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Chaotic dynamics of magnetic domain walls in nanowires
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The nonlinear dynamics of a transverse domain wall (TDW) in permalloy and nickel nanostrips with two
artificially patterned pinning centers is studied numerically up to rf frequencies. The phase diagram frequency-
driving amplitude shows a rich variety of dynamical behaviors depending on the material parameters and the
type and shape of pinning centers. We find that T-shaped traps (antinotches) create a classical double well
Duffing potential that leads to a small chaotic region in the case of nickel and a large one for Py. In contrast, the
rectangular constrictions (notches) create an exponential potential that leads to larger chaotic regions interspersed
with periodic windows for both Py and Ni. The influence of temperature manifests itself by enlarging the chaotic
region and activating thermal jumps between the pinning sites while reducing the depinning field at low frequency

in the notched strips.
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I. INTRODUCTION

Nonlinear phenomena are studied in various fields ranging
from atmospheric models to biophysics [1,2]. In magnetism,
the nonlinear dynamics has developed with the study of
spin-wave instabilities in magnetic spheres and the nonlinear
motion of a single spin due to the nonlinearity of the
Landau-Lifshitz equation [3-7]. The emergence of chaotic
motion in a single Bloch domain wall (DW) was also studied
under applied magnetic field in magnetic bubble garnet thick
films [8,9]. Recent results on nonlinear DW dynamics discuss
the current-driven motion of a confined DW in a constriction
in relation to the DW spin-torque oscillators [10], the dynamic
resonant response of magnetostatically interacting DWs in
parallel nanowires [11], and the stochastic resonance of a DW
between two pinning centers in a nanowire [12].

The magnetic domains separated by DWs in nanowires
(or nanostrips) are highly studied nowadays for storage
applications like the racetrack memory [13] or for logic
devices [14]. The operation of the racetrack memory is based
on the synchronous displacement by applied field or current
of a series of DWs that are normally pinned at constrictions or
other patterned traps. Several types of traps and nanowires
(cylindrical or strip) were studied [15-18] along with the
possible interaction between the DWs [19,20]. The traps
create a pinning potential for the DW that depends on the DW
type (vortex or transverse). In low width/diameter nanowires
the transverse DW represents the stable state that can be pinned
in the potential well created by the traps. Until now, the rf
driven DW dynamics needed to operate at high velocity the
possible devices was not studied in these systems, even if it
is well known that the motion between potential wells can
lead to chaos. The presence of chaos in devices is normally
not desirable as affecting performance and different methods
can be employed in electrical systems to render the system’s
response periodic. From a fundamental point a view, the study
of the chaotic movement of a magnetic DW contributes to the
understanding of chaos universal features and of the nonlinear
magnetization dynamics.
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In this article we study numerically the nonlinear dynamics
of a harmonic driven TDW between two pinning sites in a
nanostrip up to 1f frequencies. We investigate two pinning
systems: one with two symmetric antinotches (T traps) and
one with two symmetric double notches [Figs. 1(a) and 1(b)].
The pinning sites create a double potential well in both system
types which leads to a complex nonlinear dynamics of the DW
function of the rf applied field or current. We find that the
antinotched strip leads to an well known Duffing potential,
while for the notched strip a phenomenological potential
was inferred [17]. The double well potential depends on the
material parameters (Ni or Py), which results in different phase
diagrams and chaotic regions. The temperature influences the
dynamics of the DW in the nanostrip increasing globally
the chaotic window and reducing the depinning field at low
frequency.

This article is organized as follows. In Sec. I we present the
micromagnetic and the stochastic 1D model used to calculate
the rf wall dynamics. In Sec. III we compute and investigate
the phase diagram of the DW dynamics in the different systems
presented at 7 = 0 K and room temperature. Discussion and
concluding remarks are presented in Sec. IV.

II. MODEL

We study numerically the dynamics of domain walls in
nanostrips of Py or Ni with two types of pinning sites: notches
and antinotches. The dimensions of notches and antinotches
were chosen to have similar potential barriers between the
pinning sites for the same material. The strip has a cross section
of L, x L, =50 x 5nm? (with antinotches) or 60 x 5nm?
(with notches). The antinotches have dimensions of [, x
Iy xI; =70 x150 x 5 nm? separated by 350 nm. Figure 1(b)
shows the equilibrium position of a head-to-head TDW in the
antinotched strip using the parameters of nickel: saturation
magnetization My = 477 kA/m (uoM; = 0.6 T), exchange
stiffness A = 1.05 x 10~'! J/m, and damping parameter @ =
0.02. The dimensions of the notches are 20 x 10 x 5nm?
and are separated by 40 nm for the Ni nanostrip, while for
Py dimensions of 15 x 8 x 5nm?® were used with 30 nm
separation distance. Figure 1(a) displays the equilibrium
position of a head-to-head TDW in the notched strip using the
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FIG. 1. Simulated structures: planar nanowire with two symmet-
ric double notches (a) and with two symmetric antinotches (b). The
equilibrium position of a pinned DW is shown in each case. The
arrows indicate the direction of magnetization. Normalized potential
pinning energy for notches (c) and antinotches (d) is shown for
two different materials (Ni and Py) as determined by micromagnetic
simulations.

parameters of Py: saturation magnetization M, = 860 kA/m
(oM, = 1.08 T), exchange stiffness A = 1.3 x 107! J/m,
and damping parameter « = 0.01. An ac magnetic field or
current was applied along the x axis up to a frequency of 3 GHz.

The DW dynamics was computed using three-dimensional
(3D) micromagnetic simulations with the Nmag package [21]
and with the one-dimensional (1D) DW model [22,23]. For
the micromagnetic computations, the strips were discretized
into a mesh with a cell size of 3 nm, inferior to the exchange
length (~5nm). The average position of the DW center (x)
is extracted for each applied field (in the axial x direction)
along with the azimuthal angle (1) of magnetization in the
yz plane. No magnetocrystalline anisotropy is considered
and the temperature is set to 7 = 0 K. The effect of the
temperature is introduced using the stochastic 1D model. The
1D model of the DW supposes that the DW is rigid and gives a
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quasiquantitative understanding of the motion of TDWs. The
Langevin equations of motion of the DW are [24,25]
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where X and i are the position and azimuthal angle (in
the yz plane) of the DW, A is the DW width, S is the
section of the wire, y is the gyromagnetic ratio, M, is
the saturation magnetization, Hy is the DW demagnetizing
field, o is the damping parameter, and nx and 5, represent
stochastic Gaussian noise with zero mean value and correla-
tions (n;()n;(1")) = QakpT)/(LoM;ASy0)8;;8(t —1'). E is
the potential energy of the DW that includes the internal
energy, the Zeeman energy, the effects of current, the in-
teraction energy with other DWs, and the pinning energy.
The pinning field associated with the pinning potential is

given by Hpin(x) = —m aaE% and the DW width variation

is given by A(t) = A[V()] = ”\/—quszsinWwoMsHk' The

potential pinning energy Epi, and the equilibrium position in
each system are determined from quasistatic micromagnetic
simulations and are shown in Figs. 1(c) and 1(d) for the notched
and the antinotched nanostrip. H; and A are also estimated
from the micromagnetic computations. The pinning potentials
determined by fitting the micromagnetic results are of bistable
Duffing type for antinotched strips Epin = ax* + bx* (for Py
an extend Duffing potential with an x® term was added). For
notched strips an exponential phenomenological potential was
used as before [17]:
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with x; and x the centers of each pinning site, L is the length,
and V] is the effective depth of pinning sites. For both types of
pinning centers (notches and antinotches), the energy barrier
between the pinning wells is controlled by the dimensions and
distance between the centers.

To determine the apparition of chaos in the driven-DW
dynamics as the control parameters are varied, we computed
point-by-point phase diagrams for all systems with the 1D DW
model for a large frequency range up to 3 GHz. A similar mi-
cromagnetic computation will require an enormous execution
time. The control parameters are the amplitude and frequency
of the ac applied field (or current). The range of field amplitude
(<500e) is chosen to have only viscous motion (low DW
velocity, no precession) and/or inferior to the depinning field
(for notched stripes). The frequency range (<3 GHz) is chosen
to be on the same order of magnitude with access or read-
ing/writing time in possible magnetic memories based on DW
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(~1 ns). To compare the results of the 1D model with the results
of micromagnetic simulations, we computed the bifurcation
diagrams and the Poincaré sections showing strange attractors
by both methods for all systems at fixed frequencies.

III. RESULTS

We start presenting our results with the dynamics of a
DW under an applied magnetic field at zero temperature.
Afterwards, we will investigate the dynamic behavior under
applied current and the influence of the temperature.

A. Frequency-magnetic field phase diagram at 7 = 0 K

To identify and characterize chaos quantitatively we cal-
culated the largest Lyapunov exponent which underlines the
dynamics of chaotic behavior [2,6]. Another type of quantifier
which punctuates the geometric nature of trajectories in phase
space, the fractal dimension (more precisely the correlation
dimension), was also calculated in some special cases. The
method of Lyapunov exponent is based on the exponential
instability of nearby chaotic trajectories in phase space to
variations in the initial conditions. Noting the difference in
the nearby trajectories dx( (for each component of the phase
space) at the initial time 7y and §x,, the difference at a later time
t, the Lyapunov exponent is defined by (in the long-term limit)

1 <8x,,)
A=—In . “)
n dxg

A positive average Lyapunov coefficient implies a chaotic
behavior of the system. To characterize the strange attractors
we also use the correlation dimension which gives the
probability of finding two points in the same cell (of a given
radius). A noninteger value of the dimension implies a strange
attractor.

We start our study with a DW pinned in a nanostrip
with two symmetric antinotches and submitted to a harmonic
applied magnetic field. The asymptotic movement of the
DW is equivalent to a classical Duffing oscillator. The phase
diagrams of largest Lyapunov exponent in the parameter space
frequency-field amplitude are shown in Figs. 2(a) and 2(e) for
Py and Ni, respectively, at T = 0 K. The diagrams represent
1000 x 1000 point-by-point integration with a fourth order
Runge-Kutta scheme. A clear difference is observed between
the two diagrams. In the Ni strip, we determine only a small
window of chaos in the parameter space. The chaos appears
at low fields (<12 Oe) and frequencies inferior to 680 MHz.
Above these parameter values, the asymptotic motion of the
DW remains periodic (period-1) between the two potential
wells (below 1 GHz) or in one potential well (above 1 GHz).
The periodicity of the asymptotic DW motion was confirmed
micromagnetically for a number of cases at frequencies above
680 MHz. A comparison between the micromagnetic and 1D
model computed bifurcation diagram is shown in Fig. 2(f) for
a frequency of 500 MHz. The micromagnetic results display
the same behavior as the 1D model. Chaotic windows appear
between 4.5 and 10.2 Oe with a large subharmonic period-3
motion in between. The transition to chaos starts with a period
doubling bifurcation at 4.1 Oe. The Poincaré section showing
a strange (chaotic) attractor is shown in Fig. 2(g) for H = 6 Oe
corresponding to the first chaotic window from Fig. 2(f).
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The calculated correlation dimension (on 5000 points) of this
attractor is 1.39.

In contrast, for the Py antinotched strip, a large part of the
parameter space is dominated by chaos. A periodic motion is
determined for all frequencies at an applied field amplitude
below 14 Oe, and up to 50 Oe for frequencies between
600 and 750 MHz and above 2.5 GHz. Up until 1.5 GHz,
the chaos starts at lower fields with increasing frequency.
Two bifurcation diagrams are shown in Figs. 2(b) and 2(c)
computed at 500 MHz and 1 GHz, respectively. At 500 MHz,
the DW motion is periodic in one potential well until 22.5 Oe,
afterwards the motion stays periodic but takes place between
the two potential wells. The onset of chaos starts with a
period-doubling bifurcation at 35.7 Oe and continues with
a cascade of Feigenbaum-like period doubling until 40.5 Oe
where it expands into a small window of chaos. At 41 Oe, the
1D model predicts that the motion of the DW will revert to
period-2 motion with another cascade of period-doubling onset
of chaos. Micromagnetically, the field step used of 1 Oe does
not allow us to precisely identify the periodic window between
41 and 43 Oe. In general, the 1D model gives quantitatively the
same results as the micromagnetic simulation (computed with
less points) at low fields and quasiquantitatively at high fields
or high frequency. At 1 GHz, the DW motion is dominated
by chaos with many narrow windows where chaos reverts to
periodic motion (period-3 or period-5). The Poincaré section
for a strange attractor is shown in Fig. 2(d) for an amplitude
of the applied field of 50 Oe and a frequency of 1 GHz. The
correlation dimension of this attractor is 1.70.

Typical properties of anharmonic oscillations like jump and
hysteresis phenomena were also determined [Fig. 2(h)] for the
DW motion in the antinotched nanostrip. In the frequency
response spectrum above a certain critical frequency, which
depends only on the nonlinear terms in the potential and the
magnetic damping, bistability occurs. For the Ni nanostrip, the
jump frequency varies between 0.31 GHz at 6 Oe to 0.62 GHz
at 20 Oe. For Py, the jump occurs at 0.94 GHz for H = 10 Oe
and at 1.5 GHz for H =30 Oe. A secondary resonance is
observed for Py at lower frequencies and is less evident for Ni.

The motion of the DW in the notched nanostrip is detailed
in Fig. 3. As two symmetric notches create a potential well that
can pin a DW, the addition of another symmetric pair of notches
at close distance to the first leads to a double well potential. The
central barrier is highly dependent on this internotch distance
and the potential has an exponential decay moving farther
from the notch center. The external barriers are less important
than for antinotches giving a depinning field around 50 Oe (for
antinotches Hyepin = 300 Oe). For Py [Fig. 3(a)], the Lyapunov
phase diagram shows a harmonic motion of the DW for all
fields up to a frequency of 1.19 GHz. This is in total contrast
with the antinotch case where the periodic motion was obtained
at high frequencies. Therefore, the control of the periodicity of
the movement for a large range of frequencies can be obtained
by changing the type of the pinning centers. For the Py notched
strip, chaos appears in the DW motion at high applied field
amplitude and moves to lower field with increasing frequency.
A bifurcation diagram computed at 2.5 GHz is shown in
Fig. 3(b). At low fields, the DW motion is periodic with
only one stable attractor (in one potential well). At 19 Oe
the asymptotic DW motion is still period-1, but now there
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FIG. 2. Normalized Lyapunov phase diagram for a DW at T = 0 K in a Py (a) and Ni (e) nanostrip with two symmetric antinotches. Dark
color represents chaotic motion. The frequency f is given in units of Yy M,, which corresponds to an absolute scale of 0-3 GHz. The amplitude
of the applied field /4 is given in units of M, that corresponds to 0-50 Oe in an absolute scale. Bifurcation diagrams are shown in (b) and
(c) computed at 500 MHz and 1 GHz, respectively, for Py. (d) Example of strange attractor obtained at H = 50 Oe from (c). (f) Bifurcation
diagram for Ni at 500 MHz. (g) Strange attractor for a field of H = 6 Oe from (f). The bifurcation diagrams and the strange attractor are
computed with a 1D analytical model (upper panels) and by 3D micromagnetic simulations (lower panels). (h) Frequency response spectrum

with jump phenomena for Py at H = 10 Oe and for Ni at H = 20 Oe.

are two stable attractors each corresponding to the two stable
points (potential wells). The DW motion remains periodic
in one potential well. The onset of chaos is sudden with
an abrupt transition from periodic motion. One can observe
several chaotic windows interspersed with periodic windows.
The periodic windows are larger than in the case of antinotches
with the largest being the first window (period-3) of 4.1 Oe
(data from 1D model). The DW asymptotic motion observed
just before the period-3 window shows intermittency (intervals
of period-3 and chaotic motion). After the appearance of the
period-3 window, the chaotic intervals become larger and
more frequent. The third chaotic interval contains actually tiny
periodic windows (mostly period-5). The Poincaré section for
a strange attractor is shown in Fig. 3(c) at H = 30 Oe. The
correlation dimension of this attractor is 1.84.

For the Ni notched nanostrip [Fig. 3(d)], the DW motion is
periodic at all fields at low (<100 MHz) or high frequencies
(=>2.75GHz) and between 500 and 750 MHz. The chaotic
regions contain large pockets of periodic regions. A detailed
bifurcation diagram [Fig. 3(e)] computed at 500 MHz shows
large periodic windows together with chaotic intervals. The
chaotic windows contain several tiny periodic windows. The
onset of chaos appears like an abrupt transition from a period- 1

motion inside one potential well. The second periodic interval
is also of period-1 with the motion taking place between the
two potential wells. At higher applied field, the motion is
period-3. The Poincaré section for a strange attractor is shown
in Fig. 3(f) at H = 6 Oe. The correlation dimension of this
attractor is 1.38.

B. Frequency-current phase diagram at 7 = 0 K

The effect of a spin-polarized 1f current (zero applied
magnetic field) on the DW dynamics is shown in Fig. 4 for the
Py notched system at T = 0 K. The nonadiabatic spin-torque
parameter B that allows the DW to be driven in the dissipative
regime is taken here equal to 2. There is still much debate over
the actual value of g, with a consensus that is of the same order
as the damping parameter «. The regime chosen here, 8 > «,
corresponds to a similar behavior as the field-driven case for
the velocity of the DW [25] showing a Walker-breakdown
behavior. Therefore, we expect a similar phase diagram as in
Fig. 3(a). In the two cases, field driven and current driven,
we observed the same behavior, with a periodic motion until
almost 1.5 GHz, with chaotic motion appearing at higher
frequencies. The same type of periodic windows inside the
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FIG. 3. Normalized Lyapunov phase diagram for a DW at T = 0 K in a Py (a) and Ni (d) nanostrip with two double notches. Dark color
represents chaotic motion. The frequency f is given in units of y,M,, which corresponds to an absolute scale of 0-3 GHz. The amplitude of
the applied field 4 is given in units of M, that corresponds to 0—50 Oe in an absolute scale for Py and to 0-30 Oe for Ni. Bifurcation diagrams
are shown in (b) and (e) computed at 2.5 GHz for Py and 500 MHz for Ni, respectively. (c) Example of strange attractor obtained at H = 30 Oe
from (b). (f) Strange attractor for a field of H = 6 Oe from (e). The bifurcation diagrams and the strange attractor are computed with a 1D
analytical model (upper panels) and by 3D micromagnetic simulations (lower panels).

chaotic region are computed, the only difference being the
slope of the boundary between the periodic and chaotic motion
which depend on the value of the nonadiabatic spin-torque
parameter.

The frequency-current phase diagrams for the antinotched
strip (Py and Ni) are similar to the ones presented in Fig. 2 and
are not shown.

3 >0
)
515
% 2.05 45 =0
j (A/um?)

FIG. 4. Frequency-current phase diagram fora DW at T =0 K
in a Py nanostrip with two double notches.

C. Temperature dependence

The temperature influences the motion of the DW in
two ways: on one hand the thermal noise disturbs the DW
oscillation by modifying its shape, and on the other hand the
temperature activates jumps over the middle potential barrier
at smaller applied field/current. These thermal activated jumps
usually follow an Arrhenius-Néel type law [25-27] with the
transition rate given by

[ = [ge 2V/ksT )

where AV is the barrier height, and I'y is the attempt frequency
at zero temperature. I'y is estimated in the range 10’—10'2 Hz
[26,27] and using an experimental time of 1 ms [26], the
potential barrier a DW could surmount varies from 0.23 to
0.51 eV at room temperature. This gives a high estimate of
the transition rate, but is more than enough to activate jumps
between the two potential wells presented in Sec. II.

Using Eq. (1), we determined the stochastic motion of the
DW by computing 100 realizations of the DW motion for a
finite number of points (15 x 500) in the phase diagrams of
Figs. 2 and 3. Globally, for antinotched and notched nanowires,
the motion of DW at low fields (below 10-15 Oe) is highly
affected by thermal noise and the periodic motion can no longer
be extracted. The motion is chaotic as the FFT of the DW
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FIG. 5. Comparison between the DW motion at O (full line) and 300 K (dotted line) for the Py antinotched strip (a) and (c), Ni antinotched
strip (e), and Ni notched strip (g). The control parameters are (a) 15.7 Oe, 600 MHz, (c) 22.6 Oe, 600 MHz, (e) 18 Oe, 400 MHz, and (g)
17.2 Oe, 800 MHz. The power spectrum at 300 K is shown in (b), (d), and (h) corresponding to (a), (c), and (g), respectively. (f) Phase-space

plot of the DW motion from (e). The thick line corresponds to 0 K.

motion shows noise for a large range of frequency. At higher
fields, this thermal noise has lesser influence on the harmonic
motion of the DW and periodic motion can be detected at
300 K for some frequency range.

Typical temperature modification of the harmonic motion
of the DW are shown in Fig. 5. The usual behavior at low
fields is shown in Fig. 5(a) for the Py antinotched wire at
600 MHz (H = 15.7 Oe). The DW motion takes place in one
well (period-2) at 0 K (continuous line) with the FFT showing
harmonics from 1 to 6 (image not shown). At 300 K, the
motion is still periodic in one well (period-2) with a jump
probability to the second well of only 2%. We observe in this
case an amplitude modulation of the DW motion (dotted line)
which reflects in the FFT that shows noise in a large range
of frequency [Fig. 5(b)]. The noise peak around 1.2 GHz
(which here superposes with harmonic 2) appears in all the
simulations for the Py antinotched wire at 300 K. To quantify
the noise in the system, we calculated the area under the large
noise peak (weight intensity of the peak) for different magnetic
fields and frequencies. We found that the weight of the noise
peak decreases exponentially with increasing magnetic field
and increasing frequency up to 1.5 GHz. This corresponds
to the noise being larger when the oscillations take place in
one well and the middle potential barrier is higher. As the
amplitude of the applied field is increased, the height of the
barrier diminishes and the oscillations take place between
the two wells. This is the case in Fig. 5(c), where the DW
motion is shown for an applied field of 22.6 Oe (600 MHz,
Py antinotched wire). The motion is period-1 between two
wells (with 100% probability) with a very small amplitude
modulation at 300 K. The FFT of the signal shows the odd
harmonics with very small noise around them [Fig. 5(d)].
Therefore, the phase diagram of the Py antinotched wire
is modified as follows: for all frequencies at low applied
fields (inferior of 15 Oe) the DW motion becomes chaotic
due to thermal noise with the motion occurring in one well.
Above 15 Oe and up to 1.5 GHz, the phase diagram does not
change much with the periodic motion showing small thermal
noise and chaos appearing at smaller fields. Above 1.5 GHz,

the DW motion occurs in one potential well for applied fields
up to 50 Oe. The noise is important and the signal is chaotic.
The temperature activates jumps between wells at lower fields
(for example at 20 Oe for 2.2 GHz), with the motion still
occurring in one well. At higher fields, the jumps appear more
often with intermittent oscillations between the two wells.

The phase diagram for the Ni antinotched wire [Fig. 2(e)]
changes more dramatically under the influence of temperature.
Above 900 MHz, for all applied fields the DW motion becomes
chaotic (at 0 K being periodic). Below 900 MHz the DW
motion is periodic for a large range of applied field, starting
from 3 Oe at 50 MHz and from 7 Oe at 200 MHz. The periodic
window diminishes with increasing frequency starting from
11 Oe at400 MHz, 19 Oe at 600 MHz, and 39.3 Oe at 800 MHz.
An example of the temperature influence on the DW motion is
shown in Figs. 5(e) and 5(f) for the Ni antinotched wire. For
these control parameters (H = 18 Oe, f =400 MHz), the
motion is periodic between the two wells at 0 K, showing
a periodic attractor in the phase space [thick red line in
Fig. 5(f)]. To this periodic attractor it will correspond exactly
one point in the Poincaré section in phase space. At 300 K, the
motion stays periodic with small noise (amplitude modulation)
characterized by a periodic attractor which becomes enlarged
consisting of several loops. Still the motion is periodic (or
quasiperiodic) with the Poincaré section showing a cloud of
points around the point corresponding to 0 K. The FFT (not
shown) is similar with the one in Fig. 5(d), showing harmonics
1, 3, and 5 with a small noise peak around 675 MHz.

In the case of the notched wire, as the external potential
barrier for depinning (escaping from the potential) is six
times smaller than the antinotched wire, the depinning field is
strongly affected by the temperature [19]. For Py, the thermal
noise at low fields (inferior of 15 Oe) is large as in the case of
the antinotched wire and the motion is chaotic. Between 15 and
25 Oe at low frequency (below 800 MHz), the DW motion is
periodic in one well with moderate noise and nonzero probabil-
ity of jump to the second well. The jump probability increases
with the applied field and is 29% at 15 Oe and 93% at 25 Oe
(500 MHz). Above 25 Oe and up to 1.5 GHz the DW depins.
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The depinning probabilities at 8§00 MHz are 1% at 15 Oe, 39%
at 20 Oe, and 88% at 25 Oe. Above 800 MHz, the noise is too
important and the motion is chaotic. Therefore, the only peri-
odic window is below 800 MHz at fields between 15 and 25 Oe
with the window slowly reducing with increased frequency.
For the notched Ni strip, the periodic window is larger than
for Py at 300 K. As the middle potential barrier is lower, the
DW motion takes place between the two wells even at 10 Oe (at
100 MHz). The DW motion is periodic between 10 and 30 Oe at
100-200 MHz and between 15 and 25 Oe up to 1.2 GHz. Above
1.2 GHz, the motion is chaotic between two wells with some
small periodic windows (intermittency). A typical harmonic
DW motion is shown in Fig. 5(g) for a field of 17.2 Oe at
800 MHz with small thermal noise at 300 K [FFT in Fig. 5(h)].

IV. DISCUSSION AND CONCLUSION

The emergence of chaos in the DW motion depends largely
on the damping parameter & and on the precise form of the
potential and material parameters. For Ni, a value of o = 0.02
was used which corresponds to the calculated value at room
temperature. At low temperature, below 80 K, the damping
parameter increases for Ni up to a value of 0.1 [28]. If an actual
value of « = 0.1 is used, the phase diagram changes and for the
antinotched strip only periodic motion of the DW is determined
(no small chaotic region). For the notched strip, the chaotic
region diminishes to a small region (inclined bubblelike) that
stretches between 800 MHz and 1.5 GHz with the largest width
of 10 Oe (figure shown in Ref. [29]). This does not influence
the behavior at room temperature, where the periodic motion
is observed only up to 900 MHz (antinotched wire) and up
to 1.2 GHz (notched wire). Similarly, for the Py strip with
notches, if the value of « is increased from 0.01 to a value of
0.1 the DW motion is almost completely periodic with a very
small chaotic region around 2 GHz and above 45 Oe.

The influence of the saturation magnetization on the
DW motion is more complex as the pinning energy (and
demagnetization energy) and the DW width vary. For the
nanostrip with notches, varying M, will change slightly the
curvature of the potential and the central potential barrier
height, which increases with M [29]. When M is decreased
the DW movement will be more chaotic at high fields (more
jumps between wells) and chaos will appear at slightly lower
frequencies (above 40 Oe). At higher M, the chaotic motion
moves to higher frequencies and larger periodic windows are
determined inside the chaotic area. An example of this effect
for the Py notched strip is shown in Ref. [29]. However, the
dependence is not linear, and the changes in the phase diagram
are small. In the case of the antinotched strip, the variation of
the M, will change more drastically in the form of the potential
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well (and equilibrium positions) and for values too far apart
from the actual value (going to 1000 from 860 kA /m for Py)
the potential changes too much and cannot be fitted anymore
to a classic Duffing potential. Globally, the same behavior is
expected with apparition of chaos at lower frequencies and
fields.

Varying the exchange constant A will modify mostly
the potential barrier height for the notched strip, while the
curvature of the potential stays almost the same. The chaotic
region is displaced to higher frequencies and fields when
A is diminished, with changes inside the chaotic region
as the pockets of periodic motion increase. Therefore, in
principle, diminishing the exchange constant and increasing
the saturation magnetization should displace the chaotic region
to higher fields and higher frequencies.

In conclusion, we have shown that the dynamics of a
TDW between two artificial pinning centers in a nanostrip
can have a complex behavior. We have found that for a certain
parameter range, the DW motion is dominated by chaos or
shows intermittency. At low temperature there is a large region
of periodic motion of the DW under applied field or current
up to 3 GHz and 50 Oe. For Py, changing the type of pinning
centers from antinotches to notches results in a high frequency
to low frequency periodic DW motion, while for Ni the
antinotches result in almost periodic DW motion. As typical
experimental observations are realized at room temperature
(for example by electrical detection of the DW motion), our
stochastic results predict that periodic DW motion occurs only
below 1.2-1.5 GHz for all types of pinning centers (for Py and
Ni). The smaller region of periodic DW motion is predicted
for the Py notched nanostrip, while the largest for the Ni
antinotched strip. In general, the Ni notched and antinotched
wires seem better suited to be used at room temperature up
to GHz frequencies for periodic displacement of DWs.

The chaotic dynamics is not less important in these systems
with the possibility of synchronization of chaotic DW signals
that could have potential applications in secure communica-
tions [30]. A future direction to be explored is chaos control in
these systems which could have potential applications [31,32].
Our analysis could apply to other similar systems where chaos
may appear as vortices in superconductors [33] or skyrmions
in magnetic nanostructures [34].
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