearing of the impurity band determined by the action (18)
is thus symmetric in the main order.

As it is shown in Figs. 5(a) and 5(b) [see also Eqs. (26) and
(27)], C�(0)/C(0) � 1 for small η. Thus the contribution of
C�(0) to f (0) can be neglected at zero temperature [the exact
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condition η � μ1/2 is certainly satisfied in the limit (94)], and
we find

f (0)

�2Vξ

≈ 25/2μ3/2

gξ (1 + μ)1/2(1 − μ)
(98)

independently of the value of η. For the crossover energy, we
obtain

ε∗ = μ1/4√η

29/4(1 + μ)3/4
. (99)

Analyzing the upper-bound applicability conditions for ε,
formulated in Sec. IV D, we find that it is sufficient to require
ε � ε2, while ε2 ∼ ε∗. This means that our results based on
the universal description (see Sec. IV B) are valid only in the
regime of the main asymptotics, ε < ε∗. This asymptotics of
the DOS [Eq. (21)] is governed by the action

Sinst = cdgξ

(1 + μ)3/2+d/16

213d/16−3/2μ3/2+3d/16
ηd/8ε(8−d)/4. (100)

The instanton size LE [see Eq. (69)] taken at the energy E∗
corresponding to ε∗, turns out to be of the same order as L0.
Therefore the upper-bound condition ε < ε∗, required for the
validity of the universal description, implies that the instanton
size is larger than the localization length of the single-impurity
bound state.

It is instructive to evaluate the instanton action (100) at
ε ∼ (Eg2 − Eg1)/2�, which corresponds to the half-width of
the impurity band. Parametrically, this energy scale coincides
with ε∗, and the action can be estimated as

Sinst(ε∗) ∼ nsVξ

(
1 + μ

μ

)d/4

. (101)

This action should be large in order for the present theory to
be applicable at such energies. If the sample is thicker than ξ0

(three-dimensional case, d = 3), this condition is equivalent to
the requirement that there should be many magnetic impurities
within the localization volume, L3

0, of the single-impurity
bound state [see Eq. (7)]. Physically, this means good overlap
of the localized impurity states, which is required for the
formation of a well-defined impurity band.

2. Smearing of the continuum gap edge (Eg3)

Finally, we address fluctuation smearing of the edge of
the continuum spectrum, E → Eg3 − 0. In the limit (94), the
third, largest root of Eq. (A1) is given by eψg3 ≈ 4μ/η, and the
mean-field spectrum edge is

Eg3

�
≈ 1 + η2

8μ2
(102)

(note that Eg3 is slightly higher than �; this fact can be viewed
as a result of level repulsion between the impurity band and
the continuum). Then F ′′(ψg3) ≈ −η/2μ.

In the zero-temperature limit, the effective ROP correlator
(25) is given by

f (0)

�2Vξ

≈ η

2gξμ3

(
−η + 2πμ2

1 + μ +
√

1 − μ2

)2

, (103)

where the two terms in the brackets correspond to the
contribution of C(0) and C�(0), respectively. At not too

small μ, C�(0) dominates, whereas C(0) becomes the leading
contribution in a very narrow region μ4/3 � η2/3 � μ � 1,
see Fig. 5(c).

The crossover energy following from Eq. (103) is

ε∗ = 1

2μ2η2

(
η − 2πμ2

1 + μ +
√

1 − μ2

)4

. (104)

Equation (103) determines the main asymptotics of the
DOS tail at ε � ε∗:

Sinst = 24−d/4cd

�2Vξ

f (0)
ε(8−d)/4. (105)

The far asymptotics at ε � ε∗ is governed by the action

Sinst = 2(18−d)/4sdgξ

(
μ

η

)2

ε(6−d)/4. (106)

The outcome of the upper-bound applicability conditions for
ε, formulated in Sec. IV D, depends on the relation between
the two terms in the brackets of Eqs. (103) and (104).

In the regime μ4/3 � η2/3 � μ � 1 [very narrow green
strip in Fig. 5(c)], where the first term in the brackets of
Eqs. (103) and (104) dominates, we find that it is sufficient to
require ε � ε2, while ε2 ∼ ε∗ ≈ η2/2μ2. This means that our
results based on the universal description (see Sec. IV B) are
valid only in the regime of the main asymptotics, ε < ε∗. Note
that ε2 in this limit is of the same order as the dimensionless
distance between the gap edge Eg3 and �, see Eq. (102).

At the same time, the dimensionless energy scale η2/μ2

not only determines the difference between Eg3 and �, but
also sets the width of the DOS “coherence peak” above Eg3.
In the regime μ4/3 � η2/3 � μ � 1, this scale coincides
with ε∗, and making a shift of this order from Eg3 into the
subgap region, we find Sinst(ε ∼ ε∗) ∼ nsA3−dξ

d
0 ε

−d/4
∗ . The

requirement Sinst � 1 at such energies then implies that the
number of magnetic impurities within the instanton volume is
large.

In the regime η2/3 � μ4/3, where the second term in the
brackets of Eqs. (103) and (104) dominates [left side of the
pink region in Fig. 5(c)], we find that the most restrictive
condition is ε � ε4, while

ε∗/ε4 ∼ (μ2/η)6 � 1. (107)

This means that the universal description breaks down at ε ∼
ε4 � ε∗, where the subgap states are still due to fluctuations
of magnetic disorder.

Finally, if η ∼ μ2 so that the two terms in the brackets
of Eqs. (103) and (104) nearly compensate each other [red
line in Fig. 5(c)], we find that the most restrictive condition
is ε � ε3, while ε∗ � ε3. This means that the universal
description applies both for the main asymptotics of the tail
due to magnetic disorder (at ε < ε∗) and for its far asymptotics
due to potential disorder (at ε > ε∗).

VI. DISCUSSION

A number of experimental techniques can be used to probe
peculiarities of the DOS in superconductors with magnetic
impurities. The gap suppression, predicted by the AG theory
[3], was verified by means of tunneling between normal and
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superconducting electrodes [52,53]. The impurity band was
investigated by tunneling experiments with alloys (such as
PbMn) [54] and normal metal-superconductor bilayers [55],
and also by means of thermal transport in superconducting
films [56]. The observation of discrete levels associated with
a separate magnetic impurity was achieved in the scanning
tunneling microscopy experiments [8–11].

The width �tail of the DOS tail that needs to be exper-
imentally resolved, according to our predictions, depends
on the particular spectral edge. In order to get a feeling of
possible numbers, we consider the limit of weak magnetic
impurities and weak spin-flip scattering, μ � η2/3 � 1, with
only one spectrum edge, Eg1 (see Sec. V A). Rewriting the
main asymptotics of the DOS tail given by Eq. (91) in the
form

〈ρ(E)〉 ∝ exp

[
−
(

Eg − E

�tail

)(8−d)/4]
, (108)

we find the width of the tail,

�tail

�
=
(

6d/4μη1/3

2cdgξ

)4/(8−d)

. (109)

For a small superconducting grain (d = 0), with the pa-
rameters μ = 0.1, η = 0.2, gξ = 10 as an example, we obtain
�tail/� ≈ 0.2. We therefore expect that predicted tails of the
DOS can be measured with the help of modern experimental
techniques. In order to distinguish the edge smearing on top of
the thermal broadening, the temperature should be lower than
�tail.

VII. CONCLUSIONS

We have calculated the subgap DOS tails in diffusive su-
perconductors with pointlike magnetic impurities of arbitrary
strength described by the Poissonian statistics. Hard spectral
gaps obtained in the mean-field approximation are smeared due
to rare fluctuations producing localized quasiparticle states in
the classically forbidden region. The central question then is
to identify the fluctuator responsible for the formation of the
subgap states. In the present problem, there are two types of
such fluctuators: (i) random potential leading to mesoscopic
fluctuations (potential disorder), and (ii) concentration of
magnetic impurities (nonpotential disorder).

In the framework of the replica sigma-model approach,
the smearing of the hard mean-field gaps and the appearance
of the tail states is described by instantons with the broken
replica symmetry. In the vicinity of Egi , the general system
of instanton equations (62) can be simplified, taking the
universal form (15) typical for the ROP model. Following
the general analysis of the ROP model [27], we conclude that
the competition between potential and nonpotential disorder
is controlled by the parameter ε∗ [given by Eq. (20)]:
close to the edge, at ε � ε∗, the subgap states are due to
fluctuations of nonpotential disorder (LO regime), whereas the
far asymptotics of the DOS, at ε � ε∗, is due to fluctuations
of potential disorder [20]. In both regimes, we determine the
subgap DOS with the exponential accuracy [Eqs. (21) and (22)]
by generalizing previous results [15,20–22,27] to the case of
an arbitrary function F (ψ), which determines the mean-field
DOS [see Eqs. (9) and (10)].

In deriving the effective ROP correlation function f (q), we
obtain that fluctuating concentration of magnetic impurities
(nonpotential disorder) affects the DOS in two ways: directly,
via fluctuations of the pair-breaking parameter [see Eq. (26)],
and indirectly, via induced fluctuations of the order-parameter
field [see Eq. (27)]. In Sec. V, we demonstrate that depending
on the values of η and μ and on the particular edge considered,
both mechanisms may either enhance or suppress each other.
Both mechanisms require a finite impurity strength and are
absent in the Born limit (μ → 0). In the latter case, magnetic
disorder leads to the DOS smearing through the excitation
of the triplet modes, rendering the effective ROP parameter
f (0) extremely small [27]. On the contrary, for not very weak
magnetic impurities [see Eq. (24)], nonpotential disorder is not
that weak and can effectively compete with potential disorder,
in accordance with the general phenomenology of the ROP
model.

Our present analysis also unveils the limits of the universal
description based on the ROP model. With the function F (ψ)
[Eq. (11)] parametrized by the two parameters η and μ, it is
possible to have a situation when the perturbative expansion in
ε breaks down at some εi smaller than ε∗ (this is realized, e.g.,
for the edge Eg3 at η2/3 � μ4/3, see Sec. V B 2). In that case,
at ε ∼ εi the LO-type behavior of the DOS tail crosses over to
a different stretched-exponential behavior due to fluctuations
of the same nonpotential disorder, but with different nonlinear
terms.

Our reduction to the effective ROP model was performed
under assumption of an arbitrary function F (ψ). Therefore
it may be used for the analysis of other problems when the
hard gap in superconducting systems is smeared by disorder.
However, each time the effective correlation function f (0)
should be recalculated independently.

Finally, we emphasize that our treatment is limited to the
three- and zero-dimensional instanton geometries. Though
our reduction to the effective ROP model is valid for any
dimensionality d, formation of the subgap states in the
ROP model in the one- and two-dimensional cases should
be reconsidered due to the presence of multiple instanton
solutions [36].
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APPENDIX A: MEAN-FIELD SPECTRUM EDGES

Here, we discuss the mean-field spectrum edges in the
superconductor with magnetic impurities. As can be seen from
Figs. 2 and 3, there can be up to three different spectrum edges
at the same time. In the case of Fig. 2(d), we denote the lower
and the upper edges of the impurity band by Eg1 and Eg2,
respectively, while the lower edge of the continuum is denoted
by Eg3. Merging of the impurity band with the continuum, as
shown in the case 2(b), implies merging of Eg2 and Eg3, so that
there is only one spectrum edge, Eg1, left (the AG regime). In
the gapless regime 2(a), Eg1 turns to zero and this spectrum
edge disappears as well. Alternatively, closer to the unitary
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limit (μ → 1), Eg1 can turn to zero while the impurity band
is still present [case 2(c)], then there are two spectrum edges,
the upper edge of the impurity band, Eg2, and the lower edge
of the continuum, Eg3.

In order to find the spectrum edges Eg (here Eg represents
any of the spectrum edges discussed above), we can start from
Eq. (10) to express E(ψ). Then, changing ψ from 0 to ∞ along
the real axis, and keeping only (physically relevant) increasing
sections of the E(ψ) curve, we can find the domains of energy,
corresponding to zero DOS (the DOS is zero if a given energy
corresponds to a real ψ) [6,7]. Requiring E′(ψg) = 0, we find
an implicit equation for the angle ψg:

1 + μ(cosh 2ψg − 2)

(1 − μ cosh 2ψg)2
cosh3 ψg = 1

η
, (A1)

which determines the spectrum edge(s) Eg:

Eg

�
= tanh ψg − η

sinh ψg

1 − μ cosh 2ψg

. (A2)

Depending on the values of η and μ, the number of solutions
to Eq. (A1) varies from 0 to 3, corresponding to the regimes
(a)–(d) in Fig. 2.

The solid blue line in Fig. 2 corresponds to the appearance
of finite DOS at E = 0 (i.e., vanishing of Eg1). This implies
ψg = 0, and Eq. (A1) immediately yields a simple form μ =
1 − η for this line.

The dashed red line corresponds to the moment of merging
of the impurity band with the continuum. Two spectrum
edges [corresponding to solutions of Eq. (A1)], Eg2 and Eg3,
disappear at once, and this situation is described by equations
E′(ψg) = E′′(ψg) = 0, which leads to the following analytical
expression:

η = 2(2μ)3/2(1 +
√

3 − 2μ2)2

(3 + μ + 2
√

3 − 2μ2)3/2(2 − μ +
√

3 − 2μ2)
. (A3)

At small η and μ, corresponding to the lower left corner of the
diagram separating the regimes (b) and (d), this line behaves
as μ ∝ η2/3. In the upper right corner, it terminates at the point
(η,μ) = (4/33/2,1).

APPENDIX B: ORDER PARAMETER FLUCTUATIONS
DUE TO MAGNETIC IMPURITIES

1. General expression for C�(q)

Formation of the bound state on a single magnetic impurity
is accompanied by the suppression of the order parameter
in the vicinity of the impurity [7]. The spatial scale of this
suppression is given by the coherence length (either dirty or
clean, see Appendix B 2). For many impurities, �(r) becomes
a random field related to the density of magnetic impurities
ns(r) by means of Eq. (45). The corresponding kernel C�(q)
is evaluated in this Appendix.

We start our consideration with the action (36), where the
magnetic contribution Smag [Eq. (40)] should be decomposed
into the average S (1)

mag [Eq. (51)] and fluctuating component
δSmag = Smag − S (1)

mag proportional to δns :

S = S� + SD + S (1)
mag + δSmag[δns(r)]. (B1)

The first three terms have the homogeneous saddle-point
solution θ0ε, �0. Defining fluctuation θ1ε and �1 around the
saddle-point solutions according to

θa
ε (r) = θ0ε + θa

1ε(r), (B2a)

�a(r) = �0 + �a
1(r), (B2b)

we want to study the response of the order parameter to
a particular configuration of δns(r). The inhomogeneous
response �a

1(r) arises due to the last term in Eq. (B1). The
“bare” actionS� + SD + S (1)

mag, being expanded with respect to
fluctuations, produces the saddle-point value and the following
second-order contribution (below, we suppress the 0 subscript
of θ0 and �0 for brevity):

S (2)
0 = ν

T

∑
a

∫
dr

(
�a

1(r)
)2

λ

+ πν

2

∑
ε,a

∫
dr dr′ θa

1ε(r)(�ε)−1θa
1ε(r′)

− 2πν
∑
ε,a

∫
dr �a

1(r)θa
1ε(r) cos θε. (B3)

Here, �ε is the cooperon propagator (corresponding to varia-
tions of the spectral angle θ ) on top of the superconducting state
with magnetic impurities. In the momentum representation, it
has the following form:

�ε(q) = 1

Dq2 + 2E(ε)
, (B4)

where

E(ε) = ε cos θε + � sin θε + �η
μ + cos 2θε

(1 + μ cos 2θε)2
. (B5)

The homogeneous saddle-point equation for the spectral angle
θε reads

− ε

�
sin θε + cos θε − η

2

sin 2θε

1 + μ cos 2θε

= 0 (B6)

[this is the Matsubara-frequency version of Eq. (10), written
in terms of θ = π/2 + iψ].

In order to find the response of �1(r) to the field δns(r), we
expand the term δSmag to the first order in θ1 and obtain

�a
1(r) = −

∑
ε,b

μ sin 2θε

1 + μ cos 2θε

∫
dr′〈�a

1(r)θb
1ε(r′)

〉
0δns(r′).

(B7)

The average over the Gaussian action (B3) has the form〈
�a

1θ
b
1ε

〉
0q = δab

T

ν
L(q)�ε(q) cos θε, (B8)

where L(q) is the static longitudinal propagator of supercon-
ducting fluctuations:

L−1(q) = πT
∑

ε

[
sin θε

�
− 2 cos2 θε

Dq2 + 2E(ε)

]
. (B9)
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Equation (B7) then yields a replica-symmetric response (45)
with the kernel

C�(q) = μ

ν
L(q)T

∑
ε

sin 2θε cos θε

1 + μ cos 2θε

�ε(q). (B10)

2. �(r) suppression near a single magnetic impurity

As a byproduct of our consideration, we can find the
suppression of � in the vicinity of a single magnetic impurity.
For that, in Eq. (B10) we should take L(q) and �ε(q) on the
background of purely potential scattering (ns = 0, η = 0) with
cos θε = ε/E(ε), sin θε = �/E(ε), and E(ε) = √

ε2 + �2 [as
found from Eq. (B6)]. A single magnetic impurity (at r = 0)
is described by δns(q) = 1, and we get simply

�1(q) = −C�(q). (B11)

In the real space, the order parameter is suppressed on a length
scale of the order of ξ0 near the magnetic impurity.

The result (B11) derived in the diffusive limit can be easily
extended to the case of an arbitrary mean free path l by using
a more general expression in Eq. (B10) for the cooperon
propagator [15]:

�(l)
ε (q) =

τ arctan
(

ql

2τ
√

ε2+�2+1

)
/ql

1 − arctan
(

ql

2τ
√

ε2+�2+1

)
/ql

. (B12)

In particular, in the ballistic limit at Matsubara energies and
real q,

�(l=∞)
ε (q) = 1

vF q
arctan

(
vF q

2
√

ε2 + �2

)
, (B13)

where vF is the Fermi momentum, and we readily reproduce
the result by Rusinov [7]. The spatial scale of the order
parameter suppression is then the clean coherence length
vF /�.

3. Zero-temperature limit for C�(0)

The general expression for the kernel C�(q) is given by
Eq. (B10). The value of C�(0) at zero momentum can be
easily evaluated at T = 0 by switching from integration over
ε to integration over θε with the help of the relation

dε/dθε = −E(ε)/ sin θε, (B14)

derived from Eqs. (B5) and (B6) (note also that the spectral
angle θε is real in the Matsubara technique). Then, T

∑
ε(. . . )

in Eq. (B10) can be calculated as

1

π

∫ θ∗

0

dθ cos2 θ

1 + μ cos 2θ
= ϒ(μ,θ∗)

π
, (B15)

where we introduced the function

ϒ(μ,θ∗) =
θ∗ −

√
1−μ

1+μ
arctan

(√ 1−μ

1+μ
tan θ∗

)
2μ

, (B16)

and θ∗ is the value of the spectral angle at ε = 0:

θ∗ =
{

π/2, η + μ < 1,

arcsin
√

η2+8μ2+8μ−η

4μ
, η + μ > 1.

(B17)

Analogously, from Eq. (B9) we obtain an expression for the
fluctuation propagator in the limit of T = 0, q = 0:

L−1(0) = 1 − ηϒ(μ,θ∗). (B18)

Finally, substituting everything into Eq. (B10) and using
Eq. (4), we obtain

C�(0) = �

ns

ηϒ(μ,θ∗)

1 − ηϒ(μ,θ∗)
. (B19)

In the gapped phase [η + μ < 1; regions (b) and (d) in
Fig. 2], θ∗ = π/2 and ϒ(μ,θ∗) = (π/2)/(1 + μ +

√
1 − μ2).

With the help of Eq. (19), Eq. (B19) can be reduced to Eq. (27).
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