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Determination of the zero-field magnetic structure of the helimagnet MnSi at low temperature
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Below a temperature of approximately 29 K the manganese magnetic moments of the cubic binary compound
MnSi order to a long-range incommensurate helical magnetic structure. Here we quantitatively analyze a high-
statistic zero-field muon spin rotation spectrum recorded in the magnetically ordered phase of MnSi by exploiting
the result of representation theory as applied to the determination of magnetic structures. Instead of a gradual
rotation of the magnetic moments when moving along a 〈111〉 axis, we find that the angle of rotation between the
moments of certain subsequent planes is essentially quenched. It is the magnetization of pairs of planes which
rotates when moving along a 〈111〉 axis, thus preserving the overall helical structure.
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I. INTRODUCTION

The determination of the magnetic structure of a magnet is
usually performed using neutron diffraction through a two-step
process [1]. First the propagation wave vector of the structure is
determined. Then a model for the Bragg reflection intensities
leads to the magnetic structure. In some cases local probe
techniques can help in the refinement of a magnetic structure
previously inferred from neutron diffraction [2] or can even
precede it [3,4].

The MnSi compound has attracted attention since the first
determination of its helical magnetic structure by neutron
diffraction in the 1970s [5]. Recently the detection of a
skyrmion phase, first by neutron diffraction [6], has renewed
the interest in this system.

In this paper we report a rather detailed analysis of a
previously published field distribution measured by the muon
spin rotation technique (μSR) at 5 K for a single crystal of
MnSi [7]. This system is described as a helimagnet: while the
Mn magnetic moments are ferromagnetically aligned in planes
perpendicular to the magnetic propagation vector k ‖ 〈111〉,
the direction of the moments in subsequent planes slightly
rotates with a phase merely given by the scalar product k · r,
r denoting the position of a Mn atom in the crystal. Here
we show that an additional phase is present that distinguishes
the Mn atoms for which the local symmetry axis is or is not
collinear to k. As a consequence of this phase shift, the angle
between moments in some subsequent planes nearly vanishes,
i.e., they are in fact quasiferromagnetically aligned.

We shall first present some physical properties of MnSi in
Sec. II. This will allow us to introduce some notations to be
used later on. In the next section (Sec. III) we shall summarize
the recently published results obtained from a μSR study
of MnSi [7]. Section IV examines the magnetic structures
of MnSi compatible with its crystallographic symmetry. In
Sec. V, using a method powerful enough to account for a
local deviation of the magnetic structure from the well-known
slowly varying magnetic density, we describe the zero-field
(ZF) μSR spectrum recorded at 5 K for MnSi. A discussion

of our result which is compatible with published neutron
diffraction results is given in Sec. VI. Some conclusions are
gathered in Sec. VII. In Appendix A, using representation
theory as applied to the selection of magnetic structures
consistent with crystalline symmetries, we determine the
possible solutions for MnSi. Appendix B lists some basic
results from representation theory.

II. SOME PHYSICAL PROPERTIES OF MnSi

The room temperature crystal structure of the compound
MnSi was solved by Borén already in 1933 [8]. It crystallizes
in the cubic P 213 space group with the so-called B20 structure,
a structure with no center of symmetry. The lattice parameter
is alat = 4.558 Å. The Mn and Si atoms occupy 4a Wyckoff
positions. The coordinates of a 4a position depend on a single
parameter x, i.e., xMn = 0.138 and xSi = 0.845. Namely, the
four equivalent positions are (x,x,x), (x̄ + 1

2 ,x̄,x + 1
2 ), (x̄,x +

1
2 ,x̄ + 1

2 ), and (x + 1
2 ,x̄ + 1

2 ,x̄).
The MnSi structure can be viewed as a stacking of Mn

and Si planes perpendicular to a threefold axis, say [111].
Hereafter we will only consider the Mn sites. Two types of
alternatively stacked Mn planes can be distinguished. One is
constituted by atoms whose local trigonal axis is collinear to
[111]. The other type of planes contains the other atoms with a
local trigonal axis symmetry equivalent to, but different from
[111]. The atomic population of the two types of planes is in
the ratio 1:3. Interestingly the planes are not equidistant: two
interplanar distances are found, 1.179 and 1.453 Å.

The compound exhibits a magnetic transition near 29 K
with a magnetic moment of m = 0.4 μB per Mn atom at
low temperature [9]. The first order nature of the transition
has slowly emerged, with some theoretical evidence already
presented in 1980 [10]. From neutron diffraction it has been
established that the Mn magnetic moments form a left-handed
helix with an incommensurate propagation vector k� parallel
to one of the four threefold axes [5,11]. Here the subscript �

labels one of the four k domains as discussed below. Since
k� ≡ k � 0.35 nm−1 at low temperature, the helix period
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is 2π/k = λh � 18 nm. In the assumed structure, the Mn
magnetic moments are ferromagnetically aligned in planes
perpendicular to k� while, from one plane to the following,
their orientation slightly rotates. The mathematical expression
for the magnetic moment at position r is given by the formula

m�(r) = m[cos(k� · r + α0)a� − sin(k� · r + α0)b�]. (1)

Here α0 is a phase and a� and b� are two orthonormal vectors
orthogonal to k�, with k�/k = a� × b�.

The system is characterized by a hierarchy of three
energy scales comprising a dominant ferromagnetic sym-
metric exchange interaction, a relatively weak antisymmetric
Dzyaloshinski-Moriya (DM) exchange interaction caused by
the lack of a center of symmetry in the crystal structure, and
a much weaker anisotropic exchange interaction fixing the
direction of propagation of the magnetic spiral along one of the
cube diagonals. Taking into account the two exchange terms
and following Ginzburg and Landau, the free energy functional
can be expanded in terms of a slowly varying magnetic density
consistent with Eq. (1) [10,12].

Two types of magnetic domains exist. To the four branches
of the star formed by the magnetic structure propagation
vectors correspond four K domains, i.e., k� can be collinear to
[111], [1̄1̄1], [1̄11̄], or [11̄1̄]. We will denote these domains by
the letters A, B, C, and D, respectively, i.e., � ∈ {A,B,C,D}.
We also need to pay attention to the three spin domains, i.e., for
a given K domain there are three S domains corresponding to
a phase equal to α0, α0 + 2π/3 and α0 + 4π/3 in Eq. (1),
respectively. However, since we are interested in the field
distribution measured by μSR we shall integrate over a phase ζ

varying between 0 and 2π to account for the incommensurate
structure; see Sec. V for full details. This implies that the
existence of the S domains has no influence on the computed
μSR field distribution.

III. SUMMARY OF RECENT μSR RESULTS

Two main experimental results were obtained from a recent
μSR study of single crystalline MnSi [7].

The angular dependence of the muon precession frequen-
cies measured with a transverse field in the paramagnetic phase
matches expectation for the muon in a 4a position with xμ+ =
0.532. Hence, to a crystallographic 4a position correspond four
different muon magnetic sites that we will identify with the
index η, namely η ∈ {1,2,3,4}. The aforementioned angular
dependence reflects the symmetry of the dipole field acting on
the muon spin and arising from the lattice of Mn moments.
In addition to this field, an isotropic hyperfine contact field,
described by a constant to be defined in Sec. V, was measured.
In the following we will denote r0,sη

the vector distance
between the muon site sη and the origin of the cubic lattice.
Remarkably, there is no need to invoke a muon-induced effect
to understand the paramagnetic data.

Building on the determination of the crystallographic muon
position, the field distribution derived from a Fourier transform
of a high statistic ZF spectrum at 5 K was discussed in terms
of the distribution of fields expected for the magnetic density
of Eq. (1). It was argued that muons in three out of the four
muon magnetic sites sense identical field distributions typical
of an incommensurate helical magnetic structure. These are

continuous field distributions characterized by a lower and a
upper cut-off fields [13]. On the other hand, muons at the
remaining site probe a unique third field irrespective of the
phase α0 of the helix. The shape of the distribution deduced
from the Fourier transform of the asymmetry spectrum
supports this analysis. However, the difference between the
lower cutoff and third fields was predicted to be 2 mT, whereas
a splitting of 4.8 (4) mT was measured [7]. This discrepancy
cannot be resolved by tuning the values of xμ+ or of the
hyperfine contact field. Surprisingly, we found that it can be
resolved assuming k to be approximately twice as large as
expected from neutron diffraction [5]. This cannot be correct
and therefore suggests the description of the magnetic density
as expressed by Eq. (1) to be a too rough approximation for
the description of the ZF μSR spectrum.

IV. SYMMETRY ANALYSIS OF THE MAGNETIC
STRUCTURE OF MnSi

The magnetic density in Eq. (1) was obtained from a
Ginzburg-Landau expansion valid at a mesoscopic scale. At a
microscopic level it may be worth paying attention to each of
the four Mn atoms in a unit cell. We specify the position of
a unit cell by the cubic lattice vector i and that of a Mn atom
within a cell by dγ with γ ∈ {I,II,III,IV}. For a magnetic
moment at position i + dγ we write

m�,i+dγ
= m

{
cos

[
k� · (i + dγ ) + α�,dγ

]
a�,dγ

− sin
[
k� · (i + dγ ) + α�,dγ

]
b�,dγ

}
. (2)

Here we still assume helices, i.e., a�,dγ
and b�,dγ

are orthogonal
unit vectors, but we recognize that they may be different for the
four Mn atoms in a cell. In fact, we are only looking for a small
deviation from the magnetic structure predicted by Eq. (1). To
proceed further we need to determine the magnetic structures
compatible with the crystallographic symmetry. This is done in
Appendix A where it is shown that two kinds—the so-called
orbits—of Mn atoms must be considered; see also Fig. 1.
From this symmetry analysis we basically get two results.

a

b

c

O
[111] - -[111]

- -[111]

- -[111]

I

II

III

IV

FIG. 1. Position of the Mn atoms in the crystal structure of MnSi.
The three edges a, b, and c of the unit cubic cell of origin O are
indicated. For each position, the dashed line represents the direction
of the local threefold symmetry axis indicated nearby. Considering
domain A with propagation wave vector kA parallel to [111], the
local threefold symmetry axis is parallel to kA only for Mn site I.
This explains why site I on the one hand and sites II, III, and IV on
the other hand belong to two different orbits.
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(i) A phase shift φ between the moments in the two orbits
may exist, the value of which is not provided by the analysis.
(ii) For a given K domain the plane defined by a�,dγ

and b�,dγ

may not be orthogonal to k�. The rotation axis n�,dγ
= a�,dγ

×
b�,dγ

is defined by its polar θ and azimuthal ϕ angles in the
MnSi cubic frame. Hence, compared to the magnetic structure
given by Eq. (1), we have three additional free parameters. In
the fitting procedure we will allow them to deviate from the
original values φ0 = 0, θ0 = 54.7◦, and ϕ0 = 45◦ for which
the structure corresponds to Eq. (1). In fact, we will find that
the experimental data are well accounted for with θ = θ0 and
ϕ = ϕ0, i.e., we can choose a�,dγ

and b�,dγ
independent of γ ,

and three of the four α�,dγ
phases to be equal. We shall set

them to 0 without loss of generality. Only a relative change φ

of the fourth phase is necessary to obtain a proper fit.

V. ANALYSIS OF THE ZF μSR SPECTRUM OF MnSi AT 5 K
BASED ON SYMMETRY

Before proceeding to the analysis of the ZF μSR spectrum,
we expose a few experimental details. The crystal used for this
experiment was grown by the Czochralski method and already
served for μSR experiments reported in Ref. [14]. The ZF
spectrum of interest in the present study was recorded with the
GPS spectrometer of the Swiss Muon Source (Paul Scherrer
Institute, Villigen, Switzerland). The [111] crystal axis was set
collinear to the muon initial polarization.

The standard ZF setup was used for this experiment [15].
Polarized muons are implanted in the sample under study
and the evolution of the muon spins is monitored through
the anisotropic decay of the muon. The decay positrons are
detected in two counters set parallel and antiparallel to the
muon initial polarization. Conventionally, the Cartesian axis
defining this initial polarization is labeled Z.

A. The polarization function

Solving the Larmor equation for a muon spin S submitted
to a magnetic field B, the evolution of the spin Z component
is readily obtained:

SZ(t)

S
=

(
BZ

B

)2

+
[

1 −
(

BZ

B

)2]
cos(γμBt). (3)

Here γμ = 851.6 Mrad s T−1 is the muon gyromagnetic ratio.
Considering an experiment in the ordered phase of MnSi,

the spontaneous field B0,�,sη
to which the muon at site sη in

magnetic domain � is submitted is the vectorial sum of the
dipole field arising from the Mn magnetic moments and a
contact field that we will assume isotropic. The quantity SZ(t)
is obviously given by Eq. (3) after setting B = B0,�,sη

.
Since B0,�,sη

linearly depends on the Mn magnetic moments
it can be expressed in terms of a product of a coupling tensor G
with a magnetic moment vector. For reasons that will become
clear later, it is of interest to recast to the Fourier components
of the magnetic moments. Following Ref. [15] we write [16]

B0,�,sη
= μ0

4π

1√
ncvc

×
∑

γ

∑
q

Gdγ ,q,sη
m�,dγ ,q exp

(−iq · r0,sη

)
, (4)

where

m�,dγ ,q = 1√
nc

∑
i

m�,i+dγ
exp[−iq · (i + dγ )] (5)

is the Fourier component of the sublattice magnetic moment.
Here μ0 is the permeability of free space, nc is the number
of unit cells in the crystal under study, and vc = a3

lat is their
volume. The sum in Eq. (4) is performed over the q vectors of
the first Brillouin zone (BZ).

Reflecting the two contributions to B0,�,sη
we write Gdγ ,q,sη

as the sum of the dipolar and contact field terms:

Gdγ ,q,sη
= Ddγ ,q,sη

+ Hdγ ,q,sη
. (6)

The dipolar term Ddγ ,q,sη
is computed following the Ewald

summation technique [17–19]. This method ensures a fast and
exact evaluation of the lattice sum which is slowly converging.
The element of Cartesian components β1β2 of the contact field
tensor is written

H
β1β2
dγ ,q,sη

=
∑

i

′ndHδβ1β2 exp
[
iq · (

i + dγ + r0,sη

)]
, (7)

where nd = 4 is the number of Mn sublattices in the cubic
crystal structure. The assumed isotropy of the contact field
interaction is enforced by the Kronecker symbol δβ1β2 . Recog-
nizing the short range character of this interaction the sum is
limited to the first nearest neighbors to the muon. In fact, in the
MnSi crystal structure there are rμ = 3 nearest neighbors to the
muon belonging to different sublattices. Therefore, for a given
muon site and a γ sublattice, the sum in Eq. (7) is limited to 1
or even 0 term. In the numerical investigation to be presented
below we have performed tests including the second nearest
neighbors. No significant change to our results has been found.
From the study performed in the paramagnetic phase [7],
and the value Acont,TF = −0.9276 (20) mol/emu derived with
different notations for the contact field coupling, we obtain
rμH/4π = −1.052 (2) for the relevant parameter describing
the contact field [15]. This value will be our starting value for
the fit of the spectrum in the ordered phase.

For future reference we provide an expression for m�,dγ ,q.
Introducing m�,i+dγ

given by Eq. (2) into Eq. (5) and using
the equality

∑
i exp[i(q − q′) · i] = ncδq,q′ , where δq,q′ is a

Kronecker symbol, we derive

m�,dγ ,q = δq,±k�
m�,dγ ,±, (8)

with

m�,dγ ,± =
√

ncm

2
exp

(±iα�,dγ

)(
a�,dγ

± ib�,dγ

)
. (9)

For a typical μSR experiment millions of muons are im-
planted in the compound under study. Considering the muons
localized at site sη, the set of vector positions is {(r0,sη

+ i),
i ∈ DL}, where i is a vector of the cubic direct lattice (DL).
Owing to the incommensurate nature of the magnetic order,
the set of values spanned by the factor exp[∓ik� · (r0,sη

+ i)]
entering in Eq. (4) is {exp[∓i(k� · r0,sη

+ ζ )], ζ ∈ [0,2π [}
[13,15]. Here we have recognized that m�,dγ ,q vanishes unless
q = ±k� [Eq. (8)]. The distribution of fields at the muon sites
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is therefore obtained after an integration over ζ :

Dv(B) = 1

2π

∫ 2π

0
δ
[
B − B0,�,k�,sη

(−k� · r0,sη
− ζ

)

−B0,�,−k�,sη

(
k� · r0,sη

+ ζ
)]

dζ, (10)

where the expression for

B0,�,q,sη
(ψ) = μ0

4π

1√
ncvc

∑
γ

Gdγ ,q,sη
m�,dγ ,q exp(iψ) (11)

is derived from Eq. (4). The polarization function associated
with muons stopped at site sη in domain � reads

PZ,�,sη
(t) =

∫
SZ(t)

S
Dv(B) d3B. (12)

For an expression of the muon polarization function PZ(t) we
must average over the four muon sites and over the four K
domains, i.e.,

PZ(t) = 〈
PZ,�,sη

(t)
〉
�,η

. (13)

Before considering the experimental data we need to
include the effect of three physical phenomena which have
not been addressed in the model described so far. The muon
spin-lattice relaxation evidenced in previous experiments (see,
e.g., Refs. [14,20]) is not accounted for in our model. For this
purpose we will phenomenologically include an exp(−λZt)
factor to the first term in the right-hand side of Eq. (3), where
λZ is the spin-lattice relaxation rate. The other phenomena to
be addressed concern sources of damping of the oscillations
associated with the second term in Eq. (3). Besides the
magnetic field of electronic origin described by Eq. (4), the
muons are sensitive to the field produced by the nuclei of
the compound. Assuming the components of this field to be
Gaussian distributed with a root-mean-square �N, we add
an exp(−γ 2

μ�2
Nt2/2) factor to the second term in Eq. (3).

Finally, the coherence length of the magnetic structure is not
infinite. In diffraction experiments this leads to Bragg spots
with an extension which can overpass the width given by
the diffractometer resolution. In μSR this contributes to a
further damping of the oscillations. To account for this effect
we replace the discrete sum over BZ in Eq. (4) by an integral
and the Kronecker symbol in Eq. (8) by a continuous function.
Altogether we perform the substitution

SZ(t)

S
−→

(
BZ

B

)2

exp(−λZt) +
[

1 −
(

BZ

B

)2]

× exp

(
−γ 2

μ�2
Nt2

2

)
cos(γμBt) (14)

in Eq. (12) and replace Eq. (10) with

Dv(B) = vc

(2π )4

∫
BZ

∫ 2π

0

× δ
[
B − B0,�,q,sη

(−q · r0,sη
− ζ

)]
dζ dq. (15)

In addition we make the following change in Eq. (11):

m�,dγ ,q −→ f�,dγ
(q − k�)m�,dγ ,+ + f�,dγ

(q + k�)m�,dγ ,−.

(16)

TABLE I. Parameters found for the magnetic structure of MnSi.
The three rows correspond to the parameters defined in the main text,
their units, and their values with uncertainties, respectively. When no
uncertainty is provided, it means that the parameter was fixed in the
final fitting procedure.

k m θ ϕ φ ξ

(nm−1) (μB) (deg) (deg) (deg) (nm)

0.35 0.385 (1) 54.7 45 −2.04 (11) 258 (35)

Here we have defined

f 2
�,dγ

(q) ∝ ξ 3

1 + ξ 2q2
, (17)

where ξ is the coherence length of the magnetic structure. This
form for f�,dγ

(q) corresponds to a Lorentzian line shape for
the intensity recorded around a Bragg position in a scattering
measurement [21]. To ensure convergence of the integral in
Eq. (15), we limit the integration to −5 � ξqβ � 5 for each
Cartesian component β of q and compute the proportionality
constant in Eq. (17) accordingly. As before, PZ(t) is computed
from PZ,�,sη

(t) using Eq. (13).

B. Results

A μSR asymmetry spectrum a0P
exp
Z (t) recorded on a crystal

of MnSi and originally presented in Ref. [7] is displayed in
Fig. 2. The so-called initial asymmetry a0 is an instrumental
parameter. While only a0P

exp
Z (t) is fitted, it is useful to consider

the field distribution associated with its oscillating part, namely
Dosc(B). It is pictured in Fig. 3. Three characteristic fields
are found: 91 mT for the isolated peak and 96 and 207 mT,
respectively, for the lower and upper cutoffs of the continuous
part of the distribution [22]. The solid line in Fig. 2 results from
a fit of the model described in Sec. V A, with P

exp
Z (t) = PZ(t)

and the magnetic structure given in Appendix A, to the data.
The solid line in Fig. 3 is a byproduct of the fit of the asymmetry
spectrum. Tables I and II display all the numerical parameters

0 0.5 1
−0.05

0

0.05

0.1

0.15

0.2

t (µs)

a
0P

ex
p

Z
(t

)
(-

)

MnSi

5 K, ZF

FIG. 2. A ZF μSR asymmetry spectrum recorded at 5 K with the
Z axis parallel to a threefold axis of a crystal of MnSi. The solid line
is the result of a fit discussed in the main text.
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−1

)
MnSi
5 K, ZF

FIG. 3. Field distribution associated with the oscillating part of
the asymmetry of Fig. 2. The solid line results from a fit explained in
the main text.

of the model. Notice that the two angles θ and ϕ in Table I
have values corresponding to magnetic moments rotating in
planes perpendicular to local threefold axes. We found that any
deviation from these values leads the model to substantially
depart from the data. Therefore, in the final fit, these two values
were fixed. Similarly we found that any small change in the
muon position from the value xμ+ = 0.532 derived from the
aforementioned paramagnetic phase data results in a worse fit
of the data.

Interestingly, assuming λZ to be independent of the ori-
entation of the Z axis, i.e., the initial muon polarization, we
have numerically checked that PZ(t) is independent of this
orientation. This means that the same Dosc(B) would have
been measured for another orientation of the initial muon
polarization in the crystal lattice or in a powder sample.

VI. DISCUSSION

We have successfully described the μSR asymmetry spec-
trum with the periodicity of the helix as given by neutron
diffraction and a Mn magnetic moment consistent with the
value extracted from magnetization measurements. The three
characteristic fields are reproduced thanks to the finite φ value.
The moments are still rotating in planes perpendicular to local
threefold axes. These are the main results of this work. In Fig. 4
a picture of the magnetic structure in domain A is provided.
While the φ value seems small at first sight, it has a noticeable
effect on the magnetic structure: the moments of orbit 1 align
nearly ferromagnetically with the moments belonging to the
second-nearest Mn plane (orbit 2)—recall that the Mn planes

TABLE II. Parameters other than those shown in Table I used in
the fitting procedure.

a0 rμH/4π λZ �N

(–) (–) (μs−1) (mT)

0.250 (3) −1.04 (1) 0.020 (2) 1.11 (4)

(a) [111]

1
2

(b) [111]

1
2

(c) [111]
orbit 2

orbit 1

(d) [111]
orbit 2
orbit 1

FIG. 4. Schematic view of the MnSi magnetic structure. We
consider domain A: the propagation vector is parallel to the
cubic [111] axis. The structure can be viewed as a stacking of
ferromagnetic Mn planes perpendicular to the [111] direction.
Each plane consists of Mn atoms belonging exclusively either to
orbit 1 or to orbit 2. The corresponding planes are alternatively
stacked. The arrows represent the magnetic moments of the atoms:
the same color is used for atoms belonging to a given plane.
(a) Perspective view of the currently accepted structure, as given by
Eq. (1), and (b) of the magnetic structure deduced from the current
study. Instead of being approximately oriented halfway between
two orbit 2 planes, the orientation of the moments in orbit 1 is
close to that of the plane situated below it. The (small) difference
between the two configurations is most easily seen by comparing
the relative orientation of the moments enlightened by the circle.
A more spectacular view is provided by (c) and (d), corresponding
respectively to (a) and (b), where the moments are projected in a plane
perpendicular to [111]. Looking head on, the rotation is clockwise
when moving along the positive direction, in accord with the magnetic
structure chirality. In (d) the original orientation (dashed line) of the
moments in orbit 1 is shown together with the orientation deduced
from the present study (full line). For the sake of clarity the angular
variations are amplified by a factor 10 in all panels, and the cubic unit
cell is drawn in (a) and (b).

are not equidistant. In fact, the rotation of the Mn moments in
these planes is almost locked.

The large coherence length is a signature of a well ordered
magnetic structure in our sample. The nuclear damping is
large relative to the value �N = 0.36 mT computed in the Van
Vleck high-field limit [15,23]. However, intrinsic and muon-
induced electric-field gradients acting on the 55Mn isotope [24]
are expected to increase �N [25]. It is known that these
gradients are strong as fingerprinted by the easily observed
avoided-level-crossing resonances [26]. A description of these
electric-field gradient is still missing. It may explain the
observed misfit on the left-hand side wing of the main peak;
see Fig. 3.

The hyperfine field parameter H deduced from the analysis
of spectra recorded in the paramagnetic state in Ref. [7] and
here at 5 K are very close. This implies that we do not
observe any rebuilding of the Fermi surface when crossing
the magnetic phase transition. In addition, this consistency
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is an argument against any muon-induced magnetic structure
change. The parameter rμH/4π is negative as always found.
It is somewhat larger in absolute value than for metallic
rare-earth or elemental ferromagnets [15]. This may not
be surprising given the correlated nature of the conduction
electrons in MnSi.

The λZ value measured here is much smaller than reported
in Ref. [14] for the same sample. This is obvious looking
directly at the asymmetry spectrum, i.e., without any fitting.
The origin of the discrepancy is unknown, but the previously
published value was extracted from spectra recorded in a small
longitudinal field (5 mT). We note that an unexplained rise of
λZ under the application of a small field has already been
reported for other magnetic compounds [27–30].

Our analysis of the μSR spectrum has been performed as-
suming the most frequent handedness for the crystal structure.
However the two enantiomers exist [31] and interestingly it
was shown that the crystalline structure handedness determines
the chirality of the magnetic structure [31]. Assuming our
sample to crystallize in the other chirality, i.e., xMn = 1 −
0.138 = 0.862, and accordingly changing the muon site to
xμ+ = 1 − 0.532 = 0.468, we have checked that an identical
field distribution and therefore the same PZ(t) as shown
in Figs. 3 and 2 are obtained, only provided the magnetic
chirality is changed [32]. Therefore, our conclusion about
the MnSi magnetic structure is independent of the crystal
handedness.

The question which naturally arises is the detection of
the deviation from the originally inferred helical structure in
neutron scattering measurements. In a usual experiment with
unpolarized neutrons, the scattered intensity is proportional to
the square modulus of the magnetic structure factor component
perpendicular to the scattering vector. Recalling the magnetic
structure factor definition

Fmag
� (Q) =

∑
i,γ

m�,i+dγ
exp[iQ · (i + dγ )], (18)

and using Eqs. (5), (8), and (9) we have

Fmag
� (k�) =

∑
γ

m�,dγ ,−k�

= m
√

nc

2
[3 + exp(−iφ)]

(
a�,dI − i b�,dI

)
, (19)

since we have found the vectors a�,dγ
and b�,dγ

to be
independent of γ . From φ = 0 to −2.04◦, the relative change in
|Fmag

� (k�)|2 is about 3 × 10−4, making the magnetic structure
derived from μSR very difficult to evidence in a neutron
scattering measurement.

As mentioned in Sec. II, Eq. (1) is derived in the long
wavelength limit. Starting from the same physical picture, but
performing a microscopic analysis of the interaction energies,
a deviation of the magnetic structure from a simple helix
has been predicted [33] with signatures reminiscent of those
obtained from our representation theory analysis: a dephasing
of the magnetic moments in the two orbits and a rotation
plane not perpendicular to k� for the moments of the atoms
in orbit 2. We observed the first signature but not the second.
Further studies of Hamiltonian models with an extension of
the exchange interaction beyond nearest neighbors could be

considered [34]. Since the phase shift between certain subse-
quent planes is almost locked, we already infer the following
consequence. To the interactions generally considered for the
description of the magnetic properties of MnSi, namely the
ferromagnetic exchange, DM, and weak anisotropic exchange
interactions, listed here by order of decreasing magnitude, an
additional term must contribute to the spin Hamiltonian. Since
the presence of this term strongly decreases the effect of the
DM interaction on the Mn atoms in one of the orbits it is not
negligible.

When submitted to a relatively modest magnetic field, MnSi
exhibits a so-called magnetic skyrmion lattice phase [6]. This
phase which is observed in the vicinity of the paramagnetic
phase has been found in several other systems. While it oc-
cupies a small pocket of the temperature-magnetic field phase
diagram of bulk materials, its stability range is dramatically
enhanced in thin films [35], suggesting the use of magnetic
skyrmions in spintronics applications [36]. The skyrmion
phase being described as a superposition of three helices akin
to the ZF structure of MnSi, our result might have implications
on the detailed arrangement of the spins in this phase and its
interpretation in terms of microscopic interactions. Signatures
of the phase shift could be found in the phason excitations
predicted for a skyrmion lattice [37].

VII. CONCLUSIONS

We have managed to analyze a zero-field μSR spectrum of
MnSi using a conventional method dealing with the reciprocal
space, combined with representation theory as applied to the
determination of a magnetic structure. We find the phase of the
moments in orbit 1 to be shifted by about −2 deg relative to
the value given by the scalar product k · r. The neutron
diffraction results do not contradict our finding. However,
given the small shift found for MnSi, it is a challenge to confirm
it using a scattering method. Assuming such a phase slip to
exist in other helimagnets, it might be easier to evidence it in
a system with a shorter helix pitch.

Remarkably, there is no need to introduce exotic physics
such as a muon-induced effect to understand the measured
asymmetry spectrum. Only time-honored physics is required.
In addition to a limit set on the knowledge of the magnetic
structure of MnSi, this study provides a framework for
the detailed refinement of subtle spin textures from μSR
data.
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APPENDIX A: MAGNETIC STRUCTURE OF MnSi AS
DETERMINED BY REPRESENTATION THEORY

In the same way as vibrations in crystals are classified
according to normal modes determined by representation
theory [38], magnetic structures compatible with crystal
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symmetry can be inferred with the help of the same theory;
see Ref. [39] and references therein.

The magnetic structures consistent with the crystal symme-
tries of MnSi have been determined using available codes.
In particular, the basis vectors for the symmetry-allowed
magnetic structures have been calculated with BasIREPS
(FullProf) [40] and SARAh [41] which give consistent
results.

Here we shall explain the method focusing on the A domain
with kA = k(1,1,1)/

√
3. Results for the other three K domains

can be obtained by simple symmetry arguments; a few hints
will be given at the end of the section.

For the GkA group which is made up of symmetry elements
that do not change kA we find the Mn sites to split into two
so-called crystallographic orbits. The first orbit only contains
MnI. The other three Mn atoms are in the second orbit. This
classification can be physically understood since only for MnI

is the [111] axis going through that position and is parallel to
kA; see Fig. 1.

For the first orbit we find three one-dimensional irreducible
representations (irreps). Only one of them corresponds to
a left-handed helix. Because our aim is to find a solution
closely related to the currently accepted magnetic structure,
we select this irrep. Introducing two unit vectors aA,dI

and bA,dI , perpendicular to each other and to k̂A ≡ kA/kA

such that (aA,dI , bA,dI , k̂A) is a right-handed basis, we
write

mA,i+dI = m
{

cos
[
kA · (i + dI) + αA,dI

]
aA,dI

− sin
[
kA · (i + dI) + αA,dI

]
bA,dI

}
. (A1)

For definiteness we will set

aA,dI = 2−1/2(1,1̄,0), bA,dI = 6−1/2(1,1,2̄), (A2)

which does not impose restrictions to the set of allowed
structures. Symmetry has nothing to say about αA,dI . The shift
φ of this phase relative to the phase of moments in orbit 2
is of the uttermost importance for the description of the ZF
spectrum. Remarkably, at position I the helix is as predicted
by the Ginzbug-Landau expansion, since Eq. (A1) corresponds
mutatis mutandis to Eq. (1) with α0 = αA,dI .

For the second orbit we find three one-dimensional irreps.
Let us first consider the results for one of them:

mA,i+dII = cos[kA · (i + dII)]UA,dII

− sin[kA · (i + dII)]VA,dII ,

mA,i+dIII = cos[kA · (i + dIII) − 2π/3]UA,dIII

− sin[kA · (i + dIII) − 2π/3]VA,dIII ,

mA,i+dIV = cos[kA · (i + dIV) − 4π/3]UA,dIV

− sin[kA · (i + dIV) − 4π/3]VA,dIV . (A3)

We have introduced six vectors: UA,dγ
and VA,dγ

for γ ∈
{II,III,IV}. They are written

UA,dII = (u1,u2,u3), VA,dII = (v1,v2,v3),

UA,dIII = (u2,u3,u1), VA,dIII = (v2,v3,v1),

UA,dIV = (u3,u1,u2), VA,dIV = (v3,v1,v2), (A4)

and therefore depend only on six real numbers ui and vi ,
for i ∈ {1,2,3}. The method to derive these components is

explained in Appendix B. In fact, the UA,dγ
(VA,dγ

) vector
from a line in Eq. (A4) is obtained from the corresponding
vector of the previous line after rotation RkA (4π/3) of angle
4π/3 around kA: for instance, UA,dIV is the image of UA,dIII

through rotation RkA (4π/3).
Sticking to our guideline we impose the same m value

for the magnetic moment at the four different Mn sites in
the crystal. Keeping with our previous notations we therefore
set

UA,dγ
= m aA,dγ

, VA,dγ
= m bA,dγ

, (A5)

for γ = II, III, and IV, where aA,dγ
and bA,dγ

are two
orthogonal unit vectors. Contrary to the first orbit [Eq. (A1)]
and to the Ginzburg-Landau derivation [Eq. (1)], the vector
nA,dγ

≡ aA,dγ
× bA,dγ

is not necessarily collinear to kA. Still,
when it is collinear it is easily shown that the magnetic structure
described by Eq. (1) can be obtained from Eqs. (A3) and (A5)
after appropriately setting aA,dγ

and bA,dγ
in the plane defined

by a�=A and b�=A.
To proceed we need to specify the three Euler angles

defining the orthonormal basis (aA,dII ,bA,dII ,nA,dII ) in the
crystallographic cubic axes. In line with the restriction we
prescribe for the possible magnetic structures, we will set the
third Euler angle defining the orientation of aA,II and bA,dII

in the plane perpendicular to nA,dII to the value imposed by
Eq. (1). Then the remaining free parameters are the polar and
azimuthal angles θ and ϕ for nA,dII . We have

aA,dII = (sin ϕ,−cos ϕ,0),

bA,dII = (cos ϕ cos θ, sin ϕ cos θ,−sin θ ). (A6)

The basis relative to Mn sites III and IV is then directly
obtained from Eqs. (A4) and (A5). When ϕ = ϕ0 = 45◦
and θ = θ0 = 54.7◦ [more precisely cos θ0 = (1/3)1/2 and
sin θ0 = (2/3)1/2], and φ ≡ αA,dI = 0, we recover the known
magnetic structure.

We do not consider the other irreps of the second orbit since,
in the limit of vectors aA,dγ

and bA,dγ
perpendicular to kA they

lead to a dephasing of ±2π/3 of the moments at the three Mn
sites, a solution at strong variance from Eq. (1).

In summary, while limiting ourselves to a magnetic
structure closely related to the currently accepted one, the
application of representation theory provides us with two
directions for relaxing the structure given by Eq. (1). The
first one is the absence of link between the phase of the
magnetic moment at site I with that at sites II, III, and IV.
The second is the fact that the moments at sites II, III, and IV
might not rotate in a plane perpendicular to kA. The spectrum
refinement is made allowing the three angles to vary from
their initial values ϕ = ϕ0 = 45◦, θ = θ0 = 54.7◦, and φ =
φ0 = 0.

A similar inference can be carried out for the K domains B,
C, and D. For example, for domain B with kB = k(1̄,1̄,1)/

√
3

site MnII belongs to the first orbit and MnIII, MnIV, and MnI

to the second orbit. Representation theory allows us to derive
equations similar to Eqs. (A1) and (A3) for the two orbits and
Eq. (A4) must be adapted for a rotation around kB. Restricting
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the possible magnetic structures as for domain A, equations
similar to Eq. (A6) are obtained. And so on for domains
C and D.

APPENDIX B: PHYSICS OF THE SECOND ORBIT

Here we discuss the physics of the second orbit. The
natural representation � can be decomposed in terms of
the weighted sum of three one-dimensional irreps such that
� = 3�1 ⊕ 3�2 ⊕ 3�3. From the results of the two available
computer codes, we have written down three systems of
linear equations for the symmetry-allowed basis functions for
domain A. The three functions F1,i for �1 in terms of the
spin coordinates Sα

A,dγ
, with α = {x,y,z}, follow the system of

three linear equations:

F1,1 = Sx
A,dII

+ S
y

A,dIII
+ Sz

A,dIV
,

F1,2 = S
y

A,dII
+ Sz

A,dIII
+ Sx

A,dIV
, (B1)

F1,3 = Sz
A,dII

+ Sx
A,dIII

+ S
y

A,dIV
.

In the same way, for �2 we derive

F2,1 = Sx
A,dII

+ aS
y

A,dIII
+ a∗Sz

A,dIV
,

F2,2 = S
y

A,dII
+ aSz

A,dIII
+ a∗Sx

A,dIV
, (B2)

F2,3 = Sz
A,dII

+ aSx
A,dIII

+ a∗Sy

A,dIV
,

and finally for �3 we get

F3,1 = Sx
A,dII

+ a∗Sy

A,dIII
+ aSz

A,dIV
,

F3,2 = S
y

A,dII
+ a∗Sz

A,dIII
+ aSx

A,dIV
, (B3)

F3,3 = Sz
A,dII

+ a∗Sx
A,dIII

+ aS
y

A,dIV
.

Here we have introduced the phase factor a = − exp(iπ/3) =
exp(i4π/3).

If MnSi orders magnetically, for example, according to
the first irrep, the coordinates for the second and third
irreps vanish, i.e., F2,i = F3,i = 0 [39]. This leads to the
determination of the components of SA,dγ

in terms of unknown
constants. This rule is obviously valid for the three irreps.
Equations (A3) and (A4) in Appendix A are derived in this
way. By definition, SA,dγ

= UA,dγ
+ iVA,dγ

.
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Neubauer, R. Georgii, and P. Böni, Skyrmion lattice in a chiral
magnet, Science 323, 915 (2009), see also erratum to this article.
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[14] A. Yaouanc, P. Dalmas de Réotier, P. C. M. Gubbens, S. Sakarya,
G. Lapertot, A. D. Hillier, and P. J. C. King, Testing the
self-consistent renormalization theory for the description of the
spin-fluctuation modes of MnSi at ambient pressure, J. Phys.:
Condens. Matter 17, L129 (2005).

[15] A. Yaouanc and P. Dalmas de Réotier, Muon Spin Rotation,
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longitudinal and transverse spin dynamics of paramagnets near
Tc by zero-field μSR measurements, Europhys. Lett. 21, 93
(1993).

[19] M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Clarendon, Oxford, 1954).

[20] M. Takigawa, H. Yasuoka, Y. J. Uemura, R. S. Hayano, T.
Yamazaki, and Y. Ishikawa, Positive muon spin rotation and
relaxation studies in the helically ordered state of MnSi, J. Phys.
Soc. Jpn. 49, 1760 (1980).

[21] P. G. de Gennes and J. Villain, Fluctuations d’aimantation
et opalescence critique, J. Phys. Chem. Solids 13, 10
(1960).

144419-8

http://dx.doi.org/10.1088/0953-8984/12/36/311
http://dx.doi.org/10.1088/0953-8984/12/36/311
http://dx.doi.org/10.1088/0953-8984/12/36/311
http://dx.doi.org/10.1088/0953-8984/12/36/311
http://dx.doi.org/10.1007/s100510050585
http://dx.doi.org/10.1007/s100510050585
http://dx.doi.org/10.1007/s100510050585
http://dx.doi.org/10.1007/s100510050585
http://dx.doi.org/10.1103/PhysRevB.91.134425
http://dx.doi.org/10.1103/PhysRevB.91.134425
http://dx.doi.org/10.1103/PhysRevB.91.134425
http://dx.doi.org/10.1103/PhysRevB.91.134425
http://dx.doi.org/10.1016/0038-1098(76)90057-0
http://dx.doi.org/10.1016/0038-1098(76)90057-0
http://dx.doi.org/10.1016/0038-1098(76)90057-0
http://dx.doi.org/10.1016/0038-1098(76)90057-0
http://dx.doi.org/10.1126/science.1166767
http://dx.doi.org/10.1126/science.1166767
http://dx.doi.org/10.1126/science.1166767
http://dx.doi.org/10.1126/science.1166767
http://dx.doi.org/10.1103/PhysRevB.89.184425
http://dx.doi.org/10.1103/PhysRevB.89.184425
http://dx.doi.org/10.1103/PhysRevB.89.184425
http://dx.doi.org/10.1103/PhysRevB.89.184425
http://dx.doi.org/10.1063/1.1708422
http://dx.doi.org/10.1063/1.1708422
http://dx.doi.org/10.1063/1.1708422
http://dx.doi.org/10.1063/1.1708422
http://dx.doi.org/10.1088/0022-3719/13/31/002
http://dx.doi.org/10.1088/0022-3719/13/31/002
http://dx.doi.org/10.1088/0022-3719/13/31/002
http://dx.doi.org/10.1088/0022-3719/13/31/002
http://dx.doi.org/10.1143/JPSJ.54.2975
http://dx.doi.org/10.1143/JPSJ.54.2975
http://dx.doi.org/10.1143/JPSJ.54.2975
http://dx.doi.org/10.1143/JPSJ.54.2975
http://dx.doi.org/10.1016/0038-1098(80)91004-2
http://dx.doi.org/10.1016/0038-1098(80)91004-2
http://dx.doi.org/10.1016/0038-1098(80)91004-2
http://dx.doi.org/10.1016/0038-1098(80)91004-2
http://dx.doi.org/10.1103/PhysRevB.65.024444
http://dx.doi.org/10.1103/PhysRevB.65.024444
http://dx.doi.org/10.1103/PhysRevB.65.024444
http://dx.doi.org/10.1103/PhysRevB.65.024444
http://dx.doi.org/10.1088/0953-8984/17/13/L01
http://dx.doi.org/10.1088/0953-8984/17/13/L01
http://dx.doi.org/10.1088/0953-8984/17/13/L01
http://dx.doi.org/10.1088/0953-8984/17/13/L01
http://dx.doi.org/10.1103/PhysRevB.47.796
http://dx.doi.org/10.1103/PhysRevB.47.796
http://dx.doi.org/10.1103/PhysRevB.47.796
http://dx.doi.org/10.1103/PhysRevB.47.796
http://dx.doi.org/10.1209/0295-5075/21/1/016
http://dx.doi.org/10.1209/0295-5075/21/1/016
http://dx.doi.org/10.1209/0295-5075/21/1/016
http://dx.doi.org/10.1209/0295-5075/21/1/016
http://dx.doi.org/10.1143/JPSJ.49.1760
http://dx.doi.org/10.1143/JPSJ.49.1760
http://dx.doi.org/10.1143/JPSJ.49.1760
http://dx.doi.org/10.1143/JPSJ.49.1760
http://dx.doi.org/10.1016/0022-3697(60)90122-0
http://dx.doi.org/10.1016/0022-3697(60)90122-0
http://dx.doi.org/10.1016/0022-3697(60)90122-0
http://dx.doi.org/10.1016/0022-3697(60)90122-0


DETERMINATION OF THE ZERO-FIELD MAGNETIC . . . PHYSICAL REVIEW B 93, 144419 (2016)

[22] Only two spontaneous fields have been observed for asymmetry
spectra recorded at lower statistics [42–44], i.e., the field at
96 mT is absent.

[23] J. H. Van Vleck, The dipolar broadening of magnetic resonance
lines in crystals, Phys. Rev. 74, 1168 (1948).

[24] There is only one isotope for Mn and 29Si, the only nonspinless
isotope of Si, has a spin 1/2.

[25] O. Hartmann, Quadrupole Influence on the Dipolar-Field Width
for a Single Interstitial in a Metal Crystal, Phys. Rev. Lett. 39,
832 (1977).

[26] R. Kadono, J. H. Brewer, K. Chow, S. R. Kreitzman, Ch.
Niedermayer, T. M. Riseman, J. W. Schneider, and T. Yamazaki,
Critical behavior of the electric-field gradient in MnSi studied by
muon level-crossing resonance, Phys. Rev. B 48, 16803 (1993).
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ato, and G. Lapertot, Absence of magnetic phase separa-
tion in MnSi under pressure, Phys. Rev. B 81, 060412(R)
(2010).

144419-9

http://dx.doi.org/10.1103/PhysRev.74.1168
http://dx.doi.org/10.1103/PhysRev.74.1168
http://dx.doi.org/10.1103/PhysRev.74.1168
http://dx.doi.org/10.1103/PhysRev.74.1168
http://dx.doi.org/10.1103/PhysRevLett.39.832
http://dx.doi.org/10.1103/PhysRevLett.39.832
http://dx.doi.org/10.1103/PhysRevLett.39.832
http://dx.doi.org/10.1103/PhysRevLett.39.832
http://dx.doi.org/10.1103/PhysRevB.48.16803
http://dx.doi.org/10.1103/PhysRevB.48.16803
http://dx.doi.org/10.1103/PhysRevB.48.16803
http://dx.doi.org/10.1103/PhysRevB.48.16803
http://dx.doi.org/10.1103/PhysRevLett.96.127202
http://dx.doi.org/10.1103/PhysRevLett.96.127202
http://dx.doi.org/10.1103/PhysRevLett.96.127202
http://dx.doi.org/10.1103/PhysRevLett.96.127202
http://dx.doi.org/10.1103/PhysRevB.84.184403
http://dx.doi.org/10.1103/PhysRevB.84.184403
http://dx.doi.org/10.1103/PhysRevB.84.184403
http://dx.doi.org/10.1103/PhysRevB.84.184403
http://dx.doi.org/10.1103/PhysRevB.86.094424
http://dx.doi.org/10.1103/PhysRevB.86.094424
http://dx.doi.org/10.1103/PhysRevB.86.094424
http://dx.doi.org/10.1103/PhysRevB.86.094424
http://dx.doi.org/10.1103/PhysRevB.91.104427
http://dx.doi.org/10.1103/PhysRevB.91.104427
http://dx.doi.org/10.1103/PhysRevB.91.104427
http://dx.doi.org/10.1103/PhysRevB.91.104427
http://dx.doi.org/10.1103/PhysRevB.81.012408
http://dx.doi.org/10.1103/PhysRevB.81.012408
http://dx.doi.org/10.1103/PhysRevB.81.012408
http://dx.doi.org/10.1103/PhysRevB.81.012408
http://dx.doi.org/10.1103/PhysRevB.85.014421
http://dx.doi.org/10.1103/PhysRevB.85.014421
http://dx.doi.org/10.1103/PhysRevB.85.014421
http://dx.doi.org/10.1103/PhysRevB.85.014421
http://dx.doi.org/10.1103/PhysRevB.88.214402
http://dx.doi.org/10.1103/PhysRevB.88.214402
http://dx.doi.org/10.1103/PhysRevB.88.214402
http://dx.doi.org/10.1103/PhysRevB.88.214402
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1038/nnano.2013.29
http://dx.doi.org/10.1038/nnano.2013.29
http://dx.doi.org/10.1038/nnano.2013.29
http://dx.doi.org/10.1038/nnano.2013.29
http://dx.doi.org/10.7566/JPSJ.83.104711
http://dx.doi.org/10.7566/JPSJ.83.104711
http://dx.doi.org/10.7566/JPSJ.83.104711
http://dx.doi.org/10.7566/JPSJ.83.104711
http://dx.doi.org/10.1016/0304-8853(81)90081-0
http://dx.doi.org/10.1016/0304-8853(81)90081-0
http://dx.doi.org/10.1016/0304-8853(81)90081-0
http://dx.doi.org/10.1016/0304-8853(81)90081-0
http://dx.doi.org/10.1016/0921-4526(93)90108-I
http://dx.doi.org/10.1016/0921-4526(93)90108-I
http://dx.doi.org/10.1016/0921-4526(93)90108-I
http://dx.doi.org/10.1016/0921-4526(93)90108-I
http://dx.doi.org/10.1016/S0921-4526(99)01722-6
http://dx.doi.org/10.1016/S0921-4526(99)01722-6
http://dx.doi.org/10.1016/S0921-4526(99)01722-6
http://dx.doi.org/10.1016/S0921-4526(99)01722-6
http://dx.doi.org/10.1103/PhysRevB.42.6515
http://dx.doi.org/10.1103/PhysRevB.42.6515
http://dx.doi.org/10.1103/PhysRevB.42.6515
http://dx.doi.org/10.1103/PhysRevB.42.6515
http://dx.doi.org/10.1038/nphys488
http://dx.doi.org/10.1038/nphys488
http://dx.doi.org/10.1038/nphys488
http://dx.doi.org/10.1038/nphys488
http://dx.doi.org/10.1103/PhysRevB.81.060412
http://dx.doi.org/10.1103/PhysRevB.81.060412
http://dx.doi.org/10.1103/PhysRevB.81.060412
http://dx.doi.org/10.1103/PhysRevB.81.060412



