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Nonequilibrium breakdown of a correlated insulator through pattern formation

Pedro Ribeiro,1,2 Andrey E. Antipov,3 and Alexey N. Rubtsov1,4

1Russian Quantum Center, Novaya Street 100 A, Skolkovo, Moscow Area 143025, Russia
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We study the breakdown of an interaction-induced insulator under an imposed bias voltage. A rich voltage-
temperature phase diagram is found that contains phases with a spatially patterned charge gap. Nonequilibrium
conditions are shown to be able to change the antiferromagnetic nature of the equilibrium correlations. Above a
threshold voltage, smaller than the charge gap, the formation of patterns occurs together with the emergence of
midgap states yielding a finite conductance. We discuss the experimental implications of this proposed scenario
for the breakdown of the insulating state.
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I. INTRODUCTION

Pattern formation, known also as self-organization, refers to
the occurrence of spatial-structured steady states in nonlinear
systems under out-of-equilibrium external conditions [1]. A
textbook illustration is the Rayleigh-Bénard convection, but
examples are found ubiquitously in physical, chemical, as well
as biological systems [2,3].

In semiconductors, pattern formation is a hallmark of
voltage-driven nonequilibrium phase transition from insulat-
ing to metallic states [4]. Moving patterns that arise near
phase boundaries contribute to a finite conductivity. These
phenomena can essentially be explained neglecting electron-
electron interactions. A seminal experiment, revealing pat-
tern formation in strongly correlated materials [5], reported
current-induced patterns in a quasi-one-dimensional organic
charge-transfer complex on the verge of Mott breakdown. The
reported nonlinear I -V characteristic shows an intermediate-
voltage low-resistance state characterized by a striped charge
pattern, before the switching to a metallic regime. Recently,
experimental results for spinor Bose-Einstein condensates [6]
and theoretical studies of polariton condensates [7,8] also
reported patterned phases.

Nonequilibrium dynamics of strongly correlated quantum
systems has been receiving an increasing amount of attention
due to a rich interplay between electronic kinetics, interaction,
and nonequilibrium conditions. Major experimental progress
was driven forward by a tight control of the dynamics in cold
atomic setups [9–11] and pump-probe experiments [12,13].
On the theory side, substantial progress has been made
in understanding thermalization and dissipation [14–17], as
well as universal aspects of nonequilibrium phase transi-
tions [18–26]. Further developments also arose concerning
novel computational methods [27–31] and techniques [32–34].
In particular, the study of out-of-equilibrium properties of the
Hubbard model has been an active research area [32,35–42].
Interesting dynamical transitions between small and large
interaction quenches were shown to occur at half-
filling [33,34,43–45]. Transport properties at finite temper-
ature [46] and in the presence of Markovian [47,48] and
non Markovian [49,50] dissipation have also been recently
investigated.

A key problem is the understanding of the transition from
an interaction-induced insulator to a current-carrying state
upon increasing the bias voltage applied by external leads.
The generated electrochemical gradients induce two effects
of a rather different nature: (i) a thermodynamic imbalance
depending on the electronic distribution functions in the leads,
and (ii) the coupling of charged particles to the electric field
created by the voltage drop. The breakdown of a Mott insulator
induced by effect (ii) recently received important contribu-
tions. Using the Peierls substitution argument, (ii) can be
studied on a system with periodic boundary conditions pierced
by a linear-in-time magnetic flux. The procedure eliminates the
need for an explicit treatment of the reservoirs and renders the
problem amenable to Lanczos [51], the density-matrix renor-
malization group (DMRG) [52], dynamical mean-field theory
(DMFT) [40,53–56], nonequilibrium Green’s functions [57],
and analytic [58,59] methods. These studies revealed a quali-
tative scenario that can be interpreted as the many-body analog
of the Landau-Zener (LZ) mechanism observed in band insu-
lators [51]: the LZ energy scale sets a threshold Vth ∼ �2L/W

above which a field-induced metallic phase sets in, with � the
charge gap, L the system’s linear size, and W the bandwidth.
Zener’s formula yields Vth/L � �, overestimating experi-
mentally measured values of threshold fields [60–62].

The combined effect of (i) and (ii), which requires an
explicit treatment of the reservoirs, has been recently addressed
using nonequilibrium Green’s function approaches [63,64]
and within the framework of time-dependent density-matrix
renormalization-group (tDMRG) methods [65]. Both sets of
results are compatible with a current-voltage characteristics
of the form J � V e−Vth/V . A thorough study [64], assuming
antiferromagnetic correlations and carried out at T = 0 in
the presence of long-range Coulomb interactions, pointed out
that the dominant effect depends on the ratio between the
correlation length in the insulating phase ξ and the size of the
insulating region L. For ξ/L � 1, (i) leads to Vth ∼ �; for
ξ/L � 1, (ii) dominates and the LZ scenario is recovered.

In previous studies, the assumption that antiferromagnetic
correlations prevail has precluded the prediction of any pattern
formation. Relaxing this assumption, we are able to address the
existence of patterned states in strongly correlated electronic
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systems under nonequilibrium conditions. Here, the half-
filled Hubbard model is considered, where the equilibrium
low-temperature state is an insulator due to electron-electron
interactions. We address the out-of-equilibrium properties of
a Hubbard chain coupled to metallic leads held at different
chemical potentials. We focus on thermodynamic-imbalance
effects, dubbed (i) in the previous discussion. The presence of
the leads induces the nonequilibrium conditions and provides
an intrinsically non-Markovian [50] dissipative environment
ensuring that a steady-state solution exits for asymptotically
large times at the mean-field level. We compute the instabilities
of the system to spatially modulated patterns, identify a
rich set of candidate phases (among which are examples
of pattern formation), and analyze their properties in the
nonlinear regime. Nonequilibrium conditions are shown to
change the underlying correlations of the equilibrium state.
We put forward a scenario for the breakdown of an interaction-
induced insulating phase through the emergence of conducting
midgap states that coincides with the appearance of patterns
for Vth � �. Our results are of direct relevance to interpret the
properties of quasi-one-dimensional organic compounds [5]
where pattern formation has been reported.

II. MODEL AND METHODS

We consider the interacting system S, depicted in Fig. 1(a),
consisting of a chain coupled to metallic reservoirs. The
Hamiltonian can be decomposed as H = HS + H∂S + HS̄,
where

HS = −t
∑

〈r,r ′〉,s
c†rscr ′s + U

2

∑
r

(nr − 1)2 (1)

FIG. 1. (a) Schematic view of the physical setup. (b) Density plot
of the first unstable mode �0(r) plotted as a function of the bias V

for � = 0.25, T = 0.25, L = 50, and for U = Uc(T ,V ). The phase
labels I, . . . ,V point to qualitatively different behavior of �0(r).
(c) Typical spatial dependence of �0(r) in each phase (orange line),
plotted for L = 80. The blue line depicts the envelope function.
(d) Density plot of the Fourier transform �0(q) of �0(r) as a function
of q computed for L = 50.

is the Hamiltonian of the system, consisting of a fermionic
Hubbard chain, with s labeling spin degrees of freedom
and nr = ∑

s c
†
rscrs . The hopping matrix element between

nearest-neighbor sites is taken to be the energy unit, i.e., t = 1.
HS̄ = ∑

α,s,l d
†
lαsεl,αdlαs is the Hamiltonian of the reservoirs,

with l = L,R labeling the reservoir and α the reservoir’s
single-particle modes. The density of states of the leads is
taken to be that of a wide-band metal, i.e., constant within all
the relevant energy scales. The system-reservoir coupling is
described by the hopping term H∂S = ∑

α,s,l v d
†
lαscr l ,s + H.c.,

where rL,R are the sites at the extremities of the chain
and v is the hopping amplitude. Under these assumptions,
the reservoirs are characterized solely by their hybridization
constant � = πv2ρ, with ρ the reservoir’s density of states,
and by their thermodynamic potentials: temperature Tl and
chemical potential μl . We take T = TR = TL and μL =
−μR = V/2, with V the applied bias voltage. For simplicity,
� is assumed to be the same for both reservoirs.

In the following, we employ a nonequilibrium mean-field
approach to study the effects of the applied voltage. In
equilibrium, the mean-field treatment overestimates the role
of correlations that may lead to the prediction of ordered
states in one-dimensional systems, whereas phases that break
a continuous symmetry are forbidden by the Mermin-Wagner
theorem. For the one-dimensional half-filled Hubbard model,
mean field predicts an antiferromagnetic state whereas the
ground state is disordered with slowly (algebraic) decaying
antiferromagnetic correlations. Charge properties, featuring
an insulating state with a finite charge gap, are quantitatively
reproduced for small and intermediate U . The ordered state,
therefore, captures the most prominent correlations of the
paramagnetic ground state and recovers the charge properties
for small U . Out of equilibrium, the mean-field treatment is
also expected to overestimate the role of correlations, and its
results must still be taken at a qualitative level. Nonetheless,
it should provide a clear physical picture of the underlying
physics.

The procedure to obtain the mean-field equations and
the magnetic susceptibility is standard and is given in
Appendices A and B for completeness. Here we outline the
main steps. Working on the Keldysh contour, we use the
identity [66]

U

2
(nr − 1)2 = −U

3
Sr · Sr + U

4
(nr − 1)2 + U

4
, (2)

with Sr = 1
2c

†
r,sσ ss ′cr,s ′ . Equation (2) is valid for fermionic

and Grassmanian fields and does not introduce any
renormalization of the chemical potential. A three-component
Hubbard-Stratonovich field φ and a scalar field � are
introduced to decouple the interaction term in the spin-
density-wave channel U

3 Sr · Sr → Sr · φr + 1
2

3
2U

φ r · φ r and
in the charge-density channel U

4 (nr − 1)2 → (nr − 1) · �r +
1
2

1
2U

�r · �r . Note that �r corresponds to local deviations
with respect to half-filling. Assuming a wide-band limit, the
integration of the noninteracting reservoirs yields a local
self-energy contribution to the c electrons (see Appendix A 2):
�

R/A

r=r l ,r ′=r l
(t,t ′) � ∓i�δ(t−t ′), �K

r=r l ,r ′=r l
(t,t ′) �−2i�

∫
dε
2π

tanh [ βl

2 (ε − μl)]e−iε(t−t ′). Finally, integrating out the c degrees
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of freedom, we arrive at an action uniquely dependent on
the fields φ and �. We use the Keldysh rotation of the
time-dependent order parameter to its quantum and classical
components (φc,r ,φq,r ), and by varying the action with respect
to these fields, we obtain a set of saddle-point equations with
φq,r (t) = �q,r (t) = 0. We focus on the steady-state regime
and parametrize the classical component of steady-state
solutions by

φc,r (t) =
√

2φ r , (3)

�c,r (t) = i2
√

2μr , (4)

anticipating that � has an imaginary stationary solution. In
these variables, the mean-field self-consistent conditions are
given by

φr = −i
U

3
tr

[
GK

r r (t,t)
σ

2

]
, (5)

μr = −i
U

2
tr

[
GK

r r (t,t)
1

2

]
, (6)

where GK
r r (t,t) is the Keldysh component of the local

c-electron Green’s function. At the mean-field level, the
excitation spectrum is given by the non-Hermitian mean-field
operator

K = −t
∑

〈r,r ′〉,s
c†rscr ′s − i�

∑
l,s

c†rl s
crl s

+
∑
rss ′

(
−1

2
σ ss ′ · φ,r − μr

)
c†rscrs ′ . (7)

The retarded Green’s function is obtained in terms of the
left (〈α̃|) and right (|α〉) eigenvectors of K with complex
eigenvalues λα (Imλα < 0): GR(ω) = ∑

α |α〉(ω − λα)−1〈α̃|.
The Keldysh component, derived in detail in Appendix B 2,
is obtained in a similar way.

Within the mean-field approximation, there is a unique
steady state for a given spin-density-wave profile φr . This
result follows from the uniqueness of the steady state for
noninteracting systems in the absence of bound states [67],
here ensured by the presence of the wide-band leads [50]. For
interacting open systems with a few degrees of freedom, a
unique steady state has also been generically found [68–70].
Together these two facts strongly suggest the existence of a
unique steady state in the present case, at least for finite chains.

Fluctuations around the mean field further provide a
stability analysis for the saddle-point solutions. To investigate
the possible steady states that can be realized under nonequi-
librium conditions, we compute the spin susceptibility χ in the
disordered state (φr = 0) and analyze the first unstable modes
arising upon increasing U . The retarded spin susceptibility
χR

ii ′;r r ′(t,t ′) = −i�(t − t ′)〈{Si
r (t),Si ′

r ′ (t ′)}〉 (with i,i ′ = x,y,z)
is given by the random-phase approximation (RPA) -type
expression, which, in the steady state, reads

[
χR

ii ′(ω)
]−1

r r ′ = 1

2
δii ′

[
− 3

U
δr r ′ − �R

r r ′(ω)

]
, (8)

where �R
rr ′(t,t ′) = −i 1

2 tr[GA
r ′ r (t ′,t)GK

r r ′(t,t ′) + GK
r ′ r (t ′,t)GR

r r ′
(t,t ′)] is the bare bubble diagram computed at φ r ,�r = 0,

and G
R/A

r r ′ (t,t ′) are the spatially resolved retarded/advanced
components of the Green’s function of the c electrons.

Upon increasing U , the eigenvalues of χR(ω) as a function
of ω may develop poles in the upper-half of the complex
plane. When this occurs, small perturbations in the direction
of the corresponding eigenmode of χR(ω) grow exponentially
in time until anharmonic mode-coupling terms start to be
relevant. This process signals an instability of the system. In
the linear regime, for U sufficiently close to Uc, the new stable
phase, arising for U > Uc, is expected to develop the spatial
structure of the lowest eigenmode of χR(ω). In the following,
we assume that unstable modes first occur for steady-state
solutions, i.e., at ω = 0. The unstable mode corresponds to
the most negative eigenvalue λ�

0 of �R(ω = 0), and its spatial
configuration is given by the corresponding eigenvector �0(r).

In an equilibrium setup, where the system is assumed to be
in a Gibbs state with density matrix ρ = e−β(H−μN)/Z, peri-
odic boundary conditions lead to �0(r) = 1√

L
eiQr , with Q =

π signaling an instability toward the antiferromagnetically
ordered phase. This picture is essentially unchanged in the
presence of open boundary conditions with the order parameter
amplitude typically getting distorted near the boundaries of the
system. Note that for V = 0, the presence of the leads with a
finite hybridization � does not change this scenario, and in the
limit � → 0+ the equilibrium Gibbs state is recovered in the
steady state.

III. RESULTS

To ensure half-filling, we set the μL = −μR = V/2. With
this prescription, all the obtained self-consistent solutions of
μr were found to vanish, therefore in the following we set
μr = 0 and focus only on φr . Figures 1(b) and 1(c) depict
the typical spatial structure of steady state �0(r) obtained
upon varying the bias voltage V . Five different phases (labeled
by I, . . . ,V ) can be observed, corresponding to qualitatively
different features of �0(r). Figure 1(d) depicts a contour plot of
the Fourier transform �0(q) of �0(r) showing that the different
phases correspond to different wave vectors Q for which
|�0(Q)| is maximal. Phase I occurs for low voltages V < VAF

and T > 0 and occupies a region where the antiferromagnetic
phase corresponds to the first instability. The order parameter
is maximal in the center of the system. The emergence of
patterns is visible in phase II (VAF < V < Vloc ), where the
spin-susceptibility instability corresponds to an ordered state
with wave vectors q = ±Q, with Q varying continuously from
its antiferromagnetic value π , for V = VAF, to a new value
Q � 0, for V = Vloc. Phase III (Vloc < V < VF) corresponds
to a modulated phase, with Q �= 0,π , exponentially localized
near the leads. Phase IV (VF < V < V0) is a ferromagnetic
phase with an envelope function that is maximal at the center
of the system. Finally, phase V corresponds to an essentially
disordered phase (φ = 0) with the order-parameter amplitude
being localized in the first few sites near the leads.

Figure 2(a) shows the phase diagram in the V -T plane for
� = 0.25 near U = Uc(T ,V ) for which the first instability
arises. Other values of � within the range 0.05–0.5 yield
qualitatively similar results. At T = 0, the antiferromagnetism
of phase I is unstable under any finite bias voltage giving place
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FIG. 2. (a) Phase diagram as a function of V and T for U =
Uc(T ,V ), corresponding to the appearance of the first unstable mode,
computed for � = 0.25. The dashed line corresponds to Figs. 1(b)
and 1(c). (b) Values of Uc for which the first instability arises as a
function of V and T , for � = 0.25 and L = 50.

to the modulated phase II. Moreover, at zero temperature no
ferromagnetic phase is present yielding a direct transition from
II to the disordered phase V. The localized modulated phase III
is present only for intermediate temperatures. For sufficiently
high temperatures, within the range of temperatures and
voltages studied, only phases I, II, and IV are observed.
The critical value of U , given by Uc = −3/λ�

0 after Eq. (8),
is plotted in Fig. 2(b) for a system with L = 50. For low
temperature, this quantity is subjected to strong finite-size
corrections for small U . Care must be taken extrapolating
to the thermodynamic limit, nonetheless we verify that for
T → 0 and L → ∞ one has Uc → 0 (see Appendix D).

To verify the existence of well-defined patterns at U � Uc

and to describe their spatial structure, the linear-response
RPA-type description is insufficient, as nonlinear terms in
Eq. (5) start to play an important role and have to be taken into
account. In this regime, the mean-field solution for the order
parameter φ is obtained solving the self-consistent relation
in Eq. (5). The procedure is done iteratively allowing only
for collinear magnetized states, i.e., 〈Sr〉 ∝ êz. Figure 3(a)
shows the spatial structure of φr obtained in this way. The
considered value of U = 6.3 corresponds to an equilibrium
(V = 0) charge gap of � = 2|φ| � 1.57. Out of equilibrium,
phases III–V are absent, and the range of values of V for
which phase II arises is reduced with respect to the diagram
of Fig. 2(a). Nevertheless, a modulated solution can be found
deep in the nonlinear regime. Figure 3(b) depicts the maximum
value of the order-parameter amplitude φMax showing that
phase II transits directly to the disordered phase φ = 0 upon
increasing V .

Figure 3(b) shows also the values of the particle current
through the system. A relatively low current in phase I is
followed by a quick rise of current during phase II and a linear
I -V characteristics in the disordered phase. Figures 3(c)–
3(e.1) show the integrated steady-state density of states in
phase II. One observes that upon increasing V , a new band
of conducting states arises, corresponding to single-particle
energies −V/2 < Reλα < V/2. The appearance of such states
is responsible for the current increase in phase II. This phase
ceases to exist when V becomes of the order of the interband
gap, roughly given by φMax, corresponding to a complete filling
of the gap by conducting states. The I -V characteristics can

FIG. 3. Properties for U > Uc obtained for � = 0.25, T = 0.03,
and U = 6.3 corresponding to an equilibrium (V = 0) charge gap of
� = 2|φ| � 1.57. (a) Density plot of �(r) plotted as a function of
V for L = 100. The lines and markers label the specific values of
(c)–(e). (b) Maximum value of the order parameter φMax = maxr |φr |
(green) and particle current through the chain J (blue) as a function
of V for L = 80 (circles) and L = 100 (triangles). (c.1) Integrated
density of states N (ω) = ∑

α �(ω − Reλα) for V = 0.38 and L =
100; the thickness of the black line is given by Imλα . The red
dashed lines correspond to ω = ±�Max and the blue dashed lines
to ω = ±V/2. The inset depicts the spatial dependence of φ(r).
(c.2),(c.3) Differential conductance dJtip/dVtip obtained by an STM
tip, computed for Ttip = 0.02, placed at position r , for r = 37 (c.2)
and r = 50 (c.3), corresponding to a minimum and a maximum of
the order-parameter amplitude. (d.1)–(d.3) Same as (c.1)–(c.3) for
V = 0.48, r = 40, and r = 50. (e.1)–(e.3) Same as (c.1)–(c.3) for
V = 0.58, r = 44, and r = 50.

thus be used as a diagnostic to discriminate between different
phases.

The spatially dependent amplitude of the antiferromagnetic
order parameter corresponds to a spin- and site-modulated
potential seen by the electrons. In the patterned phase, the
regions near the nodes of the order parameter form well-like
regions that low-energy electrons can occupy. Midgap states
can thus be seen as Bloch waves of low-energy electrons whose
wave function is maximal in the regions where the order-
parameter amplitude vanishes.

To further characterize these states, we monitor the differ-
ential conductivity that is measured by a scanning tunneling
microscope (STM) tip placed over site r . Assuming a wide-
band metallic tip with constant density of states (DOS), weakly
coupled to the chain at position r , one obtains the standard
linear-response expression

dJtip

dVtip
∝ −

∫
dω

βtip/2

cosh[βtip(ω − Vtip)] + 1
ρr (ω),

where ρr (ω) = tr[GR
r,r (ω) − GA

r,r (ω)]/(−2πi) is the local
DOS of the chain at site r , and βtip and Vtip are, respec-
tively, the tip’s inverse temperature and chemical potential.
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Figures 3(c.2), 3(c.3), 3(e.2), and 3(e.3) show dJtip/dVtip

for sites corresponding to minima and maxima of the order
parameter for three values of V within phase II. The band
of conducting states can clearly be seen arising within the
gap. The local DOS for |Vtip| < φMax increases or decreases,
depending on whether a position corresponding to a minimum
or a maximum of the order-parameter amplitude is monitored.

IV. DISCUSSION

To summarize, we have described a scenario for the
breakdown of an interaction-induced insulator though pattern
formation in a correlated electronic system under strong
nonequilibrium conditions imposed by a finite bias voltage.
The development of a conducting phase occurs at voltages
smaller than the value of the charge gap and is characterized
by the emergence of the midgap states. The thermodynamic
imbalance imposed by a finite applied voltage generates a rich
set of novel behaviors, among which are examples of nonequi-
librium spatially induced patterned phases. Such phases, well
studied in classical systems, and recently predicted in systems
with Markovian dissipation [7,8], are reported here for the
fermionic Hubbard model with a non-Markovian environment
and shown to exist down to zero temperature. The suggested
mechanism can be tested experimentally monitoring current
transport across the system and by STM measurements,
spatially resolving the modulated charge gap.

Note that, strictly in one dimension, the phase transitions
obtained at the mean-field level should instead correspond to
crossovers. In the same way, the calculated magnetic order
likely corresponds to a disordered phase with slow power-
law decaying spin-spin correlation functions with a voltage-
dependent momentum. Nonetheless, charge properties should
be qualitatively captured.

The presence of a dissipative environment, other than the
leads, acting extensively throughout the system may help to
stabilize the magnetic order, seen at the mean-field level. In this
case, our results can be used to qualitatively predict magnetic
properties in addition to charge ones. The emergent order
can otherwise be stabilized in quasi-one-dimensional systems
of weakly coupled chains. These considerations capture
characteristic features of the breakdown of the organic charge
insulator, reported in Ref. [5]. There, upon increasing voltage,
the authors observed the presence of an intermediate resistance
regime between an insulating and a metallic phase with an I -V
characteristic similar to that of Fig. 2(b). Charge-coupled-
device (CCD) imaging of the intermediate phase revealed
spatially separated regions of alternating concentrations of
low-energy charge carriers, not present either in the insulating
or in the metallic phase. Important differences, such as a
diffusive electronic transport and the long-range Coulomb
interactions within the insulating phase, hinder a quantitative
prediction of experimental observations.

The present results suggest that, as in the case of classical
systems, patterned phases can be ubiquitous in the presence
of interactions and spatially nonuniform out-of-equilibrium
conditions. In particular, for electronic systems with d > 1,
pattern formation can be predicted by our method and may
help to shed light on spatial structures observed near the
dielectric breakdown of certain Mott compounds [61,62]. In

films and bulk compounds, these effects should depend on
the orientation of the nonequilibrium drive with respect to
the Fermi surface, opening possibilities for novel patterned
phases. Nonequilibrium phase transitions to patterned phases,
in particular at zero temperature where quantum effects are
most relevant, present an interesting paradigm in which new
universal behavior could be found.
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APPENDIX A: KELDYSH ACTION

1. Generating functional

The generating function in the Keldysh contour γ is defined
as

Z =
∫

DC e
i[C†g−1C]−i

∫
γ

dz U
2

∑
r [nr (z)−1]2

, (A1)

where C = (c dL dR)T , and

g−1 =

⎛
⎜⎝

g−1
� −VL −VR

−V
†
L g−1

L 0

−V
†
R 0 g−1

R

⎞
⎟⎠ (A2)

is the inverse of the bare Green’s function with

g−1
S;r,r ′(z,z′) = δ(z − z′)(δr,r ′ i∂z + t̃ r,r ′), (A3)

g−1
l;α,α′ = δα,α′δ(z − z′)(i∂z − εl,α), (A4)

Vl;r,α = vlδr,r l
. (A5)

After using the identity in Eq. (2) and inserting a vectorial
3-component Hubbard-Stratonovich φ and a scalar field � to
decouple the interactions, one obtains, by integrating out the
electronic degrees of freedom, Z = ∫

Dφ eiS[φ], where

S[φ] = 1

2

∑
r

∫
γ

dz π−1
i φi

r (z) · φi
r (z) − i

2

∫
γ

dz
∑

r

�r

+ 1

2

∑
r

∫
γ

dz π−1
0 �2

r (z) − i tr ln[−iG−1], (A6)

with π−1
x,y,z = − 3

2U
and π−1

0 = − 1
2U

, and G given by Dyson’s
equation:

G−1 = g−1
S − �L − �R − �φ, (A7)

where

�l;r,r ′(z,z′) = |vl|2
∑

α

gl;α,α(z,z′)δr,r l
δr ′,r l

, (A8)

�φ;r,r ′ = −1

2
[σ · φ r (z) + i�r (z)]δr,r ′δ(z − z′). (A9)
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2. Properties of the reservoirs

As mentioned in the main text, the reservoirs are assumed
to be metallic leads with a constant density of states within
all relevant energy scales. The reservoirs are also considered
to be infinite and are held in a thermal state characterized
by a chemical potential μl and a temperature Tl . Under these
assumptions, we can write

�
R/A

l (t,t ′) � ∓i�lδ(t − t ′)|r l〉〈r l|, (A10)

�K
l (t,t ′) � −2i�lFl(t − t ′)|r l〉〈r l|, (A11)

with �l = π |vl|2ρl(0), with ρl(0) the density of states of the
reservoir l computed at ω = 0, and

Fl(t − t ′) =
∫

dε

2π
tanh

[
βl

2
(ε − μl)

]
e−iεt . (A12)

APPENDIX B: SADDLE-POINT EQUATIONS

1. Variation of the action

Using the notation φ̃ = {i�r (z),φ}, we define classical and
quantum fields as(

φ̃i
c,r (t ′)

φ̃i
q,r (t ′)

)
= 1√

2

(
1 1

1 −1

)⎛
⎝−→̃

φi
r (t ′)

←−̃
φi

r (t ′)

⎞
⎠, (B1)

where
−→̃
φi

r (t),
←−̃
φi

r (t) = φ̃i
r (z) (for z ∈ γ→,γ←) are, respectively,

the Hubbard-Stratonovich fields in the forward and backward
parts of the contour. In this way, we have that∑

r,i

∫
γ

dz π−1
i φ̃i

r (z)φ̃i
r (z)

= π−1
i

∑
r,i

∫
dt

⎛
⎝−→̃

φi
r (t)

←−̃
φi

r (t)

⎞
⎠

T (
1 0

0 −1

)⎛
⎝−→̃

φi
r (t ′)

←−̃
φi

r (t ′)

⎞
⎠

= π−1
i

∑
ri

∫
dt

(
φ̃i

c,r (t)

φ̃i
q,r (t)

)T (
0 1

1 0

)(
φ̃i

c,r (t ′)

φ̃i
q,r (t ′)

)
. (B2)

We proceed to find the saddle-point equations δφi
a,r (t)S[φ] = 0,

resulting in

φ̃i
c,r (t) = i

2
πi tr

[
1√
2

(
GT

r r (t,t+) + GT̄
r r (t+,t)

)
σ i

]
, (B3)

φ̃i
q,r (t) = i

2
πi tr

[
1√
2

(
GT

r r (t,t+) − GT̄
r r (t+,t)

)
σ i

]
, (B4)

with GT and GT̄ being the propagators on the forward and
backward parts of the contour. Evaluated at the causal solution
φ̃i

q,r (t) = 0, we obtain

φ̃i
c,r (t) = i

2
πi tr

[
1√
2
GK

r r (t,t)σ i

]
(B5)

2. Steady state

From Dyson’s equation, i.e., [G−1]
R/A

GR/A = 1,
[GR]

−1
GK = �KGA, and GK [GA]

−1 = GR�K (see, for

example, [71]), and with the steady-state values of the fields
given by the parametrization in Eq. (3), we obtain

GR(ω) = (ω − K )−1, (B6)

where

K = H − i�, (B7)

with

H =
∑
r r ′σ

|r,s〉[−t̃r,r ′ − 1

2
δrr ′σ ss ′ · φr − μr ]〈r ′,s ′|, (B8)

� = �L + �R, (B9)

�l = �l|r l〉〈r l|, (B10)

is a single-particle operator. With this notation, the many-body
operator K defined in the main text is given by

K =
∑
r r ′ss ′

c†rs〈rs|K |r ′s ′〉cr ′s ′ .

Assuming that K is diagonalizable with right and left eigen-
vectors

K |α〉 = λα|α〉, (B11)

〈α̃|K = λα〈α̃|, (B12)

such that Imλα < 0, we can express it as

K =
∑

α

|α〉λα〈α̃| (B13)

with the identities∑
α

|α〉〈α̃| =
∑

α

|α̃〉〈α| = 1, (B14)

〈α.|α̃′〉 = δαα′ . (B15)

With this notation, we can parametrize the Keldysh component
of the Green’s function as

GK (ω) = GR(ω)F (ω) − F (ω)GA(ω) (B16)

with

F (ω) =
∑
αα′

|α〉−2i
∑

l tanh
[

βl

2 (ω − μl)
]〈α̃|�l|α̃′〉

λα − λ̄α′
〈α′|.

APPENDIX C: STABILITY CONDITIONS AT φ = 0

The second-order approximation of the action around φ � 0
is given by

S[φ] � 1

2
[φπ−1φ] − i

{
tr ln

[−i
(
G−1

0

)] − 1

2
trt[(G0�)2]

}

= −itr ln
[−i

(
G−1

0

)] + 1

2

∑
r r ′

∫
dω

2π

(
φi

c,r (t)

φi
q,r (t)

)T

×
(

0 [χ−1]Ai,j r r ′(t,t ′)

[χ−1]
R

i,j r r ′(t,t ′) [χ−1]Ki,j r r ′(t,t ′)

)(
φi

c,r (t ′)

φi
q,r (t ′)

)

(C1)
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with G−1
0 = G−1|φ=0. The magnetic susceptibility is defined as χ

ij

r r ′(z,z′) = −i〈Tγ Si
r (z)Sj

r ′ (z′)〉. Explicitly, we have

[χ−1]ijr r ′(t,t ′) = δij

(
0 − 3

2U
δr r ′δ(t − t ′) − 1

2�A
ij ;r r ′(t,t ′)

− 3
2U

δr r ′δ(t − t ′) − 1
2�R

ij ;r r ′(t,t ′) − 1
2�K

ij ;r r ′(t,t ′)

)
,

where � denotes the bubblelike diagrams

�
R/A

r r ′ (t,t ′) = −i 1
2 tr

[
G

A/R

0;r ′ r (t ′,t)GK
0;r r ′ (t,t ′) + GK

0;r ′r (t ′,t)GR/A

0;r r ′(t,t ′)
]
,

�K
rr ′ (t,t ′) = −i 1

2 tr
[
GA

0;r ′ r (t ′,t)GR
0;r r ′ (t,t ′) + GR

0;r ′r (t ′,t)GA
0;r r ′(t,t ′) + GK

0;r ′ r (t ′,t)GK
0;r r ′ (t,t ′)

]
.

Assuming a steady-state condition, we obtain, for the retarded component,

�R
rr ′ (ω) = �

(1)
rr ′(ω) + �̄

(2)
rr ′ (−ω) + �

(2)
rr ′(ω) + �̄

(1)
rr ′ (−ω),

�
(1)
rr ′ (ω) = −

∑
αβ

∑
l

〈r ′|β̃〉〈β|r〉〈r|α〉Al
αr ′ Il(λ̄β + ω,λα),

�
(2)
rr ′ (ω) = −

∑
αβ

∑
l

〈r ′|α〉〈r|β〉〈β̃|r ′〉Al
αr Il(λβ − ω,λα),

with

Il(z,z
′) = 1

π

ψ (0)
[

1
2 − i sgn(Imz′) βl (z′−μl )

2π

] − ψ (0)
[

1
2 − i sgn(Imz) βl (z−μl )

2π

]
z − y

, Al
αr =

∑
α′

〈α̃|�l|α̃′〉〈α′.|r〉
λα − λ̄α′

,

and ψ (0)(z) = ∂z ln �(z) is the logarithmic derivative of the �

function.

APPENDIX D: SUPPLEMENTAL NUMERICAL RESULTS

1. Discussion of finite-size effects

Mean-field arguments are expected to be more accurate in
the weak-coupling limit for small values of U . In the main
text, we illustrate our findings with numerical results obtained
for U = 6.2. Even if U = 6.2 corresponds to a rather small
ratio U/W � 1.55 (with W the bandwidth), it already belongs
to the crossover region between weak and strong coupling. In
this Appendix, we justify our choice of U values due to the
appearance of strong finite-size effects for small U .

Figure 4 shows the mean-field phase diagram for different
values of the hybridization � and for different system sizes

FIG. 4. Behavior of finite-size effects for V = 0. The mean-field
transition temperature, separating the paramagnetic (PM) from the
antiferromagnetic (AF) phases, is computed for two different values
of the hybridization � and for different system sizes L (colored
symbols). The infinite-size result is depicted by the gray line.

FIG. 5. Properties for U > Uc obtained for � = 0.25, T = 0.25,
and U = 8.55 corresponding to an equilibrium (V = 0) charge gap of
� = 2|φ| � 3.2. (a) Density plot of �(r) plotted as a function of V for
L = 80. The lines and markers label the specific values of (c)–(e). (b)
Maximum value of the order parameter φMax = maxr |φ(r)| (green)
and particle current thought the chain J (blue) as a function of
V for L = 80 (open triangles) and L = 120 (full circles). (c.1)
Integrated density of states N (ω) = ∑

α �(ω − Reλα) for V = 0.9
and L = 80; the thickness of the black line is given by Imλα . The
red-dashed lines correspond to ω = ±�Max and the blue-dashed lines
to ω = ±V/2. The inset depicts the spatial dependence of φ(r).
(c.2),(c.3) Differential conductance dJtip/dVtip obtained by an STM
tip, computed for Ttip = 0.02, placed at position r , for r = 27 (c.2)
and r = 41 (c.3), corresponding to a minimum and a maximum of
the order-parameter amplitude. (d.1)–(d.3) Same as (c.1)–(c.3) for
V = 0.95, r = 12, and r = 19. (e.1)–(e.3) Same as (c.1)–(c.3) for
V = 1.05, r = 45, and r = 59.
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L computed for V = 0. Compared with the infinite-size limit,
there are strong finite-size corrections arising for small U for
which the paramagnetic phase extends up to zero temperature.

As the numerical results are obtained by solving the self-
consistent equations for the order parameter in real space, the
computation times scale with the system size. To ensure that
the reported finite-size effects do not affect the results, in the
range of considered systems sizes (L � 50,80,100), U = 6.2
was chosen as a compromise.

2. Nonlinear regime, U = 8.55

The main text shows results for the intermediate-coupling
regime, corresponding to values of U of the order of the

bandwidth. From the phase diagram of Fig. 2, obtained
by analyzing the susceptibility, the small-to-intermediate U

requirement implies that the pair (Vc,T ), with Vc defined
as Uc(T ,Vc) = U , belongs either to region I or II. In case
it belongs to region I, the scenario of the phase transition
is similar to the equilibrium one and no pattern formation
arises. The nontrivial case arises for (Vc,T ) ∈ II, studied in
the main text. In this case, to show that our results are robust
to the particular choice of U , we provide additional numerical
results to those of the main text, here obtained for U = 8.55
and depicted in Fig. 5. Note that Fig. 5 shows the same
characteristic features for the U = 6.3 case; see the discussion
in the main text.
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[34] M. Schiró and M. Fabrizio, Phys. Rev. B 83, 165105 (2011).
[35] S. Okamoto, Phys. Rev. B 76, 035105 (2007).
[36] S. Okamoto, Phys. Rev. Lett. 101, 116807 (2008).
[37] M. Eckstein, A. Hackl, S. Kehrein, M. Kollar, M. Moeckel, P.

Werner, and F. Wolf, Eur. Phys. J. Spec. Top. 180, 217 (2010).
[38] M. Knap, W. von der Linden, and E. Arrigoni, Phys. Rev. B 84,

115145 (2011).
[39] A. Amaricci, C. Weber, M. Capone, and G. Kotliar, Phys. Rev.

B 86, 085110 (2012).
[40] C. Aron, G. Kotliar, and C. Weber, Phys. Rev. Lett. 108, 086401

(2012).
[41] E. Arrigoni, M. Knap, and W. von der Linden, Phys. Rev. Lett.

110, 086403 (2013).
[42] G. Mazza, A. Amaricci, M. Capone, and M. Fabrizio, Phys. Rev.

B 91, 195124 (2015).
[43] M. Moeckel and S. Kehrein, Phys. Rev. Lett. 100, 175702

(2008).
[44] M. Eckstein, M. Kollar, and P. Werner, Phys. Rev. Lett. 103,

056403 (2009).
[45] T. Enss and J. Sirker, New J. Phys. 14, 023008 (2012).

144305-8

http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1126/science.284.5420.1645
http://dx.doi.org/10.1126/science.284.5420.1645
http://dx.doi.org/10.1126/science.284.5420.1645
http://dx.doi.org/10.1126/science.284.5420.1645
http://dx.doi.org/10.1103/PhysRevLett.105.090402
http://dx.doi.org/10.1103/PhysRevLett.105.090402
http://dx.doi.org/10.1103/PhysRevLett.105.090402
http://dx.doi.org/10.1103/PhysRevLett.105.090402
http://dx.doi.org/10.1103/PhysRevB.81.235302
http://dx.doi.org/10.1103/PhysRevB.81.235302
http://dx.doi.org/10.1103/PhysRevB.81.235302
http://dx.doi.org/10.1103/PhysRevB.81.235302
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/PhysRevLett.104.080401
http://dx.doi.org/10.1103/PhysRevLett.104.080401
http://dx.doi.org/10.1103/PhysRevLett.104.080401
http://dx.doi.org/10.1103/PhysRevLett.104.080401
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014548
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014548
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014548
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014548
http://dx.doi.org/10.1103/PhysRevLett.87.237401
http://dx.doi.org/10.1103/PhysRevLett.87.237401
http://dx.doi.org/10.1103/PhysRevLett.87.237401
http://dx.doi.org/10.1103/PhysRevLett.87.237401
http://dx.doi.org/10.1038/ncomms6112
http://dx.doi.org/10.1038/ncomms6112
http://dx.doi.org/10.1038/ncomms6112
http://dx.doi.org/10.1038/ncomms6112
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1038/nphys3215
http://dx.doi.org/10.1038/nphys3215
http://dx.doi.org/10.1038/nphys3215
http://dx.doi.org/10.1038/nphys3215
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1103/PhysRevLett.105.015702
http://dx.doi.org/10.1103/PhysRevLett.105.015702
http://dx.doi.org/10.1103/PhysRevLett.105.015702
http://dx.doi.org/10.1103/PhysRevLett.105.015702
http://dx.doi.org/10.1103/PhysRevLett.110.195301
http://dx.doi.org/10.1103/PhysRevLett.110.195301
http://dx.doi.org/10.1103/PhysRevLett.110.195301
http://dx.doi.org/10.1103/PhysRevLett.110.195301
http://dx.doi.org/10.1103/PhysRevLett.97.236808
http://dx.doi.org/10.1103/PhysRevLett.97.236808
http://dx.doi.org/10.1103/PhysRevLett.97.236808
http://dx.doi.org/10.1103/PhysRevLett.97.236808
http://dx.doi.org/10.1103/PhysRevB.77.220404
http://dx.doi.org/10.1103/PhysRevB.77.220404
http://dx.doi.org/10.1103/PhysRevB.77.220404
http://dx.doi.org/10.1103/PhysRevB.77.220404
http://dx.doi.org/10.1103/PhysRevB.81.125430
http://dx.doi.org/10.1103/PhysRevB.81.125430
http://dx.doi.org/10.1103/PhysRevB.81.125430
http://dx.doi.org/10.1103/PhysRevB.81.125430
http://dx.doi.org/10.1103/PhysRevLett.102.216803
http://dx.doi.org/10.1103/PhysRevLett.102.216803
http://dx.doi.org/10.1103/PhysRevLett.102.216803
http://dx.doi.org/10.1103/PhysRevLett.102.216803
http://dx.doi.org/10.1103/PhysRevLett.103.206401
http://dx.doi.org/10.1103/PhysRevLett.103.206401
http://dx.doi.org/10.1103/PhysRevLett.103.206401
http://dx.doi.org/10.1103/PhysRevLett.103.206401
http://dx.doi.org/10.1209/0295-5075/102/50001
http://dx.doi.org/10.1209/0295-5075/102/50001
http://dx.doi.org/10.1209/0295-5075/102/50001
http://dx.doi.org/10.1209/0295-5075/102/50001
http://dx.doi.org/10.1103/PhysRevB.79.035320
http://dx.doi.org/10.1103/PhysRevB.79.035320
http://dx.doi.org/10.1103/PhysRevB.79.035320
http://dx.doi.org/10.1103/PhysRevB.79.035320
http://dx.doi.org/10.1103/PhysRevB.79.153302
http://dx.doi.org/10.1103/PhysRevB.79.153302
http://dx.doi.org/10.1103/PhysRevB.79.153302
http://dx.doi.org/10.1103/PhysRevB.79.153302
http://dx.doi.org/10.1103/PhysRevB.82.075109
http://dx.doi.org/10.1103/PhysRevB.82.075109
http://dx.doi.org/10.1103/PhysRevB.82.075109
http://dx.doi.org/10.1103/PhysRevB.82.075109
http://dx.doi.org/10.1103/PhysRevB.84.085134
http://dx.doi.org/10.1103/PhysRevB.84.085134
http://dx.doi.org/10.1103/PhysRevB.84.085134
http://dx.doi.org/10.1103/PhysRevB.84.085134
http://dx.doi.org/10.1103/PhysRevB.87.195108
http://dx.doi.org/10.1103/PhysRevB.87.195108
http://dx.doi.org/10.1103/PhysRevB.87.195108
http://dx.doi.org/10.1103/PhysRevB.87.195108
http://dx.doi.org/10.1103/RevModPhys.86.779
http://dx.doi.org/10.1103/RevModPhys.86.779
http://dx.doi.org/10.1103/RevModPhys.86.779
http://dx.doi.org/10.1103/RevModPhys.86.779
http://dx.doi.org/10.1103/PhysRevLett.105.076401
http://dx.doi.org/10.1103/PhysRevLett.105.076401
http://dx.doi.org/10.1103/PhysRevLett.105.076401
http://dx.doi.org/10.1103/PhysRevLett.105.076401
http://dx.doi.org/10.1103/PhysRevB.83.165105
http://dx.doi.org/10.1103/PhysRevB.83.165105
http://dx.doi.org/10.1103/PhysRevB.83.165105
http://dx.doi.org/10.1103/PhysRevB.83.165105
http://dx.doi.org/10.1103/PhysRevB.76.035105
http://dx.doi.org/10.1103/PhysRevB.76.035105
http://dx.doi.org/10.1103/PhysRevB.76.035105
http://dx.doi.org/10.1103/PhysRevB.76.035105
http://dx.doi.org/10.1103/PhysRevLett.101.116807
http://dx.doi.org/10.1103/PhysRevLett.101.116807
http://dx.doi.org/10.1103/PhysRevLett.101.116807
http://dx.doi.org/10.1103/PhysRevLett.101.116807
http://dx.doi.org/10.1140/epjst/e2010-01219-x
http://dx.doi.org/10.1140/epjst/e2010-01219-x
http://dx.doi.org/10.1140/epjst/e2010-01219-x
http://dx.doi.org/10.1140/epjst/e2010-01219-x
http://dx.doi.org/10.1103/PhysRevB.84.115145
http://dx.doi.org/10.1103/PhysRevB.84.115145
http://dx.doi.org/10.1103/PhysRevB.84.115145
http://dx.doi.org/10.1103/PhysRevB.84.115145
http://dx.doi.org/10.1103/PhysRevB.86.085110
http://dx.doi.org/10.1103/PhysRevB.86.085110
http://dx.doi.org/10.1103/PhysRevB.86.085110
http://dx.doi.org/10.1103/PhysRevB.86.085110
http://dx.doi.org/10.1103/PhysRevLett.108.086401
http://dx.doi.org/10.1103/PhysRevLett.108.086401
http://dx.doi.org/10.1103/PhysRevLett.108.086401
http://dx.doi.org/10.1103/PhysRevLett.108.086401
http://dx.doi.org/10.1103/PhysRevLett.110.086403
http://dx.doi.org/10.1103/PhysRevLett.110.086403
http://dx.doi.org/10.1103/PhysRevLett.110.086403
http://dx.doi.org/10.1103/PhysRevLett.110.086403
http://dx.doi.org/10.1103/PhysRevB.91.195124
http://dx.doi.org/10.1103/PhysRevB.91.195124
http://dx.doi.org/10.1103/PhysRevB.91.195124
http://dx.doi.org/10.1103/PhysRevB.91.195124
http://dx.doi.org/10.1103/PhysRevLett.100.175702
http://dx.doi.org/10.1103/PhysRevLett.100.175702
http://dx.doi.org/10.1103/PhysRevLett.100.175702
http://dx.doi.org/10.1103/PhysRevLett.100.175702
http://dx.doi.org/10.1103/PhysRevLett.103.056403
http://dx.doi.org/10.1103/PhysRevLett.103.056403
http://dx.doi.org/10.1103/PhysRevLett.103.056403
http://dx.doi.org/10.1103/PhysRevLett.103.056403
http://dx.doi.org/10.1088/1367-2630/14/2/023008
http://dx.doi.org/10.1088/1367-2630/14/2/023008
http://dx.doi.org/10.1088/1367-2630/14/2/023008
http://dx.doi.org/10.1088/1367-2630/14/2/023008


NONEQUILIBRIUM BREAKDOWN OF A CORRELATED . . . PHYSICAL REVIEW B 93, 144305 (2016)

[46] C. Karrasch, D. M. Kennes, and J. E. Moore, Phys. Rev. B 90,
155104 (2014).
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107, 126601 (2011).
[60] Y. Taguchi, T. Matsumoto, and Y. Tokura, Phys. Rev. B 62, 7015

(2000).

[61] C. Vaju, L. Cario, B. Corraze, E. Janod, V. Dubost, T. Cren,
D. Roditchev, D. Braithwaite, and O. Chauvet, Adv. Mater. 20,
2760 (2008).

[62] V. Guiot, L. Cario, E. Janod, B. Corraze, V. Ta Phuoc, M.
Rozenberg, P. Stoliar, T. Cren, and D. Roditchev, Nat. Commun.
4, 1722 (2013).

[63] N. Sugimoto, S. Onoda, and N. Nagaosa, Phys. Rev. B 78,
155104 (2008).

[64] Y. Tanaka and K. Yonemitsu, Phys. Rev. B 83, 085113
(2011).

[65] F. Heidrich-Meisner, I. González, K. A. Al-Hassanieh, A. E.
Feiguin, M. J. Rozenberg, and E. Dagotto, Phys. Rev. B 82,
205110 (2010).

[66] A. Gomes and P. Lederer, J. Phys. 38, 231 (1977).
[67] G. Stefanucci, Phys. Rev. B 75, 195115 (2007).
[68] F. Heidrich-Meisner, A. E. Feiguin, and E. Dagotto, Phys. Rev.

B 79, 235336 (2009).
[69] P. Werner, T. Oka, M. Eckstein, and A. J. Millis, Phys. Rev. B

81, 035108 (2010).
[70] A. E. Antipov, Q. Dong, and E. Gull, Phys. Rev. Lett. 116,

036801 (2016).
[71] J. Maciejko, An Introduction to Nonequilibrium Many-Body

Theory (Springer, 2007).

144305-9

http://dx.doi.org/10.1103/PhysRevB.90.155104
http://dx.doi.org/10.1103/PhysRevB.90.155104
http://dx.doi.org/10.1103/PhysRevB.90.155104
http://dx.doi.org/10.1103/PhysRevB.90.155104
http://dx.doi.org/10.1103/PhysRevB.86.125118
http://dx.doi.org/10.1103/PhysRevB.86.125118
http://dx.doi.org/10.1103/PhysRevB.86.125118
http://dx.doi.org/10.1103/PhysRevB.86.125118
http://dx.doi.org/10.1103/PhysRevLett.112.030603
http://dx.doi.org/10.1103/PhysRevLett.112.030603
http://dx.doi.org/10.1103/PhysRevLett.112.030603
http://dx.doi.org/10.1103/PhysRevLett.112.030603
http://dx.doi.org/10.1103/PhysRevB.88.075113
http://dx.doi.org/10.1103/PhysRevB.88.075113
http://dx.doi.org/10.1103/PhysRevB.88.075113
http://dx.doi.org/10.1103/PhysRevB.88.075113
http://dx.doi.org/10.1103/PhysRevB.92.100302
http://dx.doi.org/10.1103/PhysRevB.92.100302
http://dx.doi.org/10.1103/PhysRevB.92.100302
http://dx.doi.org/10.1103/PhysRevB.92.100302
http://dx.doi.org/10.1103/PhysRevLett.91.066406
http://dx.doi.org/10.1103/PhysRevLett.91.066406
http://dx.doi.org/10.1103/PhysRevLett.91.066406
http://dx.doi.org/10.1103/PhysRevLett.91.066406
http://dx.doi.org/10.1103/PhysRevLett.95.137601
http://dx.doi.org/10.1103/PhysRevLett.95.137601
http://dx.doi.org/10.1103/PhysRevLett.95.137601
http://dx.doi.org/10.1103/PhysRevLett.95.137601
http://dx.doi.org/10.1103/PhysRevLett.105.146404
http://dx.doi.org/10.1103/PhysRevLett.105.146404
http://dx.doi.org/10.1103/PhysRevLett.105.146404
http://dx.doi.org/10.1103/PhysRevLett.105.146404
http://dx.doi.org/10.1103/PhysRevLett.107.186406
http://dx.doi.org/10.1103/PhysRevLett.107.186406
http://dx.doi.org/10.1103/PhysRevLett.107.186406
http://dx.doi.org/10.1103/PhysRevLett.107.186406
http://dx.doi.org/10.1103/PhysRevLett.114.226403
http://dx.doi.org/10.1103/PhysRevLett.114.226403
http://dx.doi.org/10.1103/PhysRevLett.114.226403
http://dx.doi.org/10.1103/PhysRevLett.114.226403
http://dx.doi.org/10.1103/PhysRevB.92.125149
http://dx.doi.org/10.1103/PhysRevB.92.125149
http://dx.doi.org/10.1103/PhysRevB.92.125149
http://dx.doi.org/10.1103/PhysRevB.92.125149
http://dx.doi.org/10.1103/PhysRevB.89.205126
http://dx.doi.org/10.1103/PhysRevB.89.205126
http://dx.doi.org/10.1103/PhysRevB.89.205126
http://dx.doi.org/10.1103/PhysRevB.89.205126
http://dx.doi.org/10.1103/PhysRevLett.108.196401
http://dx.doi.org/10.1103/PhysRevLett.108.196401
http://dx.doi.org/10.1103/PhysRevLett.108.196401
http://dx.doi.org/10.1103/PhysRevLett.108.196401
http://dx.doi.org/10.1103/PhysRevLett.107.126601
http://dx.doi.org/10.1103/PhysRevLett.107.126601
http://dx.doi.org/10.1103/PhysRevLett.107.126601
http://dx.doi.org/10.1103/PhysRevLett.107.126601
http://dx.doi.org/10.1103/PhysRevB.62.7015
http://dx.doi.org/10.1103/PhysRevB.62.7015
http://dx.doi.org/10.1103/PhysRevB.62.7015
http://dx.doi.org/10.1103/PhysRevB.62.7015
http://dx.doi.org/10.1002/adma.200702967
http://dx.doi.org/10.1002/adma.200702967
http://dx.doi.org/10.1002/adma.200702967
http://dx.doi.org/10.1002/adma.200702967
http://dx.doi.org/10.1038/ncomms2735
http://dx.doi.org/10.1038/ncomms2735
http://dx.doi.org/10.1038/ncomms2735
http://dx.doi.org/10.1038/ncomms2735
http://dx.doi.org/10.1103/PhysRevB.78.155104
http://dx.doi.org/10.1103/PhysRevB.78.155104
http://dx.doi.org/10.1103/PhysRevB.78.155104
http://dx.doi.org/10.1103/PhysRevB.78.155104
http://dx.doi.org/10.1103/PhysRevB.83.085113
http://dx.doi.org/10.1103/PhysRevB.83.085113
http://dx.doi.org/10.1103/PhysRevB.83.085113
http://dx.doi.org/10.1103/PhysRevB.83.085113
http://dx.doi.org/10.1103/PhysRevB.82.205110
http://dx.doi.org/10.1103/PhysRevB.82.205110
http://dx.doi.org/10.1103/PhysRevB.82.205110
http://dx.doi.org/10.1103/PhysRevB.82.205110
http://dx.doi.org/10.1051/jphys:01977003802023100
http://dx.doi.org/10.1051/jphys:01977003802023100
http://dx.doi.org/10.1051/jphys:01977003802023100
http://dx.doi.org/10.1051/jphys:01977003802023100
http://dx.doi.org/10.1103/PhysRevB.75.195115
http://dx.doi.org/10.1103/PhysRevB.75.195115
http://dx.doi.org/10.1103/PhysRevB.75.195115
http://dx.doi.org/10.1103/PhysRevB.75.195115
http://dx.doi.org/10.1103/PhysRevB.79.235336
http://dx.doi.org/10.1103/PhysRevB.79.235336
http://dx.doi.org/10.1103/PhysRevB.79.235336
http://dx.doi.org/10.1103/PhysRevB.79.235336
http://dx.doi.org/10.1103/PhysRevB.81.035108
http://dx.doi.org/10.1103/PhysRevB.81.035108
http://dx.doi.org/10.1103/PhysRevB.81.035108
http://dx.doi.org/10.1103/PhysRevB.81.035108
http://dx.doi.org/10.1103/PhysRevLett.116.036801
http://dx.doi.org/10.1103/PhysRevLett.116.036801
http://dx.doi.org/10.1103/PhysRevLett.116.036801
http://dx.doi.org/10.1103/PhysRevLett.116.036801



