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Hubbard models with nearly flat bands: Ground-state ferromagnetism driven by kinetic energy
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We consider the standard repulsive Hubbard model with a flat lowest-energy band for two one-dimensional
lattices (diamond chain and ladder) as well as for a two-dimensional lattice (bilayer) at half filling of the flat
band. The considered models do not fall in the class of Mielke-Tasaki flat-band ferromagnets, since they do
not obey the connectivity conditions. However, the ground-state ferromagnetism can emerge, if the flat band
becomes dispersive. To study this kinetic-energy-driven ferromagnetism we use perturbation theory and exact
diagonalization of finite lattices. We find as a typical scenario that small and moderate dispersion may lead
to a ferromagnetic ground state for sufficiently large on-site Hubbard repulsion U > Uc, where Uc increases
monotonically with the acquired bandwidth. However, we also observe for some specific parameter cases, that
(i) ferromagnetism appears at already very small Uc, (ii) ferromagnetism does not show up at all, (iii) the critical
on-site repulsion Uc is a nonmonotonic function of the bandwidth, or that (iv) a critical bandwidth is needed to
open the window for ground-state ferromagnetism.
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I. INTRODUCTORY REMARKS

Explaining ferromagnetism from a simple model of itin-
erant electrons such as the standard Hubbard model is a
long-standing problem in condensed matter theory. Among
many routes leading to ferromagnetism, the so-called flat-band
ferromagnetism of Mielke and Tasaki [1–3] is of special
interest. On one hand, many results for Mielke-Tasaki flat-
band ferromagnetism have been obtained rigorously. On the
other hand, this mechanism is important for material design,
since it opens interesting possibilities to obtain ferromagnetic
materials in which magnetic atoms are completely missing. In
brief, the mechanism of this kind of ferromagnetism looks as
follows [1–3]. Flat-band ground states (i.e., the one-particle
states from completely dispersionless band which is the
lowest-energy one) can be considered as one-particle states
which are localized within small trapping cells on a lattice
[4–6]. Therefore, exact many-electron ground states at low
electron densities can be constructed simply by filling the
traps. Importantly, in the case of connected (overlapping)
traps, electrons being in symmetric spin states avoid the on-site
Hubbard repulsion, and, as a result, these states remain within
the ground-state manifold for U > 0 with a U -independent
energy. Thus, the (degenerate) ground state consists of a
set of ferromagnetic clusters. If the electron density exceeds
a threshold value, a macroscopic wrapping ferromagnetic
cluster appears and ferromagnetism dominates the ground-
state properties of thermodynamically large systems [1–3,5,7–
9]. This ferromagnetism is robust against perturbation, i.e.,
the ferromagnetic state remains stable for slightly perturbed
models which have a moderate change in the hopping integrals
leading to a slightly dispersive one-electron band [10,11].
Further development of these ideas provides also rigorous
examples of metallic ferromagnetism, see Ref. [12] and
references therein.

The above description of the emergence of ground-state
ferromagnetism is based on the assumption, that the trapping
cells have common sites, i.e., the so-called connectivity

condition is satisfied for the localized one-electron states. In
other words, the localized states overlap and this was essential
for the proofs in Refs. [1] and [2]. On the other hand, there are
lattices which have lowest-energy flat bands but the traps do
not have common sites (nonoverlapping or isolated traps) [13].
Those flat-band lattices cannot support the above described
mechanism for ferromagnetism, since the trapped electrons
cannot be in contact with each other, and, thus are unable to
correlate. Hence, flat-band Hubbard models with isolated traps
do not exhibit ferromagnetism at zero temperature, rather there
is a macroscopically degenerate (i.e., the degeneracy grows
exponentially with the system size) ground-state manifold,
where paramagnetic states dominate [14–17]. However, the
macroscopically degenerate ground-state manifold is very
sensitive to small perturbations which may lead to subtle
effects of violations of the flat-band conditions. This scenario
has been investigated in Ref. [18] for the specific example
of the frustrated diamond chain. It was demonstrated that
the macroscopically degenerate ground-state manifold with
all traps filled by electrons results in a nonmagnetic zero-
temperature phase [15,18], but small deviations from the
ideal flat-band geometry of hopping integrals (which makes
the flat band slightly dispersive) lead to a fully polarized
ferromagnetic many-electron ground state if U > Uc. The
value of Uc depends on the strength of the deviation from
the ideal geometry. Note that another route to ground-state
ferromagnetism without connectivity condition in the flat band
was discussed in Ref. [19].

In the present paper we broaden and generalize our
previous study on the dispersion-driven ferromagnetism in
flat-band Hubbard systems [18]. As already mentioned above,
those studies referred to one particular lattice, namely to an
azuritelike [20] diamond-Hubbard chain. Moreover, analytical
calculations presented in Ref. [18] were restricted to the
fourth-order perturbation theory for a two-cell chain. In the
present study we extend the analytical calculations to higher-
orders perturbation theory this way validating the previous
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results. More importantly, we consider other lattices with
isolated trapping cells, the one-dimensional ladder and the
two-dimensional bilayer. These new lattices have more degrees
of freedom to constitute deviations from the ideal flat-band
geometry. Thus, we will demonstrate that the dispersion-
driven ferromagnetism is a rather general mechanism to
establish ferromagnetic ground states in Hubbard models
having isolated trapping cells in the flat-band limit. In addition
to the analytical perturbation theory, we also perform extensive
exact-diagonalization studies. Our analysis will, on one hand,
confirm the conclusions derived from the study of the Hubbard
diamond chain [18]. On the other hand, we will discuss further
consequences of deviations from the ideal flat-band geometry
on ferromagnetism. In particular, we find that in some cases
the required threshold on-site repulsion Uc may be quite
small, whereas in other cases ferromagnetic ground states do
not appear at all. There are also cases when ferromagnetic
ground states appear only if the acquired bandwidth exceeds
a threshold, and then Uc becomes a nonmonotonic function
of the bandwidth. Our findings are compactly collected in
phase diagrams, obtained both by analytical treatment and
exact diagonalization, which indicate the regions of dispersion-
driven ground-state ferromagnetism.

The paper is organized as follows. After a brief description
of the models to be considered (Sec. II) and the methods to be
used (Sec. III) we pass to a discussion of the obtained results
for the diamond chain (Sec. IV), the ladder (Sec. V), and the
bilayer (Sec. VI). We briefly summarize our results in Sec. VII.
Several appendices present some lengthy formulas which are
relevant for the discussion in the main text of the paper.

II. MODELS

We consider the standard repulsive one-orbital Hubbard
model with the Hamiltonian

H =
∑

σ=↑,↓
H0,σ + HU,

H0,σ =
∑
(ij )

tij (c†i,σ cj,σ + c
†
j,σ ci,σ ), tij > 0, (2.1)

HU = U
∑

i

ni,↑ni,↓, U > 0,

where generally accepted notations are used in Eq. (2.1). We
investigate the Hubbard model (2.1) on two one-dimensional
and one two-dimensional N -site lattices which are shown in
Fig. 1, namely the frustrated diamond chain, the frustrated
two-leg ladder, and the frustrated bilayer. In case of ideal
flat-band geometry all hopping integrals tij = t are equal,
except the hopping integral on the vertical bond t2. Then one
of the one-electron bands is strictly flat and it becomes the
lowest one, if t2 is sufficiently large. The localized-electron
states are then located (trapped) on the vertical t2 bonds.
Obviously, the trapping cells do not have common sites, the
connectivity condition is violated, and the zero-temperature
state in the subspaces with n � N electrons are nonmagnetic.
From Fig. 1 it is obvious that the number of trapping cells N
for the diamond chain and the ladder/bilayer is N = N/3 and
N = N/2, respectively.
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FIG. 1. Lattices considered in the present paper: The frustrated
diamond chain, the frustrated two-leg ladder, and the frustrated
bilayer (from top to bottom). The sites are enumerated by two indexes
m,i: The first one enumerates the cells, m = 1, . . . ,N , and the second
one enumerates the sites within a cell, i = 1,2,3 (diamond) and
i = 1,2 (ladder and bilayer). The hopping integral for the vertical
bond is t2, whereas the hopping integral along the bond connecting
the sites m,i and m + 1,j is denoted by tij , see also the main text. For
ideal flat-band geometry tij = t and 2t < t2 (diamond and ladder) or
4t < t2 (bilayer).

We consider deviations from the ideal flat-band geometry
of the following form: For the diamond chain, following
Ref. [18], we set t13 = t32 = t1 �= t23 = t31 = t3,t1 + t3 =
2t < t2 (azuritelike geometry [20]; for more general defor-
mations see Ref. [21]). It is convenient to parametrize the
azuritelike distortion as follows:

t1 = t(1 + δ), t3 = t(1 − δ);

t = t1 + t3

2
, δ = t1 − t3

t1 + t3
. (2.2)

For the ladder/bilayer t11,t12,t21, and t22 may be different,
but we assume t11 + t12 + t21 + t22 = 4t and 2t < t2 (ladder)
or 4t < t2 (bilayer). Again it is convenient to introduce the
following parameterization:

t11 = tl(1 + δl), t12 = tf (1 + δf ),

t21 = tf (1 − δf ), t22 = tl(1 − δl);

tl = t11 + t22

2
, δl = t11 − t22

t11 + t22
,

tf = t12 + t21

2
, δf = t12 − t21

t12 + t21
(2.3)

with tl + tf = 2t .
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In the distorted systems the lowest flat band with energy ε1

acquires a dispersion, i.e., ε1 → ε1(κ), resulting in a nonzero
bandwidth W1 > 0. In Ref. [18], the acquired dispersion was
characterized by a parameter W1/w2, where w2 denotes the
bandwidth of the dispersive bands for the ideal flat-band geom-
etry (note that for the diamond chain there are two dispersive
bands with identical bandwidth). Furthermore, for the diamond
chain we have W1 ≈ 2(t3 − t1)2/t2, w2 ≈ 2(t3 + t1)2/t2 and
therefore W1/w2 ≈ �2, where � ≡ |(t3 − t1)/(t3 + t1)| used
in Ref. [18] equals to |δ|, cf. Eq. (2.2). However, since for
the Hubbard ladder/bilayer the acquired bandwidth is not
the only relevant parameter that controls the emergence of
ferromagnetism, we prefer to use throughout this paper the
above introduced parameters t and δ for the diamond chain
and tl,tf ,δl , and δf for the ladder/bilayer.

III. METHODS

In our study we use an analytical perturbation-theory
approach and numerical exact diagonalization. Let us briefly
explain these methods. The starting point of the perturbation
theory is the splitting of the Hamiltonian H of the problem
at hand into the main part (unperturbed Hamiltonian) H0

and the perturbation V, i.e., H = H0 + V. Then we use the
perturbation-theory formulas given in Ref. [22] (see also
Appendix A) to determine the influence of the perturbation
V on the degenerate ground-state manifold. Simplicity of
the set of trapped states makes application of perturbation
theory straightforward. Since t2 > 0 is the largest hopping
integral and U > 0, the main part consists of the hopping
terms on the vertical bonds and all on-site repulsion terms.
The perturbation consists of all other hopping terms. Next
we have to find all eigenstates and eigenvalues of the
unperturbed Hamiltonian H0. For N sites and n electrons there
are altogether Cn

2N = (2N )!/[n!(2N − n)!] eigenstates. For
example, for n = N = 2, 3, 4, 5 ladder problems we have 28,
220, 1820, 15504 eigenstates, respectively. In the considered
regime, i.e., dominating positive t2,U > 0 is sufficiently large,
and n = N , the ground state is 2n-fold degenerate, i.e., 4-, 8-,
16-, 32-fold degenerate for n = N = 2, 3, 4, 5. It has the form:

|GS〉 = l
†
1,σ1

. . . l†n,σn
|vac〉,

l†m,σm
= 1√

2

(
c
†
m,1,σm

− c
†
m,2,σm

)
. (3.1)

The choice of the concrete linear combinations of states
(3.1) used as a starting point of perturbation theory is
related to the model with perturbation. Supposing an effective
magnetic Heisenberg model for the low-energy degrees of
freedom [18], the choice of ground states of the unperturbed
Hamiltonian H0 which account the SU(2) symmetry of the
Hubbard Hamiltonian is straightforward, for more details see
Appendix B. The resulting perturbation-theory formulas up
to the sixth order are collected in Appendix A (see also
Appendices C, D, and E). It is in order to mention here, that
in the small-U limit, in addition to the states (3.1), also states
with two electrons in one cell, become relevant. As a result,
the perturbation theory starting from the set of states (3.1) may
fail for U → 0, see below.

To perform the fourth and sixth order perturbation theory
we use the symbolic computation software Mathematica.
To implement the symbolic calculation we used the SNEG
package, see Ref. [23], for Mathematica. The package handles
the noncommutative multiplication of, e.g., fermionic creation
and annihilation operators. This is required to perform the
perturbation theory in higher order for larger Hubbard clusters.
(For a compact sketch of the procedure see Appendix F in
Ref. [24].)

For the numerical exact diagonalization we use J. Schulen-
burg’s spinpack [25,26]. This code allows the calculation of the
ground state for the Hubbard model with a half-filled lowest
band up to N = 20 sites. Thus, by considering various system
sizes the finite-size effects can be estimated. The comparison
of the results obtained by two different approaches finally
allows us to get a consistent description of the ground-state
phases of the considered Hubbard systems.

IV. DIAMOND CHAIN

The Hubbard model Hamiltonian on the diamond chain is
given in Eq. (2.1) with the following explicit form for H0,σ :

H0,σ =
∑
m

[t2c
†
m,1,σ cm,2,σ + t1(c†m,1,σ cm,3,σ + c

†
m,3,σ cm+1,2,σ )

+ t3(c†m,2,σ cm,3,σ + c
†
m,3,σ cm+1,1,σ ) + H.c.], (4.1)

see Fig. 1. Equation (4.1) corresponds to an azuritelike
deformation [20]. Furthermore, we assume half filling of
the lowest nearly flat one-electron band, i.e., the number of
electrons equals the number of cells n = N .

Extensive exact-diagonalization calculations for this model
were reported in Ref. [18]. However, the analytical treatment
by perturbation theory was restricted to fourth-order calcu-
lations for the two-cell diamond chain with open boundary
conditions consisting of N = 5 sites. (Note, that for the special
diamond-chain geometry the second-order perturbation theory
is not sufficient to describe ground-state ferromagnetism [18].)
In this paper we present the sixth-order perturbation theory
and consider also a larger cluster consisting of three cells in
fourth-order perturbation theory. That allows us to validate
the previous lower-order approach and promises a better
agreement with exact diagonalization for larger deviations
from the ideal flat-band geometry.

The results for the triplet and singlet energies calculated for
the cluster of N = 5 sites with n = 2 electrons up to the sixth
order,

Et = −2t2 + E(2) + E
(4)
t + E

(6)
t + . . . ,

(4.2)
Es(U ) = −2t2 + E(2) + E(4)

s (U ) + E(6)
s (U ) + . . . ,

are given in Appendix C. From the obtained data one can
see that with increasing of the order of perturbation-theory
calculations the analytical results for the triplet and singlet
energies monotonically approach the exact-diagonalization
data from above. The critical on-site repulsion Uc is determined
from the equation Et = Es(Uc). In fourth-order perturbation-
theory we get a compact formula [18]

U (4)
c

t2
=

√
16 + 65δ2 + 9|δ|

1 − δ2
|δ|. (4.3)
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FIG. 2. Phase diagram for the Hubbard diamond chain. Ferro-
magnetic ground states appear for U > Uc. Uc is shown as a function
of δ,t = 1, see Eq. (2.2). The various critical lines Uc(δ) are obtained
by perturbation theory and exact diagonalization.

Equation (4.3) implies that in fourth order Uc/t2 depends
only on the deviation from the ideal flat-band geometry
controlled by δ, but not on t or t2. Unfortunately, in sixth
order U (6)

c obtained as a solution of the equation E
(4)
t + E

(6)
t =

E(4)
s (U (6)

c ) + E(6)
s (U (6)

c ) has to be calculated numerically, and
cannot be presented in a compact analytical form. By contrast
to U (4)

c , the sixth-order result U (6)
c /t2 weakly depends on t2,

which was also found in our exact-diagonalization results. The
corresponding results for U (4)

c and U (6)
c are shown in Fig. 2. It

is evident that the difference between the values of U (4)
c and

U (6)
c at least for small δ, where the perturbation theory is valid,

is small (the difference in Fig. 2 becomes only visible if δ

exceeds 0.4). Thus, we confirm that the simple equation (4.3)
describes the phase boundary surprisingly well.

Another way to extend the previous perturbation-theory
calculations of Ref. [18] is to enlarge the cluster sizes used for
the perturbation theory. For that we consider n = 3 electrons
on the three-cell diamond chain with open boundary conditions
which has N = 8 sites. Already in fourth order the perturbation
theory becomes more ambitious, since we have to take into
account much more states, see Appendix C. Remarkably, for
the larger cluster we get the same value of U (4)

c as given in
Eq. (4.3).

Our results are summarized in Fig. 2, where we also
show some exact-diagonalization results obtained earlier
[18]. This figure provides evidence, that the sixth-order
perturbation-theory calculations (N = 5) almost do not change
the predictions for Uc(δ) according to Eq. (4.3), although
there is a weak dependence of Uc/t2 on t2 in agreement
with exact-diagonalization data (compare the curves PT6 for
t2 = 3 and t2 = 6 in Fig. 2). The fact that Eq. (4.3) has been
obtained now from calculations for both two-cell and three-cell
diamond chains (i.e., for N = 5 and N = 8), also explains the
good agreement of Eq. (4.3) with exact-diagonalization results
for longer chains (e.g., for N = 6 cells, see Fig. 2). Finally,
we emphasize again that our new results demonstrate that
the formula for Uc given in Eq. (4.3) provides a simple and
sufficiently precise criterion for emergence of ground-state
ferromagnetism in the Hubbard diamond chain.

V. LADDER

Next we consider as a new example for a flat-band model
with isolated trapping cells the Hubbard model on a frustrated
ladder, see Fig. 1. We point out at the beginning that, by
contrast to the diamond chain, there is no intermediate site
between two trapping cells. The explicit form for H0,σ in
Eq. (2.1) is

H0,σ =
∑
m

(t2c
†
m,1,σ cm,2,σ + t11c

†
m,1,σ cm+1,1,σ

+ t12c
†
m,1,σ cm+1,2,σ + t21c

†
m,2,σ cm+1,1,σ

+ t22c
†
m,2,σ cm+1,2,σ + H.c.), (5.1)

see Fig. 1.
Using the notations of Eq. (2.3), the one-electron dispersion

relations for this model can be written in a compact manner as
follows:

ε1,2(κ) = 2tl cos κ

∓
√

(t2 + 2tf cos κ)2 + 4t2
l δ2

l cos2 κ + 4t2
f δ2

f sin2 κ.

(5.2)

Flat-band geometry occurs when t11 = t12 = t21 = t22 = t or
tl = tf = t,δl = δf = 0 and 2t < t2. Then ε1(κ) = ε1 = −t2
and ε2(κ) = t2 + 4t cos κ > ε1.

We consider a quite general deviation from the ideal flat-
band geometry, and assume only that t11 + t12 + t21 + t22 = 4t

or tl + tf = 2t and 2t < t2. Thus after fixing tl and tf with
the restriction tl + tf = 2t < t2 we are left with two free
parameters, δl and δf [see Eq. (2.3)], constituting a two-
dimensional parameter region. Except the general case of de-
formations, we will also consider two special deformations, (i)
a symmetric deformation with t11 = t22,t12 = t21 and t11 �= t12

(tl �= tf ,δl = δf = 0) and (ii) a semisymmetric deformation
with t11 = t12,t21 = t22 and t11 �= t21 (tl = tf = t,δl = δf =
δ �= 0) which is identical to t11 = t21,t12 = t22 and t11 �= t12

(tl = tf = t,δl = −δf = δ �= 0), since all results depend only
on δ2

l and δ2
f , see, e.g., Eq. (5.2). For case (i) the dispersion

relation Eq. (5.2) becomes

ε1,2(κ) = ∓t2 + 2(tl ∓ tf ) cos κ, (5.3)

whereas for case (ii) it translates into

ε1,2(κ) = 2t cos κ ∓
√

(t2 + 2t cos κ)2 + 4t2δ2. (5.4)

It is worth noting that the acquired bandwidth of the former
flat band due to the symmetric deformation may be larger
than due to the semisymmetric one. On the other hand, while
the symmetric deformation does not lead to ferromagnetic
ground states at all, see below, the semisymmetric one
produces ferromagnetic ground states for very small U > Uc,
see below. Obviously, the acquired bandwidth as the only
relevant parameter is insufficient to characterize the capability
to obtain ground-state ferromagnetism. In what follows we
first discuss perturbation-theory results in comparison with
exact-diagonalization data for ladders up to N = 4 cells
(N = 8 sites) and then present all analytical findings along
with exact diagonalization for N = 12, 16, 20 (N = 6, 8, 10)
in phase diagrams.
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A. Two electrons and two cells

We begin with the case of n = 2 electrons on the ladder
of N = 2 cells with open boundary conditions imposed.
Perturbation-theory calculations for the energies of the triplet
state and the singlet state can be easily obtained by symbolic
computation up to the sixth order:

Et = −2t2 + E
(2)
t + E

(4)
t + E

(6)
t + . . . ,

(5.5)
Es(U ) = −2t2 + E(2)

s (U ) + E(4)
s (U ) + E(6)

s (U ) + . . . .

Here the second-order corrections are as follows:

E
(2)
t = − t2

l δ2
l + t2

f δ2
f

t2
,

(5.6)

E(2)
s (U ) = − (tl − tf )2

t2
− 2

t2
l δ2

l + t2
f δ2

f

2t2 + U
− 8(tl − tf )2

U
.

The explicit lengthy expressions for the higher-order cor-
rections are given in Appendix D. Typical dependences of
low-lying energies on U are shown in Figs. 3(a), 3(b), and 3(c)
for a particular general deformation, a symmetric deformation,
and a semisymmetric deformation, respectively.

The conclusions obtained from the formulas and plots
(Fig. 3) of the singlet and triplet energies are as follows:
In the small-U limit the perturbation theory may fail, cf.
Figs. 3(a) and 3(b). The reason for this has been mentioned
above already: In the small-U limit some relevant excited states
approach the ground-state manifold. The deviation from the
ideal flat-band geometry leads to more drastic effects and also
to a larger diversity in the energy dependence on U than for
the diamond chain considered in the previous section. The
behavior of Et and Es(U ) shown in Fig. 3(a) for the general
case qualitatively resembles that for the diamond chain (cf.
Fig. 8 in Appendix C). On the other hand, the symmetric and
semisymmetric cases are totally unlike. Namely, as long as the
perturbation theory converges, for the symmetric deformation,
case (i), the singlet energy (circles and blue curves) is always
lower than the triplet energy (triangles and red curves), Es <

Et = −2t2, see Fig. 3(b). Note that all exact-diagonalization
data also yield Es < Et for the symmetric case. For the
semisymmetric case the triplet energy becomes the lowest
one, Et < Es(U ), if U exceeds a very small critical value
Uc, see Fig. 3(c). [For the case shown in Fig. 3(c) exact
diagonalization gives Uc ≈ 0.015 and the perturbation-theory
result is U (6)

c = 0.] That means, ferromagnetism does not
appear at all for the symmetric deformation, whereas for the
semisymmetric case only a very small U is required to promote
its appearance. Next important difference in comparison to the
diamond-chain case is related to the energy scale (compare
Figs. 3 and 8): The splitting of triplet and singlet for the
ladder occurs already in the second order (and only in the
fourth order for the diamond chain). This can be traced back
to the difference in lattice geometries. Thus, for the ladder
the second-order perturbation theory already provides useful
results.

The above described features of the energy dependences
on U can be understood by a more detailed analysis of the
perturbation-theory treatment, see Appendices A and B. For
that we consider the action of the perturbation V on the
triplet and singlet states, i.e., V|t, ± 1〉,V|t,0〉, and V|s〉. The

FIG. 3. Energies of low-lying states (triplet—red, singlet—blue)
as a function of the on-site repulsion U (perturbation theory up
to sixth order and exact-diagonalization data) for n = 2 electrons
on the ladder of N = 2 cells (open boundary conditions). (a) t2 =
3,t11 = 0.85,t12 = 0.95,t21 = 1,t22 = 1.2 (general deformation). (b)
t2 = 3,t11 = t22 = 1.1,t12 = t21 = 0.9 (symmetric deformation). (c)
t2 = 3,t11 = t21 = 1.1,t12 = t22 = 0.9 (semisymmetric deformation);
exact diagonalization yields Uc ≈ 0.015, whereas the perturbation-
theory prediction is U (6)

c = 0.

results depend on the symmetry of the imposed deformation.
Thus, for the symmetric case V|t〉 = 0, but V|s〉 ∝ (l†a,↑l

†
a,↓ +

l
†
b,↑l

†
b,↓)|vac〉. As a consequence, the unperturbed triplet energy

−2t2 remains unchanged after switching on V, whereas the
unperturbed singlet energy −2t2 decreases after switching on
V and ferromagnetism cannot arise. Moreover, the state V|s〉
overlaps with “dangerous” excited states of H0 (which contain
l
†
a,↑l

†
a,↓,l

†
b,↑l

†
b,↓ and have the energy −2t2 + U for U → 0)

leading to the failure of the perturbation theory in the small-U
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limit. On the other hand, for the semisymmetric case V|t〉
contains c

†
m,1,σ c

†
m,2,σ |vac〉 or (c†m,1,↑c

†
m,2,↓ + c

†
m,1,↓c

†
m,2,↑)|vac〉,

whereas V|s〉 ∝ (c†m,1,↑c
†
m,1,↓ − c

†
m,2,↑c

†
m,2,↓)|vac〉. Since the

state (c†m,1,↑c
†
m,1,↓ − c

†
m,2,↑c

†
m,2,↓)|vac〉 is orthogonal to the

dangerous excited states of H0, the perturbation theory does
not fail in the small-U limit. Moreover, the states V|t〉 and V|s〉
have the same overlap integral with the excited states of H0

with the energies 0 and U , respectively. Therefore, the decrease
of the triplet energy exceeds the decrease of the singlet energy
instantaneously as U > 0, i.e., ferromagnetism appears for
infinitesimally small positive U .

In second order the perturbation theory yields a compact
formula for the critical value of on-site repulsion Uc. Using
Eq. (5.6) we get

U (2)
c

t2
=

5|tl − tf | +
√

9(tl − tf )2 + 16
(
t2
l δ2

l + t2
f δ2

f

)
−(tl − tf )2 + t2

l δ2
l + t2

f δ2
f

× |tl − tf |. (5.7)

Obviously, for symmetric deformations, when tl �= tf and δl =
δf = 0, Eq. (5.7) gives for U (2)

c = −8t2 < 0, that is consistent
with the absence of ferromagnetism in this case. It is also
obvious, that formula (5.7) yields U (2)

c = 0 for tl = tf , i.e.,
for t11 − t12 − t21 + t22 = 0. That criterion, tl = tf , holds for
semisymmetric deformations, where in addition also δl = δf

is valid. However, in higher-order perturbation theory as well
as in exact diagonalization we find that the constraint tl = tf
does not imply Uc = 0, rather Uc may become large for the
general case δl �= δf , if δl or δf become of the order of unity,
see Fig. 6.

Supposing that the energies behave smoothly as changing
deformations, we can expect that there is a finite parameter
region in the vicinity of the symmetric case without ground-
state ferromagnetism. Indeed, for tl �= tf the second-order
formula (5.7) leads to an elliptic shape in the δl–δf plane
given by

(
tl

tl − tf
δl

)2

+
(

tf

tl − tf
δf

)2

= 1. (5.8)

We illustrate this behavior in Fig. 4, where we also show a
few points obtained by exact diagonalization which are in
qualitative agreement with the predictions from Eq. (5.8).
It is worthwhile to remark that Eq. (5.8) remains unaltered
if interchanging tl ↔ tf and δl ↔ δf (this symmetry is also
evident in Fig. 4). However, exact-diagonalization data shown
by symbols in Fig. 4 do not show this symmetry present in
the second-order results, i.e., it is not generally present in the
model, cf., e.g., Eq. (5.2).

B. Three (four) electrons and three (four) cells

Let us discuss briefly the perturbation theory for larger
clusters. In the case of three electrons on the ladder of three
cells we face a 23-fold degenerate ground state, which consists
of the quadruplet |q〉 (total spin is 3/2) and two doublets
|d1〉 and |d2〉 (total spin is 1/2). We are interested in the
energies Eq,Ed1, and Ed2. In Appendix D, we provide explicit

FIG. 4. There are no ferromagnetic ground states for the Hub-
bard ladder in the region around the origin of the plane δl–δf

[t11 − t12 − t21 + t22 = 2(tl − tf ) �= 0]. Analytical predictions based
on the second-order perturbation-theory calculations (5.7) (lines)
are compared with exact-diagonalization data for N = 16,t2 = 3
(symbols) for several values of tl and tf ,tl + tf = 2.

expressions for these energies

Eq = −3t2 + E(2)
q + E(4)

q + . . . ,

(5.9)
Edi(U ) = −3t2 + E

(2)
di (U ) + E

(4)
di (U ) + . . . , i = 1,2.

In the case of four electrons on the ladder of four cells we
face a 24-fold degenerate ground state, which consists of the
quintuplet |Q〉 (total spin is 2), three triplets |t1〉,|t2〉,|t3〉
(total spin is 1), and two singlets |s1〉,|s2〉 (total spin is 0). In
Appendix D, we provide explicit expressions for their energies

EQ = −4t2 + E
(2)
Q + E

(4)
Q + . . . ,

Eti(U ) = −4t2 + E
(2)
t i (U ) + E

(4)
t i (U ) + . . . , i = 1,2,3,

(5.10)

Esj (U ) = −4t2 + E
(2)
sj (U ) + E

(4)
sj (U ) + . . . , j = 1,2.

We report corresponding results for the energies up to the
fourth order along with exact-diagonalization data for the
general, symmetric, and semisymmetric deformations for
n = N = 3 and n = N = 4 in Appendix D. The main features
of these results resemble strongly the ones discussed in
the previous subsection for n = N = 2. Therefore, the main
conclusions obtained from those data for the energies of larger
cells are consistent with those discussed in Sec. V A for two
cells. Most remarkably, within the second-order perturbation
theory, the critical value U (2)

c for the three-cell and four-cell
clusters coincide with U (2)

c for the two-cell cluster, i.e., it is
given by Eq. (5.7).

Let us finally mention that within the perturbation theory
for N = 4 cells the fully polarized ferromagnetic state (it is
a quintuplet for N = 4) is in competition with triplet and
singlet states. We find, cf. Fig. 11, that either a singlet or
the ferromagnetic quintuplet is the ground state. This finding,
that the fully polarized ferromagnetic state competes with a
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FIG. 5. Phase diagram in the quarter plane δf – U/t2 for the
ladder with t2 = 3,tl = 1.025,tf = 0.975, and δl = 0 obtained by
perturbation-theory calculations and by exact diagonalization for
N = 6, 8, 12, 16 with open and/or periodic boundary conditions.

nonmagnetic singlet state (but not with partially polarized
states) is supported by exact-diagonalization data obtained for
systems with an even number of cells N > 4.

C. Phase diagram

In this subsection we collect analytical and numerical
findings to construct the ground-state phase diagrams of
the Hubbard ladder. According to Eq. (2.3), there are three
parameters which characterize the ladder, i.e., tl and tf with
tl + tf = 2t < t2,δl , and δf . We set t2 = 3,tl + tf = 2. After
fixing tl and tf we are left with two free parameters δl

and δf . We consider the first quadrant of positive δl and
δf in the δl–δf plane. We move through the quadrant by
straight lines in the horizontal direction (δf is fixed, δl varies),
in the vertical direction (δl is fixed, δf varies), as well as
along the diagonal δl = δf = δ. Certainly perturbation-theory
results are reasonable only for small deviations from the ideal
flat-band geometry. However, there are no such restrictions for
exact-diagonalization data.

We begin with a quite general case assuming tl =
1.025,tf = 0.975, and δl = 0. The dependence of Uc on δf

is reported in Fig. 5. The ground state is ferromagnetic above
the curves Uc(δf ); this region is denoted as FM. In this
case, the dependence of Uc on the acquired bandwidth is a
nonmonotonic function: For small δf ferromagnetism does
not appear at all [in agreement with Eq. (5.8)]; increasing
δf beyond a threshold value δf 1 ferromagnetism sets in and
Uc decreases with growing δf . Second-order perturbation
theory, Eq. (5.8), predicts δf 1 ≈ 0.051, exact diagonalization
for N = 16 yields δf 1 ≈ 0.053. Beyond δf ≈ 0.4 the critical
repulsion Uc starts to increase with increasing of δf . This
behavior is obtained from both the fourth-order perturbation
theory and exact diagonalization for different system sizes
with open and/or periodic boundary conditions imposed. The
second-order perturbation theory gives qualitatively correct
results only for small δf < 0.4. From exact-diagonalization
data for N = 16 it is obvious that there is again a threshold
value δf 2 (for N = 16 we found δf 2 ≈ 3.25) above which no
ferromagnetism appears. Figure 5 illustrates a quite subtle

FIG. 6. Phase diagram in the quarter plane δ – U/t2 for the ladder
with t2 = 3,tl = tf = 1 obtained by fourth-order perturbation theory
and by exact diagonalization (note that second-order perturbation
theory yields U (2)

c = 0). (a) δl = 0, 0.05. (b) δl = δf = δ; fourth-
order perturbation-theory calculations yield zero value for Uc.
(c) δf = 0, 0.05.

interplay of the hopping-integral geometry and the on-site
Hubbard repulsion required for establishing of ground-state
ferromagnetism.

Next we pass to the case tl = tf = 1. The dependences of
Uc on δf , on δl = δf = δ, and on δl are reported in panels
(a), (b), and (c) in Fig. 6, respectively. The ground state is
ferromagnetic above the curves Uc(δ); this region is denoted
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as FM. We recall that in the case tl = tf from Eq. (5.7)
we get U (2)

c = 0; nonzero values of Uc come only from
higher-order (in fact, fourth-order) calculations. Furthermore,
for the semisymmetric deformation, i.e., δl = δf = δ, the
perturbation theory yields U (4)

c = 0. Obviously, higher-order
processes should lead to finite values for Uc, as it is indicated
by the exact-diagonalization data shown Fig. 6(b).

As can be seen in Figs. 6(a) and 6(c), analytical results
which refer to the case of N = 3, 4 cells with open boundary
conditions and exact-diagonalization data which refer to the
case of N = 6, 8, 10 cells are in a reasonable agreement.
By contrast to the parameter situation shown in Fig. 5, in
all cases presented in Fig. 6 ground-state ferromagnetism
can be obtained also for small deviations from the flat-band
geometry (controlled by δf and/or δl). Comparing the exact-
diagonalization data for different system sizes N we observe
that the finite-size effects remain small, thus the discussed
phenomenon should be present for thermodynamically large
systems, too.

It is in order to mention a special finite-size effect that
may appear for large values of δl and/or δf . In this limit, the
dominating hopping parameters may correspond to geometries
which do not fit to the initial ladder structure. Thus, for
t11 = 1 + δl,t22 = 1 − δl and small δf , in the limit of δl → ∞
the legs of the ladder form two almost decoupled chains. Such
a finite simple Hubbard chain at quarter filling with an odd
number of electrons (i.e., a chain of 6 or 10 sites with 3
or 5 electrons) has a ferromagnetic ground state. Therefore,
the limit of large deviations, shown for completeness in
our figures, goes beyond the primary focus of discussing
the dispersion-driven ferromagnetism in systems with ladder
geometry.

VI. BILAYER

As mentioned already, the mechanism leading to the
emergence of ferromagnetism driven by kinetic energy is
not restricted to dimension D = 1. To illustrate this, we
consider the two-dimensional counterpart of the Hubbard

FIG. 7. Phase diagram in the quarter plane δf – U/t2 for the
bilayer with t2 = 5,tl = 1.025,tf = 0.975, and δl = 0 obtained by
perturbation-theory calculations and by exact diagonalization for
N = 10, 16 with open and periodic boundary conditions.

FIG. 8. Energies of low-lying states (triplet—red, singlet—blue)
as a function of the on-site repulsion U for n = 2 electrons on N = 2
cells of the diamond chain with open boundary conditions with t2 =
3,t1 = 0.9,t3 = 1.1. The results up to the second, fourth, sixth orders
are denoted by short-dashed, long-dashed, solid lines, respectively.
The results of exact diagonalization are shown by symbols. Note that
the energies of the triplet and the singlet coincide within the second
order, see Eq. (C1).

ladder, namely the frustrated bilayer, see Fig. 1. From
the technical point of view, the two-dimensional model is
more challenging, since the smallest cluster appropriate for
perturbation theory and imaging the basic geometry of the
bilayer is built by five cells (a central cell with four neighboring
cells). Furthermore, in contrast to the ladder for the exact
diagonalization we do not have a sequence of finite lattices
of N = 12,16,20 sites in D = 2. The smallest finite bilayer
lattice with periodic boundary conditions has N = 16 sites.
Hence, we cannot provide a detailed discussion of the bilayer
model, rather we will demonstrate for a particular parameter set
that the mechanism of kinetic-energy-driven ferromagnetism
also holds in D = 2.

FIG. 9. Ground-state energy as a function of the on-site repulsion
U for n = 3 electrons on N = 3 cells of the diamond chain (open
boundary conditions) with t2 = 3,t1 = 0.9,t3 = 1.1. Quadruplet en-
ergy (salmon) versus doublets energy (skyblue and magenta). The
results up to the second and fourth orders are denoted by short-
dashed and long-dashed lines, respectively. The results of exact
diagonalization are shown by symbols. Note that the energies of
the doublet and quadruplet states coincide within the second order,
see Eq. (C4).
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FIG. 10. Ground-state energy (up to the fourth order of pertur-
bation theory and exact-diagonalization data) as a function of the
on-site repulsion U for n = 3 electrons on the open ladder of N =
3 cells. (a) t2 = 3,t11 = 0.85,t12 = 0.95,t21 = 1,t22 = 1.2 (general
deformation). (b) t2 = 3,t11 = t22 = 1.1,t12 = t21 = 0.9 (symmetric
deformation). (c) t2 = 3,t11 = t21 = 1.1,t12 = t22 = 0.9 (semisym-
metric deformation).

In analogy to the ladder, for the bilayer one of the two one-
electron bands is flat if t11 = t12 = t21 = t22 = t or tl = tf =
t,δl = δf = 0 and it becomes the lowest one if 4t < t2. Within
fourth-order perturbation theory we are able to calculate the
energies of the fully polarized sextuplet (total spin 5/2) and of
the quadruplets (total spin 3/2),

ES = −5t2 + E
(2)
S + E

(4)
S + . . . ,

(6.1)
Eqi(U ) = −5t2 + E

(2)
qi (U ) + E

(4)
qi (U ) + . . . , i = 1,2,3,4,

FIG. 11. Ground-state energy (up to the fourth order of per-
turbation theory and exact-diagonalization data) as a function of
the on-site repulsion U for n = 4 electrons on the open lad-
der of N = 4 cells. (a) t2 = 3,t11 = 0.85,t12 = 0.95,t21 = 1,t22 =
1.2 (general deformation). (b) t2 = 3,t11 = t22 = 1.1,t12 = t21 = 0.9
(symmetric deformation). (c) t2 = 3,t11 = t21 = 1.1,t12 = t22 = 0.9
(semisymmetric deformation).

see Appendix E. Hence, our perturbation-theory treatment
remains incomplete, since we cannot compare with the
energies of the five doublets with total spin 1/2. On the
other hand, the comparison with the exact-diagonalization
data for the five-cell cluster, where the doublet states are
taken into account, yields an excellent agreement between both
approaches. That is because for this cluster the level crossing
between the sextuplet and the lowest quadruplet takes place
at the same U as for the crossing of sextuplet and the lowest
doublet.

As a first (remarkable) outcome we find, that the second-
order result U (2)

c again is given by Eq. (5.7). We show numerical
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data for the critical repulsion Uc for the set of parameters
t2 = 5,tl = 1.025,tf = 0.975, and δl = 0 in the ground-state
phase diagram presented in Fig. 7 (cf. the corresponding phase
diagram for the ladder shown Fig. 5).

Basically the same features as for the corresponding ladder
are also found for the phase diagram of the bilayer. However,
it is obvious that Uc for the finite lattice of N = 16 sites with
periodic boundary conditions is noticeably above perturbation-
theory results and the exact-diagonalization results for N = 10
sites. We argue that the finite system of N = 10 sites with
open boundary conditions is only a very rough model of
thermodynamically large bilayer, since only one (among five)
vertical bond has the same environment as in infinite lattice.
The finite system of N = 16 sites with periodic boundary
conditions is free of this shortcoming.

VII. CONCLUSIONS

We have used perturbation theory as well as exact diagonal-
ization of finite systems to examine the kinetic-energy-driven
emergence of ferromagnetic ground states in Hubbard models
with a half-filled lowest-energy flat band for lattices which
do not obey the connectivity condition (isolated trapping
cells). Generally speaking, if (i) the flat band acquires a
small dispersion this way allowing to the previously localized
electrons to correlate and (ii) the on-site Hubbard repulsion U

is sufficiently strong the ground state becomes ferromagnetic.
However, the relation between the required Uc and the
acquired bandwidth might be quite intricate. Thus, for some
deformation geometries ferromagnetism does not appear at all,
for others it appears already for small U ; in some cases Uc is
an increasing function of the deformation strength, whereas in
others it becomes nonmonotonic. The mechanism leading to
kinetic-energy-driven emergence of ferromagnetism is studied
in detail for one-dimensional systems with isolated trapping
cells. However, as it is demonstrated for a specific two-
dimensional system this mechanism works in higher dimen-
sions as well. Although our analysis refers to finite systems, the
observed finite-size behavior indicates convincingly that such a
scenario should survive in the thermodynamic limit, too. Thus
our main conclusion is that the described phenomenon is a
quite general way of establishing ground-state ferromagnetism
in the repulsive Hubbard model at low electron densities
around the flat-band limit.

Although the considered flat-band models do not belong
to the class of Mielke-Tasaki flat-band ferromagnets (since
the connectivity condition is not satisfied), the introduced
dispersion due to the deviation from the ideal flat-band
geometry causes a linking of the former disconnected cells,
this way restoring effectively the connectivity condition.

Furthermore, for special examples, the diamond chain,
the ladder as well as the bilayer, we have obtained simple

analytical formulas, cf. Eq. (4.3) and Eq. (5.7), which
amazingly well estimate the region of ground-state ferromag-
netism. From the technical point of view, we have elaborated
computer-adapted scheme for analytical perturbation-theory
calculations up to the sixth order.

Finally, it is in order to notice that experimental searches for
Mielke-Tasaki flat-band ferromagnetism remain an ambitious
goal of numerous experimental studies, see, e.g., Refs. [9,27].
Our findings offer new perspectives for investigating solid-
state realization of flat-band ferromagnetism, since the emer-
gence of ferromagnetism in systems with isolated trapping
cells does not require fine tuning of parameters, rather it can
be found in a quite wide parameter region.
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APPENDIX A: PERTURBATION-THEORY FORMULAS
FOR THE GROUND-STATE ENERGY UP TO

THE SIXTH ORDER

In this appendix, we present the perturbation-theory formu-
las up to the sixth order, which are used in our study. Although
these formulas can be found in Ref. [22], we show them here
for the reader’s convenience and the self-consistency of the
paper.

First we split the N -cell Hamiltonian of the model H into
the main part H0 and the perturbation V, i.e., H = H0 + V. We
consider the subspace of n = N electrons. All eigenstates |α〉
and their energies Eα of the unperturbed Hamiltonian H0 are
known. We consider the ground state |GS〉 of the unperturbed
Hamiltonian H0, which is 2n-fold degenerate (each cell can be
occupied either by up- or down-spin electron). We denote the
ground-state energy by EGS. Moreover, we have 〈GS|V|GS〉 =
0. Since the ground states are degenerate, the choice of the
ground states requires some consideration. From Ref. [18]
we know that the effective Hamiltonian to describe the
low-energy degrees of freedom is a Heisenberg Hamiltonian.
Hence, we choose the set of ground states as a corresponding
set of eigenstates of the Heisenberg model that way also
implying the required SU(2) symmetry as well as the spatial
symmetry of the clusters used for the perturbation theory (for
details see Appendix B). The lowest-order perturbation-theory
corrections to the ground-state energy EGS are as follows:

E
(2)
GS =

∑
α

′ 〈GS|V|α〉〈α|V|GS〉
EGS − Eα

, E
(3)
GS =

∑
α

′ ∑
β

′ 〈GS|V|α〉〈α|V|β〉〈β|V|GS〉
(EGS − Eα)(EGS − Eβ)

,

E
(4)
GS =

∑
α

′ ∑
β

′ ∑
γ

′ 〈GS|V|α〉〈α|V|β〉〈β|V|γ 〉〈γ |V|GS〉
(EGS − Eα)(EGS − Eβ)(EGS − Eγ )

−
∑

α

′ ∑
β

′ 〈GS|V|α〉〈α|V|GS〉〈GS|V|β〉〈β|V|GS〉
(EGS − Eα)2(EGS − Eβ)

,
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E
(5)
GS = (1,1,1,1) + 1

2 (2,1,0,1) + 1
2 (1,2,0,1) + 1

2 (1,1,0,2) + 1
2 (2,0,1,1) + 1

2 (1,0,2,1) + 1
2 (1,0,1,2),

E
(6)
GS = (1,1,1,1,1) + 1

2 (2,1,1,0,1) + 1
2 (1,2,1,0,1) + 1

2 (1,1,2,0,1) + 1
2 (1,1,1,0,2) + 1

2 (2,1,0,1,1) + 1
2 (1,2,0,1,1)

+ 1
2 (1,1,0,2,1) + 1

2 (1,1,0,1,2) + 1
2 (2,0,1,1,1) + 1

2 (1,0,2,1,1) + 1
2 (1,0,1,2,1) + 1

2 (1,0,1,1,2)

+ 1
2 (3,0,1,0,1) + 3

8 (2,0,2,0,1) + 1
4 (2,0,1,0,2) + 3

8 (1,0,2,0,2) + 1
2 (1,0,1,0,3); (A1)

here the superscript ‘prime’ means that the sum extends over all states of the unperturbed Hamiltonian H0 except the ground
states. Moreover, we have introduced shorthand notations [22]

(k1,k2, . . . ,kn) = 〈GS|VR(k1)VR(k2)V . . . VR(kn)V|GS〉, R(k) =
{−|GS〉〈GS|, k = 0,(∑′

α
|α〉〈α|

EGS−Eα

)k
, k > 0

(A2)

(again the superscript ‘prime’ means that the sum extends over all states of the unperturbed Hamiltonian H0 except the ground
state) in the formulas for E

(5)
GS and E

(6)
GS. In the present study we are able to calculate the sixth-order corrections for the N = 2-cell

cases, but fourth-order corrections for the cases of N = 3,N = 4, and N = 5 cells.

APPENDIX B: GROUND STATES OF THE UNPERTURBED HAMILTONIAN

The energy of the 2n-fold degenerate (see Appendix A) unperturbed ground states is EGS = −nt2. Before applying perturbation-
theory formulas of Appendix A we have to construct within 2n-fold degenerate ground states the “correct” 2n linear combinations
being SU(2) symmetric eigenstates of the corresponding Heisenberg model of the perturbation-theory clusters. The energy
of all components of a SU(2) multiplet is the same (i.e., are not splitted by the perturbation V). However, the energies of
different multiplets may become different after switching on perturbation, where at least second-order theory is required, since
〈GS|V|GS〉 = 0. Thus, the number of different energies obtained by perturbation theory cannot exceed 2, 3, 6, 10 for the case of
N = 2, 3, 4, 5 cells, respectively.

We begin with the case of N = 2 cells (m = 1 and m + 1 = 2 in Fig. 1) and n = 2 electrons. “Correct” unperturbed ground
states are as follows:

|t,1〉 = l
†
1,↑l

†
2,↑|0〉, |t,0〉 = 1√

2
(l†1,↑l

†
2,↓ + l

†
1,↓l

†
2,↑)|0〉, |t, − 1〉 = l

†
1,↓l

†
2,↓|0〉, |s〉 = 1√

2
(l†1,↑l

†
2,↓ − l

†
1,↓l

†
2,↑)|0〉, (B1)

i.e., the three components of the triplet states |t〉 and the singlet state |s〉. It is convenient to use shorthanded notations
| ↑↑〉 = l

†
1,↑l

†
2,↑|0〉, | ↑↓〉 = l

†
1,↑l

†
2,↓|0〉 etc. so that Eq. (B1) becomes

|t,1〉 = | ↑↑〉, |t,0〉 = 1√
2

(| ↑↓〉 + | ↓↑〉), |t, − 1〉 = | ↓↓〉, |s〉 = 1√
2

(| ↑↓〉 − | ↓↑〉). (B2)

We pass to the case of N = 3 cells (open boundary conditions) and n = 3 electrons. “Correct” unperturbed ground states are∣∣∣∣q,
3

2

〉
= | ↑↑↑〉,

∣∣∣∣q,
1

2

〉
= 1√

3
(| ↑↑↓〉 + | ↑↓↑〉 + | ↓↑↑〉),

∣∣∣∣q, − 1

2

〉
= 1√

3
(| ↑↓↓〉 + | ↓↑↓〉 + | ↓↓↑〉),

∣∣∣∣q, − 3

2

〉
= | ↓↓↓〉,

∣∣∣∣d1,
1

2

〉
= 1√

2
(| ↑↑↓〉 − | ↓↑↑〉),

∣∣∣∣d1, − 1

2

〉
= 1√

2
(| ↑↓↓〉 − | ↓↓↑〉), (B3)

∣∣∣∣d2,
1

2

〉
= 1√

6
(| ↑↑↓〉 − 2| ↑↓↑〉 + | ↓↑↑〉),

∣∣∣∣d2, − 1

2

〉
= 1√

6
(| ↑↓↓〉 − 2| ↓↑↓〉 + | ↓↓↑〉),

i.e., the quadruplet |q〉 and the two doublets |d1〉,|d2〉. The total spin of |d1〉 and |d2〉 is 1/2 and the ‘local’ sz
j -values for the sites

j = 1,2,3 are as follows: 0, ± 1/2, 0 for |d1〉 and ±1/3, ∓ 1/6, ± 1/3 for |d2〉. The states given in Eq. (B3) are the eigenstates
of (s1 + s2 + s3)2, of sz

1 + sz
2 + sz

3, and of the Hamiltonian H = s1 · s2 + s2 · s3 (three-site Heisenberg model with open boundary
conditions) with the energies 1/2 (|q〉), 0 (|d1〉), and −1 (|d2〉).

Next we consider N = 4 cells along a chain with open boundary conditions and n = 4 electrons. The unperturbed SU(2)
symmetric ground states are

|Q,2〉 = | ↑↑↑↑〉, . . . , |Q, − 2〉 = | ↓↓↓↓〉,

|t1,1〉 = 1

2
√

2 − √
2

[−| ↑↑↑↓〉 + (1 −
√

2)| ↑↑↓↑〉 − (1 −
√

2)| ↑↓↑↑〉 + | ↓↑↑↑〉], . . . ,

|t2,1〉 = 1

2
(| ↑↑↑↓〉 − | ↑↑↓↑〉) + 1

2
(−| ↑↓↑↑〉 + | ↓↑↑↑〉), . . . ,

144418-11



MÜLLER, RICHTER, AND DERZHKO PHYSICAL REVIEW B 93, 144418 (2016)

|t3,1〉 = 1

2
√

2 + √
2

[−| ↑↑↑↓〉 + (1 +
√

2)| ↑↑↓↑〉 − (1 +
√

2)| ↑↓↑↑〉 + | ↓↑↑↑〉], . . . ,

|s1〉 = 1√
6

[
1

2
(−1 −

√
3)| ↑↑↓↓〉 − 1

2
(1 −

√
3)| ↑↓↑↓〉 + | ↑↓↓↑〉

+ | ↓↑↑↓〉 − 1

2
(1 −

√
3)| ↓↑↓↑〉 + 1

2
(−1 −

√
3)| ↓↓↑↑〉

]
,

|s2〉 = 1√
6

[
1

2
(−1 +

√
3)| ↑↑↓↓〉 − 1

2
(1 +

√
3)| ↑↓↑↓〉 + | ↑↓↓↑〉

+ | ↓↑↑↓〉 − 1

2
(1 +

√
3)| ↓↑↓↑〉 + 1

2
(−1 +

√
3)| ↓↓↑↑〉

]
, (B4)

i.e., one quintuplet |Q〉, the three triplets |t1〉,|t2〉,|t3〉, and the two singlets |s1〉,|s2〉. These states are eigenstates of the
Heisenberg Hamiltonian H = ∑3

i=1 si · si+1 with the energies 3/4 (|Q〉), (−1 + 2
√

3)/4 (|t1〉), −1/4 (|t2〉), (−1 − 2
√

3)/4
(|t3〉), (−3 + 2

√
3)/4 (|s1〉), and (−3 − 2

√
3)/4 (|s2〉).

In the case of N = 5 cells and n = 5 electrons relevant for the bilayer problem we have∣∣∣∣S,
5

2

〉
= | ↑↑↑↑↑〉, . . . ,

∣∣∣∣S, − 5

2

〉
= | ↓↓↓↓↓〉,

∣∣∣∣q1,
3

2

〉
= 1

2
(| ↑↑↑↑↓〉 − | ↑↑↑↓↑〉 + | ↑↓↑↑↑〉 − | ↓↑↑↑↑〉), . . . ,

∣∣∣∣q2,
3

2

〉
= 1

2
(| ↑↑↑↑↓〉 − | ↑↑↑↓↑〉 − | ↑↓↑↑↑〉 + | ↓↑↑↑↑〉), . . . ,

(B5)∣∣∣∣q3,
3

2

〉
= 1

2
(| ↑↑↑↑↓〉 + | ↑↑↑↓↑〉 − | ↑↓↑↑↑〉 − | ↓↑↑↑↑〉), . . . ,

∣∣∣∣q4,
3

2

〉
= 1

2
√

5
(| ↑↑↑↑↓〉 + | ↑↑↑↓↑〉 − 4| ↑↑↓↑↑〉 + | ↑↓↑↑↑〉 + | ↓↑↑↑↑〉), . . . , . . . ,

i.e., one sextuplet |S〉 and the four quadruplets |q1〉,|q2〉,|q3〉,|q4〉. Note that the five doublets are not given here, since they
are not used for perturbation theory, cf. the discussion in Sec. VI. The geometry of the cluster is that of a Heisenberg star
[28] with central spin s3, i.e., the choice given in Eq. (B5) corresponds to the eigenstates of the Heisenberg Hamiltonian
H = s1 · s3 + s2 · s3 + s3 · s4 + s3 · s5 with the energies 1 (|S〉), 1/2 (|q1〉,|q2〉, and |q3〉), and −3/2 (|q4〉).

In the present study we use Eqs. (B2) and (B3) for the diamond chain, Eqs. (B2), (B3), and (B4) for the ladder, and Eq. (B5) for
the bilayer. Since for the N = 5 bilayer we compare the energies ES and Eq1,Eq2,Eq3,Eq4 only, the formulas given in Eq. (B5)
are sufficient for this purpose.

APPENDIX C: PERTURBATION-THEORY RESULTS FOR THE DIAMOND CHAIN

1. n = 2 electrons on the diamond chain of N = 2 cells

We consider the case of open boundary conditions, i.e., N = 5. Corrections to the ground-state energy E(0) = −2t2 up to the
sixth order are as follows:

E(2) = − (t3 − t1)2

t2
; (C1)

E
(4)
t = − (t3 + t1)2(t3 − t1)2

2t3
2

+ (t3 − t1)4

t3
2

,

E(4)
s (U ) = − (t3 + t1)2(t3 − t1)2

4t3
2

+ (t3 − t1)4

t3
2

− (8t2 + U )(t3 − t1)4

4t3
2 U

− (t3 + t1)2(t3 − t1)2

2(2t2 + U )t2
2

− 2(t3 − t1)4

(2t2 + U )t2
2

; (C2)

E
(6)
t = − (t3 − t1)2

(
t4
3 − 14t3

3 t1 + 34t2
3 t2

1 − 14t3t
3
1 + t4

1

)
2t5

2

,

E(6)
s (U ) = − (t3 − t1)2

[
192t4

2 (t3 − t1)4 + 48t3
2 U (t3 − t1)2

(
5t2

3 − 2t3t1 + 5t2
1

)]
12t5

2 U 2(2t2 + U )2

− (t3 − t1)2
[
4t2

2 U 2
(
22t4

3 + 21t3
3 t1 − 38t2

3 t2
1 + 21t3t

3
1 + 22t4

1

)]
12t5

2 U 2(2t2 + U )2
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− (t3 − t1)2
[
4t2U

3
(
2t4

3 + 27t3
3 t1 − 34t2

3 t2
1 + 27t3t

3
1 + 2t4

1

)]
12t5

2 U 2(2t2 + U )2

− (t3 − t1)2
[
U 4

(
t4
3 + 12t3

3 t1 − 14t2
3 t2

1 + 12t3t
3
1 + t4

1

)]
12t5

2 U 2(2t2 + U )2
. (C3)

The results up to the fourth order were reported in Ref. [18]. In Fig. 8 we show dependences of the triplet and singlet energies on
U obtained within different orders of the perturbation theory according to Eqs. (C1), (C2), (C3) along with exact-diagonalization
data for a typical set of hopping integrals t2 = 3,t1 = 0.9,t3 = 1.1 [t = 1, |δ| = 0.1,δ = (t1 − t3)/(t1 + t3)]. Obviously, in the
limit U → 0 the perturbation theory fails, since it yields a singlet energy tending to −∞ whereas the exact-diagonalization data
is finite. The reason for that is clear: Within the exploited scheme the specific states with two electrons having different spins
in one cell are treated as excited states, however, in the small-U limit their energy approaches the ground-state energy; being
treated as excited states they lead to large denominators in the terms of the perturbation-theory series, see Eqs. (A1) and (A2).

2. n = 3 electrons on the diamond chain of N = 3 cells

We consider the case of open boundary conditions, i.e., N = 8. Corrections to the ground-state energy E(0) = −3t2 up to the
fourth order are as follows:

E(2) = −2(t1 − t3)2

t2
; (C4)

E(4)
q = (t1 − t3)2

(
7t2

1 − 26t1t3 + 7t2
3

)
4t3

2

,

E
(4)
d1 (U ) = (t1 − t3)2

[−24t2
2 (t1 − t3)2 + t2U

(
t2
1 − 50t1t3 + t2

3

) + 2U 2
(
7t2

1 − 23t1t3 + 7t2
3

)]
8t3

2 U (2t2 + U )
,

E
(4)
d2 (U ) = (t1 − t3)2

[−40t2
2 (t1 − t3)2 − t2U

(
17t2

1 + 14t1t3 + 17t2
3

) + 14U 2
(
t2
1 − 3t1t3 + t2

3

)]
8t3

2 U (2t2 + U )
. (C5)

Splitting of various SU(2) multiplets begins in the fourth order of perturbation theory. In Fig. 9 we show dependences of the
quadruplet and doublets energies on U obtained within different orders of the perturbation theory according to Eqs. (C4), (C5)
along with exact-diagonalization data for the same set of hopping integrals as in Fig. 8, i.e., t2 = 3,t1 = 0.9,t3 = 1.1. At a first
glance one may be worry about the agreement between perturbation theory and exact diagonalization. However, comparing the
fourth-order results and the exact-diagonalization data for N = 2 cells shown in Fig. 8 one can see a similar difference which is
obviously improved by the the sixth-order calculations.

APPENDIX D: PERTURBATION-THEORY RESULTS FOR THE LADDER

1. n = 2 electrons on the ladder of N = 2 cells

For the two-cell (N = 4) ladder (open boundary conditions) we have the following corrections to the unperturbed ground-state
energy E(0) = −2t2:

E
(2)
t = − (t11 − t22)2 + (t12 − t21)2

4t2
,

E(2)
s (U ) = − (t11 − t12 − t21 + t22)2

4t2
− (t11 − t22)2 + (t12 − t21)2

2(2t2 + U )
− 2(t11 − t12 − t21 + t22)2

U
; (D1)

E
(4)
t = 1

64t3
2

[
t4
11 − 4t3

11t22 + 2t2
11

(
3t2

22 − t2
21 − 6t21t12 − t2

12

) − 4t11t22
(
t2
22 + 3t2

21 − 14t21t12 + 3t2
12

)
+ t4

22 − 2t2
22

(
t2
21 + 6t21t12 + t2

12

) + (t21 − t12)4
]
,

E(4)
s (U ) = 1

64t3
2 U 3(2t2 + U )3

{
4096t6

2 (t11 − t12 − t21 + t22)4 + 7680t5
2 U (t11 − t12 − t21 + t22)4

+ t11
[
67t2

22 − 132t22(t12 + t21) + 66(t12 + t21)2
] + 21t3

22 − 66t2
22(t12 + t21) + 66t22(t12 + t21)2

+ 256t4
2 U 2(t11 − t12 − t21 + t22)[21t3

11 + t2
11(67t22 − 66(t12 + t21)) − (t12 + t21)

(
21t2

21 + 46t12t21 + 21t2
12

)]
144418-13
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+ t2
11

[
406t2

22 − 784t22(t12 + t21) + 386(t12 + t21)2
] + 32t3

2 U 3
[
55t4

22 − 248t3
22(t12 + t21) + 386t2

22(t12 + t21)2

− 8t22(t12 + t21)
(
31t2

21 + 57t12t21 + 31t2
12

)] + 32t3
2 U 3

(
55t4

21 + 256t3
21t12 + 406t2

12t
2
21 + 256t21t

3
12 + 55t4

12

)
+ 32t3

2 U 34t11
[−2(t12 + t21)

(
31t2

21 + 67t12t21 + 31t2
12

)] + 32t3
2 U 3[55t4

11 + 8t3
11(32t22 − 31(t12 + t21))

+ 4t11
[
64t3

22 − 196t2
22(t12 + t21) + t22

(
193t2

21 + 392t12t21 + 193t2
12

)]
+ t2

11

[
156t2

22 − 311t22(t12 + t21) + 4
(
38t2

21 + 77t12t21 + 38t2
12

)]
+ t11

[
100t3

22 − 311t2
22(t12 + t21) + 4t22

(
77t2

21 + 158t21t12 + 77t2
12

) − (t12 + t21)
(
97t2

21 + 214t12t21 + 97t2
12

)]
+ 20t4

22 − 97t3
22(t12 + t21) + 4t2

22

(
38t2

21 + 77t12t21 + 38t2
12

) − t22(t12 + t21)
(
97t2

21 + 214t12t21 + 97t2
12

)]
+ 16t2

2 U 4
[
20t4

11 + t3
11(100t22 − 97(t12 + t21)) + 4

(
5t4

21 + 25t3
21t12 + 39t2

21t
2
12 + 25t21t

3
12 + 5t4

12

)]
+ 2t2U

5(t11 − t12 − t21 + t22)
[
23t3

22 − 69t2
22(t12 + t21) + 69t22(t12 + t21)2 − (t12 + t21)

(
23t2

21 + 30t12t21 + 23t2
12

)]
+ 2t2U

5(t11 − t12 − t21 + t22)
[
23t3

11 + t2
11(53t22 − 69(t12 + t21)) + t11

(
53t2

22 − 138t22(t12 + t21) + 69(t12 + t21)2)]
+U 6(t11 − t12 − t21 + t22)2

[
t2
11 + 2t11(t22 − 3(t12 + t21)) + t2

22 − 6t22(t12 + t21) + (t12 + t21)2
]}

. (D2)

The formulas for the sixth-order corrections are too lengthy to be presented here, although we use these formulas to produce the
results reported in Figs. 3(a), 3(b), and 3(c). The formulas in (D1), (D2) become simpler in two particular cases introduced in
Sec. V. For the symmetric deformation we have

E
(2)
t = 0, E(2)

s (U ) = − (t11 − t12)2(8t2 + U )

t2U
; (D3)

E
(4)
t = 0, E(4)

s (U ) = (t11 − t12)2
[
512t3

2 (t11 − t12)2 + 192t2
2 U (t11 − t12)2 + 32t2U

2(t11 − t12)2 + U 3
(
t2
11 − 6t11t12 + t2

12

)]
4t3

2 U 3
.

(D4)

For the semisymmetric deformation we have

E
(2)
t = − (t11 − t21)2

2t2
, E(2)

s (U ) = − (t11 − t21)2

2t2 + U
; (D5)

E
(4)
t = − t11t21(t11 − t21)2

2t3
2

, E(4)
s (U ) = − (t11 − t21)2[8t2t11t21 + U (t11 + t21)2]

2t2(2t2 + U )3
. (D6)

Furthermore, the sixth-order corrections are as follows:

E
(6)
t = 0,

E(6)
s (U ) = − 1

8t5
2 U 5

(
16t2

2 + U 2
) [

(t11 − t12)2
(
524288t7

2 (t11 − t12)4 + 327680t6
2 U (t11 − t12)4 + 131072t5

2 U 2(t11 − t12)4

+ 1024t4
2 U 3(t11 − t12)2(35t2

11 − 76t11t12 + 35t2
12

) + 256t3
2 U 4(t11 − t12)2(28t2

11 − 65t11t12 + 28t2
12

)
+ 8t2

2 U 5
(
121t4

11 − 556t3
11t12 + 886t2

11t
2
12 − 556t11t

3
12 + 121t4

12

) + 16t2U
6(t11 − t12)2

(
4t2

11 − 17t11t12 + 4t2
12

)
+U 7(t4

11 − 14t3
11t12 + 34t2

11t
2
12 − 14t11t

3
12 + t4

12

))]
(D7)

(symmetric deformation) and

E
(6)
t = (t11 − t21)2

(
t4
21 + 4t3

21t11 − 26t2
21t

2
11 + 4t21t

3
11 + t4

11

)
32t5

2

,

E(6)
s (U ) = (t11 − t21)2

(
t4
21 + 4t3

21t11 − 26t2
21t

2
11 + 4t21t

3
11 + t4

11

)
(2t2 + U )5

+ (t11 − t21)2
[
t2U (t11 + t21)2

(
3t2

21 − 14t21t11 + 3t2
11

) − 2t21t11U
2(t11 + t21)2

]
2t2

2 (2t2 + U )5
(D8)

(semisymmetric deformation).
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2. n = 3 electrons on the ladder of N = 3 cells

For the three-cell (N = 6) ladder (open boundary conditions) we have the following corrections to the unperturbed ground-state
energy E(0) = −3t2:

E(2)
q = − (t11 − t22)2 + (t12 − t21)2

2t2
,

E
(2)
d1 (U ) = 1

4

(−2t2
11 + t11(2t22 + t12 + t21) − 2t2

22 + t22(t12 + t21) − 2
(
t2
12 − t12t21 + t2

21

)
t2

− (t11 − t22)2 + (t12 − t21)2

2t2 + U
− 4(t11 + t22 − t12 − t21)2

U

)
,

E
(2)
d2 (U ) = − 1

4t2U (2t2 + U )

[
(8t2 + U )

(
3t2(t11 + t22 − t12 − t21)2

+U
(
2t2

11 + t11(2t22 − 3(t12 + t21)) + 2t2
22 − 3t22(t12 + t21) + 2

(
t2
12 + t12t21 + t2

21

)))]
; (D9)

E(4)
q = 1

16t3
2

[
t4
11 − 4t3

11t22 + t2
11

(
6t2

22 − 3t2
12 − 10t12t21 − 3t2

21

)
+ 2t11t22

(−2t2
22 + t2

12 + 14t12t21 + t2
21

) + t4
22 − t2

22

(
3t2

12 + 10t12t21 + 3t2
21

) − 4t12t21(t12 − t21)2
]
, (D10)

and the formulas for E
(4)
d1 (U ) and E

(4)
d2 (U ) are too lengthy to be presented here. Formulas given in Eqs. (D9) and (D10) are

illustrated in Fig. 10, where we show the dependence of energies of the quadruplet and doublets on U for three typical sets of
parameters.

3. n = 4 electrons on the ladder of N = 4 cells

For the four-cell (N = 8) ladder (open boundary conditions) we have the following corrections to the unperturbed ground-state
energy E(0) = −4t2:

E
(2)
Q = −3((t11 − t22)2 + (t12 − t21)2)

4t2
,

E
(2)
t1 (U ) = 1

4(
√

2 − 2)t2U (2t2 + U )

[
2t2U

(
(21 − 13

√
2)t2

11 + 2t11((9 − 7
√

2)t22 + 5(2
√

2 − 3)(t12 + t21))

+ (21 − 13
√

2)t2
22 + 10(2

√
2 − 3)t22(t12 + t21) + (21 − 13

√
2)t2

12 + 2(9 − 7
√

2)t12t21 + (21 − 13
√

2)t2
21

)]
− 1

4(
√

2 − 2)t2U (2t2 + U )

[
U 2

(
3(

√
2 − 2)t2

11 + 2t11(
√

2t22 + (3 − 2
√

2)(t12 + t21)) + 3(
√

2 − 2)t2
22

+ (6 − 4
√

2)t22(t12 + t21) + 3(
√

2 − 2)t2
12 + 2

√
2t12t21 + 3(

√
2 − 2)t2

21

)] − 16(2
√

2 − 3)t2
2 (t11 + t22 − t12 − t21)2

4(
√

2 − 2)t2U (2t2 + U )
,

E
(2)
t2 (U ) = 1

4

(−3t2
11 + 2t11(t22 + t12 + t21) − 3t2

22 + 2t22(t12 + t21) − 3t2
12 + 2t12t21 − 3t2

21

t2

− 2((t11 − t22)2 + (t12 − t21)2)

2t2 + U
− 8(t11 + t22 − t12 − t21)2

U

)
,

E
(2)
t3 (U ) = − 1

4(2 + √
2)t2U (2t2 + U )

[
2t2U

(
(21 + 13

√
2)t2

11 + 2t11((9 + 7
√

2)t22 − 5(3 + 2
√

2)(t12 + t21))

+ (21 + 13
√

2)t2
22 − 10(3 + 2

√
2)t22(t12 + t21) + (21 + 13

√
2)t2

12 + 2(9 + 7
√

2)t12t21 + (21 + 13
√

2)t2
21

)]
− 1

4(2 + √
2)t2U (2t2 + U )

[
U 2

(
3(2 +

√
2)t2

11 + 2t11(
√

2t22 − (3 + 2
√

2)(t12 + t21)) + 3(2 +
√

2)t2
22

− 2(3 + 2
√

2)t22(t12 + t21) + 3(2 +
√

2)t2
12 + 2

√
2t12t21 + 3(2 +

√
2)t2

21

)] − 16(3 + 2
√

2)t2
2 (t11 + t22 − t12 − t21)2

4(2 + √
2)t2U (2t2 + U )

,
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E
(2)
s1 (U ) = 1

4

(
−3t2

11 + t11((
√

3 − 3)(t12 + t21) − 2
√

3t22) + 3t2
22 + (

√
3 − 3)t22(t12 + t21) + 3t2

12 − 2
√

3t12t21 + 3t2
21

t2

+ (
√

3 − 3)((t11 − t22)2 + (t12 − t21)2)

2t2 + U
+ 4(

√
3 − 3)(t11 + t22 − t12 − t21)2

U

)
,

E
(2)
s2 (U ) = 1

4

(−3t2
11 + t11((3 + √

3)(t12 + t21) − 2
√

3t22) − 3t2
22 + (3 + √

3)t22(t12 + t21) − 3t2
12 − 2

√
3t12t21 − 3t2

21

t2

− (3 + √
3)((t11 − t22)2 + (t12 − t21)2)

2t2 + U
− 4(3 + √

3)(t11 + t22 − t12 − t21)2

U

)
; (D11)

E
(4)
Q = 1

64t3
2

[
7t4

11 − 28t3
11t22 + t2

11

(
42t2

22 − 22t2
12 − 68t12t21 − 22t2

21

) + 28t11t22
(−t2

22 + t2
12 + 6t12t21 + t2

21

)
+ 7t4

22 − 2t2
22

(
11t2

12 + 34t12t21 + 11t2
21

) − (t12 − t21)2
(
t2
12 + 30t12t21 + t2

21

)]
, (D12)

and the formulas for E
(4)
t1 (U ),E(4)

t2 (U ),E(4)
t3 (U ),E(4)

s1 (U ), and E
(4)
s2 (U ) are too lengthy to be presented here. In Fig. 11 we illustrate

the dependence of the quintuplet, triplets, and singlets energies on U for three typical sets of parameters.

APPENDIX E: PERTURBATION-THEORY RESULTS FOR THE BILAYER

1. n = 5 electrons on the bilayer of N = 5 cells

For the finite-size bilayer cluster (star geometry) we have obtained the following corrections to the unperturbed ground-state
energy E(0) = −5t2:

E
(2)
S = − (t11 − t22)2 + (t12 − t21)2

t2
, E

(2)
q1 (U ) = E

(2)
q2 (U ) = E

(2)
q3 (U )

= 1

16

(−16t2
11 + t11(14t22 + 9(t12 + t21)) − 16t2

22 + 9t22(t12 + t21) − 2
(
8t2

12 − 7t12t21 + 8t2
21

)
t2

− 9((t11 − t22)2 + (t12 − t21)2)

2t2 + U
− 36(t11 + t22 − t12 − t21)2

U

)
,

E
(2)
q4 (U ) = 1

16

(−16t2
11 + t11(22t22 + 5(t12 + t21)) − 16t2

22 + 5t22(t12 + t21) − 2
(
8t2

12 − 11t12t21 + 8t2
21

)
t2

− 5((t11 − t22)2 + (t12 − t21)2)

2t2 + U
− 20(t11 + t22 − t12 − t21)2

U

)
; (E1)

E
(4)
S = 1

4t3
2

[
t4
11 − 4t3

11t22 + 2t2
11

(
3t2

22 − t2
12 − 6t12t21 − t2

21

) − 4t11t22
(
t2
22 + 3t2

12 − 14t12t21 + 3t2
21

)
+ t4

22 − 2t2
22

(
t2
12 + 6t12t21 + t2

21

) + (t12 − t21)4
]
, (E2)

and the formulas for E
(4)
q1 (U ),E(4)

q2 (U ),E(4)
q3 (U ), and E

(4)
q4 (U ) are too lengthy to be presented here.
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57005 (2014); Mod. Phys. Lett. B 28, 1450220 (2014).

[20] H. Jeschke, I. Opahle, H. Kandpal, R. Valenti, H. Das,
T. Saha-Dasgupta, O. Janson, H. Rosner, A. Brühl, B.
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