
PHYSICAL REVIEW B 93, 144422 (2016)

Quantum tunneling of the magnetic moment in the S/F/S Josephson ϕ0 junction
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We show that the S/F/S Josephson ϕ0 junction permits detection of macroscopic quantum tunneling and
quantum oscillation of the magnetic moment by measuring the ac voltage across the junction. Exact expression
for the tunnel splitting renormalized by the interaction with the superconducting order parameter is obtained.
It is demonstrated that magnetic tunneling may become frozen at a sufficiently large ϕ0. The quality factor of
quantum oscillations of the magnetic moment due to finite ohmic resistance of the junction is computed. It is
shown that magnetic tunneling rate in the ϕ0 junction can be controlled by the bias current, with no need for the
magnetic field.
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I. INTRODUCTION

Quantum tunneling of the magnetic moment has been the
subject of intensive research due to the fundamental interest
in the phenomenon and because of its potential applications
for quantum information technology. Early work focused on
nonthermal magnetic relaxation in nanoparticles [1]. Later
on, the focus switched to molecular magnets [2]. Due to
identical structure of the building blocks of crystals made
of magnetic molecules, they permit macroscopic studies of
quantum tunneling and quantum oscillations of molecular
magnetic moments. On the contrary, the reliable observation
and quantitative analysis of the quantum tunneling of the
magnetic moment in nanoparticles is hampered by the practical
impossibility of making identical nanoparticles. The best
samples available still have distribution of sizes and other
parameters of the particles within at least 20%. Due to the
exponential dependence of the tunneling rate on the size, this
translates into the distribution of tunneling rates within many
orders of magnitude.

Early on, the difficulty mentioned above prompted re-
searchers to look into the possibility of observing magnetic
tunneling in individual nanoparticles. Such measurements
of 10-nm ferrimagnetic particles of total spin S ∼ 105,
deposited on a nanobridge of a dc-SQUID, were pioneered by
Wernsdorfer et al. [3]. The energy barrier was controlled by
the external magnetic field. At very small barriers the evidence
of nonthermal magnetic relaxation below 1 K was obtained.
After a preliminary success, however, these efforts were largely
abandoned in favor of detecting spin tunneling in better
characterized individual magnetic molecules. Measurements
of transport current through magnetic molecules bridged
between conducting leads [4] and through molecules grafted
on carbon nanotubes [5] produced convincing evidence of the
effect. Observation and control of quantum tunneling of the
magnetic moment in nanoscale magnetic clusters, however,
remains a challenging experimental task.

In recent years broad interest has emerged in the inter-
action of spin polarization with superconducting currents in
nanostructures. Experimental and theoretical work in this area
has given rise to the field of superconducting spintronics
[6,7]. In S/F/S nanostructures ferromagnetism can affect
superconductivity via the magnetic field it generates [8–10].

A somewhat stronger influence of ferromagnetism on su-
perconductivity at the F/S interface may occur due to the
proximity effect [11]. The opposite influence of the su-
perconductivity on the ferromagnetism is typically weak.
This can be understood from the fact that the exchange
interaction responsible for magnetic ordering is typically of the
order of hundreds or thousands of kelvins while interactions
responsible for conventional superconductivity are in the ball
park of a few kelvins. One should notice, however, that
relativistic interactions responsible for the orientation of the
magnetic moment in ferromagnets are also in the kelvin, or
can be even in the subkelvin, range. Thus, the coupling of
the superconducting order parameter to the orientation of the
magnetic moment can, in principle, produce a formidable
torque on the moment.

Such a possibility was recently proposed by Buzdin who
noticed that spin-orbit interaction in a ferromagnet without
the inversion symmetry provides the coupling between the
direction of the magnetic moment and the superconduct-
ing order parameter [12,13]. Very generally, the symmetry
breaking results in the anomalous Josephson effect [14]. In
a noncentrosymmetric ferromagnetic junction, which Buzdin
called the ϕ0 junction, the time reversal symmetry is broken,
and the current-phase relation becomes I = Ic sin(ϕ − ϕ̃0),
where the phase shift ϕ̃0 is proportional to the component
of the magnetic moment perpendicular to the gradient of the
asymmetric spin-orbit potential. The theory of the anomalous
Zeeman effect and spin-galvanic effect in ϕ0 junctions has
been further developed in Refs. [15] and [16]. Experimental
realization of the ϕ0 junction has been recently reported
by Szombati et al. [17]. In this paper we argue that such
Josephson junction is ideally suited for the study of quantum
tunneling of the magnetic moment. The magnetic tunneling
would show in the ac voltage across the junction and
it can be controlled by the bias current applied to the
junction.

The paper is structured as follows. The model of spin
tunneling in a ϕ0 junction is formulated in Sec. II. Oscillations
of the voltage generated by coherent quantum oscillations of
the magnetic moment are derived in Sec. III. Damping of
quantum oscillations due to the finite resistance of the junction
is discussed in Sec. IV. Section V demonstrates the possibility
of the control of the magnetic tunneling rate by the bias current
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FIG. 1. Schematic picture of the Josephson ϕ0 junction.

applied to the junction. Section VI contains some numerical
estimates and suggestions for experiment.

II. THE MODEL

Following Buzdin [13] we consider an S/F/S Josephson ϕ0

junction depicted in Fig. 1, with the potential energy

U = EJ

{
1 − cos[ϕ − ϕ̃0(M)] − I

Ic

ϕ

}
+ UM (M). (1)

Here UM is the magnetic anisotropy energy with M being the
magnetization of the ferromagnetic layer, EJ = Ic�0/(2π )
is the Josephson energy with �0 being the flux quantum, ϕ̃0

depends on the direction of M, and I is the bias current applied
to the junction. With the gradient of the spin-orbit potential nor-
mal to the layer (that is, along the Z direction), ϕ̃0 is given by

ϕ̃0 = ϕ0

(
My

M0

)
, (2)

where M0 is the length of the magnetization and ϕ0 � 1
depends on the strength of spin-orbit interaction. Notice that
at I = 0 Eq. (1) has time-reversal symmetry because both φ

and M change sign under t → −t . Consequently, at I = 0 the
ground state is always degenerate with respect to two opposite
orientations of M determined by the magnetic anisotropy,
the same as in a conventional ferromagnet at zero external
magnetic field. This degeneracy can be removed by the bias
current that may, therefore, switch the direction of M [12,13].

Neglecting dissipation the equations of motion for ϕ and
M are [18,19]

C

(
�0

2π

)2

ϕ̈ = −∂U

∂ϕ
, (3)

dM
dt

= γ M × Beff, Beff = − 1

V

∂U

∂M
, (4)

with C being the capacitance of the junction and Beff(ϕ,M)
being the effective field acting on the magnetic moment. To
allow for quantum tunneling the junction must be of the small-
est possible size, in which case its capacitance C can be safely
neglected, so that Eq. (3) reduces to the condition of the energy
minimum for the Josephson phase. Imaginary-time solutions
of Eq. (4) correspond to the quantum tunneling of M [1].

In this paper we are making three main points. The
first is that the interaction between the magnetic moment
and the superconducting order parameter in the ϕ0 junction
renormalizes the tunnel splitting in a manner that can be
exactly computed and measured. The second point is that

the Josephson ϕ0 junction permits detection of the quantum
tunneling and quantum oscillations of the magnetic moment
by measuring the voltage across the junction. The third point
is that the ϕ0 junction allows one to control the magnetic
tunneling rate by the bias current. Note that the exact form of
spin-orbit interaction (Rashba, Dresselhaus, etc.) is important
for the concrete form of ϕ0(M); the rest is determined by the
symmetry of the magnetic anisotropy (crystal field).

III. AC VOLTAGE FROM QUANTUM OSCILLATIONS
OF THE MAGNETIC MOMENT

To illustrate the first two points we choose a typical form of
UM for a ferromagnetic layer that corresponds to the XY easy
magnetization plane with the Y easy axis in that plane,

UM = 1

2
K⊥V

(
Mz

M0

)2

− 1

2
K‖V

(
My

M0

)2

, (5)

V being the volume of the ferromagnetic layer, and K⊥,K‖
being the magnetic anisotropy constants. At I = 0 the classical
degenerate equilibrium corresponds to two opposite orienta-
tions of M along the Y axis, with the energy barrier between
them given by U0 = 1

2K‖V . We are interested in the quantum
oscillations of M between these two states.

Quantum tunneling of M is carried out by the instanton
solution of Eq. (4) in imaginary time, τ = it , together with the
condition ∂U/∂ϕ = 0. In the resulting semiclassical equations
ϕ is a slave variable that follows the imaginary-time dynamics
of M according to

sin

(
ϕ − ϕ0

My

M0

)
= I

Ic

, (6)

making the effect of the junction on M mathematically
equivalent to the effect of the external magnetic field

BI = ϕ0
EJ

M0

(
I

Ic

)
ŷ = ϕ0

�0I

2πM0
ŷ. (7)

At I = 0 the instanton solution of Eq. (4) for M =
M0(sin θ cos φ, sin θ sin φ, cos θ ) is given by [1,20,21]

sin φ = sinh(ω0τ )√
λ + cosh2(ω0τ )

, cos θ =
√

λ cos φ√
1 + λ sin2 φ

, (8)

where ω0 = [ω‖(ω‖ + ω⊥)]1/2, λ = ω‖/ω⊥, ω‖,⊥ = 2γK‖,⊥/

(M0V ). The instanton switches the magnetization from
M = −M0ŷ at τ = −∞ to M = M0ŷ at τ = +∞. Path
integration of exp(i

∫
dtL/�) around the instanton with the

Lagrangian

L = M0V

γ
φ̇(cos θ − 1) − U (ϕ,θ,φ) (9)

gives for the tunnel splitting

�0 = Ae−B, A ∼ �ω0, B = 2S ln(
√

λ + √
1 + λ), (10)

where S = M0V/(�γ ) is the total spin of the ferromagnetic
layer. Strong easy plane anisotropy (in which case λ � 1 and
B = 2

√
λS) is required to allow observation of tunneling of a

macroscopically large S.
In the low-energy domain the problem can be recast as a

two-state problem. Projecting Eq. (1) onto the two magnetic
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states with M along the Y axis one obtains a two-state
Hamiltonian

H = −EJ cos(ϕ − ϕ0σy) − �0

2
σx

= −EJ cos ϕ cos ϕ0 − beff · σ

2
(11)

with

beff = �0x̂ + 2EJ sin ϕ sin ϕ0ŷ. (12)

Here σ is a spin- 1
2 operator satisfying

�
dσ

dt
= i[H,σ ] = σ × beff . (13)

For the components of σ one has

�
dσx

dt
= −2EJ sin ϕ sin ϕ0σz, (14)

�
dσy

dt
= �0σz, (15)

�
dσz

dt
= 2EJ sin ϕ sin ϕ0σx − �0σy. (16)

These equations also hold for the expectation values of the
components of σ . It is easy to see that they conserve the length
of σ (|σ | = 1). Linearized near the ground state, σx = 1, in
the practical limit of |ϕ0| � 1 they describe oscillations of σy,z

and ϕ at the frequency ω = �eff/� with

�eff =
√

�0
(
�0 − 2EJ ϕ2

0

)
. (17)

Equation (17) shows that interaction of the magnetic mo-
ment with the superconducting order parameter renormalizes
the tunnel splitting, �0 → �eff . At 2EJ ϕ2

0 < �0 the system
prepared in a state with a definite orientation of M along the Y

axis begins to oscillate with the expectation values of My and
ϕ satisfying

My = M0 cos

(
�eff

�
t

)
, ϕ = ϕ0 cos

(
�eff

�
t

)
. (18)

Smallness of ϕ0 ensures practicality of such a regime.
Oscillations of ϕ generate the oscillating ac voltage across
the junction,

V = �

2e

dϕ

dt
= −ϕ0

�eff

2e
sin

(
�eff

�
t

)
. (19)

According to Eq. (17) a sufficiently large ϕ0 satisfying

2EJ ϕ2
0 > �0 (20)

freezes magnetic tunneling.

IV. DAMPING OF QUANTUM OSCILLATIONS DUE
TO THE FINITE RESISTANCE OF THE JUNCTION

Decoherence of quantum spin oscillations due to various
mechanisms has been studied at length. It involves interaction
with phonons, nuclear spins, and other microscopic degrees
of freedom. These effects are usually weak and are expected
to induce weak decoherence of quantum oscillations of
the voltage as well. Here we focus on the mechanism of
decoherence that is pertinent to the ϕ0 junction. It is related

to the finite ohmic resistance R that can be associated either
with the resistance of the junction itself or the resistance of the
junction together with a resistive shunt connected in parallel
with the junction. In the presence of the finite resistance the
dynamical equation for ϕ projected onto the two low-energy
spin states becomes

1

R

(
�0

2π

)2
dϕ

dt
= −∂U

∂ϕ
=

−EJ (sin ϕ cos ϕ0 − cos ϕ sin ϕ0σy). (21)

Linearized equations (14)–(16) and (21) read

1

R

(
�0

2π

)
dϕ

dt
= −Ic(ϕ − ϕ0σy), (22)

�
dσy

dt
= �0σz, �

dσz

dt
= Ic�0

π
ϕ0ϕ − �0σy. (23)

Writing ϕ,σy,z ∝ exp(−iωt) and equating the determinant of
the resulting equations to zero we get[−iω

R

(
�0

2π

)
+ Ic

][
(�ω)2 − �2

0

] + I 2
c �0

π
φ2

0�0 = 0. (24)

The solution is ω = �eff/� − i� with �eff of Eq. (17) and the
decoherence rate � � �eff/� given by

� =
(

ϕ2
0

�R

)(
�0

2π

)2
�eff

�
. (25)

It describes the decaying quantum oscillations of the voltage
when the ϕ0 junction was initially prepared in a state with a
definite orientation of M along the Y axis,

V = −ϕ0
�eff

2e
e−�t sin

(
�eff

�
t

)
. (26)

The corresponding quality factor of the oscillations is given
by

Q =
(

2π

�0

)2(
�R

ϕ2
0

)
. (27)

V. CONTROL OF MAGNETIC TUNNELING
BY THE BIAS CURRENT

In this section we are interested in the possibility of
controlling the rate of magnetic tunneling by the bias current
applied to the φ0 junction. As long as the dissipation is weak
it does not change the tunneling rate and can be neglected for
our purpose. To illustrate our point we consider the simplest
case of a uniaxial magnetic anisotropy with an easy axis along
the Z direction,

UM = −1

2
K‖V

(
Mz

M0

)2

, (28)

studied in Ref. [13]. With account of Eq. (6) one obtains
the following dynamical equations for the spherical angles
describing the orientation of M:

dφ

dt ′
= −

(
sin θ − I

I0
sin φ

)
cos θ

sin θ
, (29)

dθ

dt ′
= − I

I0
cos φ, (30)
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where t ′ = ωFMRt with ωFMR = γK‖/M0 being the frequency
of the ferromagnetic resonance at I = 0, and

I0 = K‖V
ϕ0EJ

Ic. (31)

Note that depending on the values of parameters entering
Eq. (31) I0 can be smaller or greater than Ic. At I = 0 the
degenerate ground state corresponds to the magnetic moment
parallel (θ = 0) or antiparallel (θ = π ) to the Z axis. At
I < I0 (assuming also that I < Ic) the degenerate ground
states are

φ = π

2
, sin θ = I

I0
, cos θ = ±

√
1 −

(
I

I0

)2

. (32)

At I0 < I < Ic the nondegenerate ground state is φ = π/2,

θ = π/2, corresponding to the magnetic moment looking in
the Y direction.

In the case of I0 < Ic, when I is close but smaller than I0,
the energy barrier between the degenerate states in Eq. (32) is
small,

U (I ) = 1

2
K‖V ε2, ε = 1 − I

I0
� 1. (33)

We are interested in the quantum tunneling between degenerate
classical ground states: φ = π/2,θ = π/2 ± √

2ε. Substitut-
ing θ = π/2 + β and φ = π/2 + α, with |α|,|β| � 1, into
Eqs. (29) and (30) one obtains

dα

dt ′
=

(
ε − β2

2

)
,

dβ

dt ′
= α. (34)

Here we have taken into account (see below) that α ∼ ε

while β ∼ √
ε, making α � β. Combining the two equations,

introducing β̄ = β/
√

2ε and the imaginary time τ̄ = it ′
√

ε/2,
we get

dβ̄

dτ̄
= 1 − β̄2, (35)

which has the instanton solution β̄ = tanh τ̄ ,

β(τ ) =
√

2ε tanh

(√
ε

2
ωFMRτ

)
, (36)

that switches β between −√
2ε at τ = −∞ to

√
2ε at τ = ∞.

Path integration of exp(i
∫

dtL/�) around the instanton
with the Lagrangian given by Eq. (9) yields for the tunnel
splitting � = Ae−B with

A ∼ �ωFMR

(
1 − I

I0

)1/2

, B = 4
√

2

3
S

(
1 − I

I0

)3/2

. (37)

Notice that the tunneling rate in this case depends exponen-
tially on the bias current. However, contrary to the previ-
ously studied case of biaxial magnetic anisotropy, quantum
oscillations of the magnetic moment between classically
degenerate states φ = π/2,θ = π/2 ± √

2ε formed by the
uniaxial anisotropy along the Z axis and a superconducting
current in the X direction (see Fig. 1) do not produce
oscillations or any other time dependence of ϕ. Consequently,

in the limit of infinite resistance, they do not generate any
voltage across the junction.

VI. DISCUSSION

We have investigated quantum dynamics of the magnetic
moment in a ferromagnetic Josephson junction with broken
inversion symmetry. Spin-orbit interaction in such a junction
results in the anomalous Josephson effect in which a phase
difference acquires an additional term ϕ0 that depends on the
magnetization. Quantum tunneling of the magnetic moment
has been studied. Renormalization of the tunnel splitting by
the interaction with the superconductor and decoherence due
to normal resistance of the junction have been computed.
We have shown that quantum oscillation of the magnetic
moment generates quantum oscillations of the voltage across
the junction through coupling to the superconducting phase
difference. This suggests an alternative method of detection
of coherent quantum oscillations of a spin as compared to
probing Rabi oscillations by electron spin resonance [22]. As
for any spin-coherence measurements such experiments are
challenging as they have to be conducted with the smallest
junctions at low temperatures in order to freeze thermal
superparamagnetic behavior. However, magnetic tunneling in
nanoparticles has been studied with the help of Josephson
junctions at millikelvin temperatures before [23]. Weak mag-
netic field of a nanoparticle deposited on the top of the bridge
of a nano-SQUID was measured. The ϕ0 junction has a much
stronger coupling of the magnetic moment to the Josephson
dynamics. It, therefore, provides an interesting novel tool for
the studies of magnetic tunneling.

The absolute value of the anomalous phase ϕ0 determines
the strength of the effect. It is given by [13] ϕ0 ≡ l(vso/vF ),
where vso/vF � 1 characterizes the strength of the spin-orbit
interaction, and l = 4LEex/(�vF ), with L being the length
of the ferromagnetic layer in the X direction in Fig. 1 and
Eex being the energy of the exchange interaction between
conducting electrons and localized ferromagnetic spins. Typ-
ically vso/vF ∼ 0.1, L < 10 nm, and Eex ∼ 100–500 K, so
ϕ0 should be in the range 0.01 < ϕ0 < 0.1. At ϕ0 ∼ 0.1
the quality factor of quantum oscillations of the voltage in
Eq. (27) is of order Q ∼ 0.1R(�). Thus, observation of the
oscillations requires R in excess of a few tens of ohms. At
ϕ0 ∼ 0.1 and �eff ∼ 0.1 K the initial (t = 0) amplitude of
the ac voltage would be in the microvolt range, while the
frequency, �eff/(2π�), would be in the GHz range.

Turning to the magnetic tunneling controlled by the bias
current, one way to detect this effect would be with the help
of a SQUID loop sensitive to a small Z component of the
magnetic moment that changes sign in the tunneling event [23].
Nano-SQUIDs permit detection of the change in the magnetic
moment of only a few Bohr magnetons. In our case the
change would be much greater. One problem for experiments
performed with single-domain magnetic nanoparticles and
molecules deposited on the bridge of a nano-SQUID was that
the energy barrier and the tunneling rate had to be controlled
by a strong magnetic field. This negatively affected the
performance of the SQUID. The advantage of the ϕ0 junction
is that the barrier and the tunneling rate can be accurately
controlled by the bias current, with no need for the external
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magnetic field. We have shown that the current can decrease the
tunneling barrier to a sufficiently small value that would make
the tunneling rate large enough to observe quantum switching
of the magnetic moment on the experimental time scale.
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