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We report an experimental and theoretical investigation of the lattice dynamics and thermal properties of the
actinide dioxide NpO2. The energy-wave-vector dispersion relation for normal modes of vibration propagating
along the [001], [110], and [111] high-symmetry lines in NpO2 at room temperature has been determined by
measuring the coherent one-phonon scattering of x rays from an ∼1.2-mg single-crystal specimen, the largest
available single crystal for this compound. The results are compared against ab initio phonon dispersions
computed within the first-principles density functional theory in the generalized gradient approximation plus
Hubbard U correlation (GGA+U ) approach, taking into account third-order anharmonicity effects in the
quasiharmonic approximation. Good agreement with the experiment is obtained for calculations with an on-site
Coulomb parameter U = 4 eV and Hund’s exchange J = 0.6 eV in line with previous electronic structure
calculations. We further compute the thermal expansion, heat capacity, thermal conductivity, phonon linewidth,
and thermal phonon softening, and compare with available experiments. The theoretical and measured heat
capacities are in close agreement with another. About 27% of the calculated thermal conductivity is due to
phonons with energy higher than 25 meV (∼6 THz), suggesting an important role of high-energy optical phonons
in the heat transport. The simulated thermal expansion reproduces well the experimental data up to about 1000 K,
indicating a failure of the quasiharmonic approximation above this limit.
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I. INTRODUCTION

Thermal neutrons with energy matching that of atomic
dynamics in crystalline materials generally have a momentum
comparable in size to the first Brillouin zone of the reciprocal
space lattice. This makes energy- and momentum-resolved
inelastic neutron scattering (INS) a powerful tool for mea-
suring phonon dispersion in crystals, as first demonstrated by
Brockhouse and Stewart [1]. However, neutron techniques are
intensity limited and become unpractical when crystal samples
of sufficient size are not available. This is the case of NpO2, for
which only single crystals smaller than ∼10−4 cm3 have been
obtained. NpO2 has been the object of considerable attention
because of its peculiar physical properties, but the lack of large
single crystals has prevented any experimental determination
of its lattice dynamics. On the contrary, the phonon dispersions
for the isomorphous uranium dioxide have been extensively
investigated by INS from the mid-1960s [2] to the present
day [3,4].

Since phonons largely determine the thermal conductivity
of actinide dioxides, the backbone of nuclear reactor fuels,
measuring their dispersion yields important information of
technological interest [3]. In addition, phonons are supposed
to be an important ingredient of the low-temperature physics
of these compounds. This is the case of UO2, whose ground
state and low-energy collective excitations are governed by
the interplay between crystal field (CF) interactions [5],
two-ion multipolar interactions of purely electronic origin,
and magnetoelastic coupling between the uranium magnetic
moment and the oxygen displacements [6–8]. Electron-phonon
interactions are also supposed to generate a crystal field-

phonon bound state in NpO2 [9] and to play an important role in
the stabilization of the multipolar order. The low-temperature
phase of NpO2 has indeed provided the first example of
hidden order in actinide systems [10,11]. The large anomalies
observed [12,13] at To = 25 K in specific-heat and magnetic-
susceptibility measurements have eventually been interpreted
as the signature of a phase transition where the magnetic
triakontadipole of �5 symmetry plays the role of primary
order parameter (OP) [14,15], while electric quadrupoles are
induced as secondary OP and dipolar magnetic moments are
quenched [16,17]. As the order is longitudinal 3-k, the overall
cubic symmetry of the lattice is preserved [18].

Actinide dioxides are also good benchmark compounds
to test and refine existing theoretical and computational
methods. Very few attempts to calculate ab initio the physical
properties of NpO2 have been published [19–22], in part
because very scarce single-crystal data are available. To fill this
information gap, we used nonresonant, meV-resolved inelastic
x-ray scattering (IXS) to measure the phonon energy spectrum
�ωj (q) (where j is the branch polarization index and q the
wave vector) of NpO2 along the high-symmetry directions
[� − X], [X − K − �], and [� − L] of the fcc Brillouin zone.
Although not as widespread as INS, IXS is a mature technique
available at several third-generation synchrotron radiation
sources, which allows one to study collective vibrational
dynamics using microgram-scale crystals [23]. Recently, IXS
was used to measure [24] the phonon density of states of Ga-
doped PuO2. Compared with neutrons, IXS offers advantages
linked to a very low intrinsic background, an energy resolution
decoupled from energy transfer, and an energy-independent
momentum transfer. However, as the scattering cross section is
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proportional to the square of the atomic number, observing the
contributions of light atoms to the vibrational spectra by IXS
is challenging. The here-reported experiment was performed
with the ID28 spectrometer of the European Synchrotron
Radiation Facility (ESRF) in Grenoble, France. The measured
dispersions are in excellent agreement with the phonon
spectrum calculated by means of the generalized gradient ap-
proximation plus Hubbard U correlation (GGA+U ) electronic
structure approach in combination with the quasiharmonic
approximation.

The simulated phonon dispersions have been used to cal-
culate the vibrational contribution to several thermodynamical
quantities, namely, thermal expansion, heat capacity, thermal
conductivity, phonon linewidth, and thermal phonon softening.
The results are in very good agreement with available
experimental data and suggest an important contribution of
high-energy optical phonons in the heat transport. A departure
between experimental and simulated thermal expansion curves
above ∼1000 K shows that the use of the quasiharmonic
approximation at higher temperatures may result in wrong
estimates of some thermodynamical observables.

II. EXPERIMENTAL METHODOLOGY

Due to the contamination risk generated by the radiotoxicity
of the neptunium element, all operations of preparation and
encapsulation have been carried out in shielded gloveboxes
under inert nitrogen atmosphere following well-established
safety procedures. The experiment was carried out at room
temperature on a high-quality single crystal of NpO2 using
the ID28 beamline with an incident energy Ei = 17.794 keV,
afforded by a flat Si (999) perfect crystal backscattering
monochromator. The monochromator was temperature con-
trolled in the millikelvin region by a high-precision platinum
thermometer bridge in closed-loop operation with a controlled
heater unit. The analyzer used was formed by 12 000 Si
crystals of 0.6 × 0.6 × 3 mm3 size glued onto a spherical
silicon substrate and thermally stabilized to 6 × 10−4 K. This
configuration gave a constant energy resolution of 3 meV. The
chosen incident energy is just above the Np L3 absorption
edge energy (EL3 = 17.610 keV) but below both the L1 and
L2 edges (EL1 = 22.427 keV, EL2 = 21.601 keV). As a
result, a severe sample photoabsorption is present, and the
use of transmission scattering geometry must be avoided. This
energy also represents a good compromise between the energy
resolution and the optimization of the photon flux. In order
to reduce the beam path on the sample surface, an Ru/B4

mirror multilayer focusing configuration was used to produce
a beam spot size of 30 × 80 μm2 on the sample surface. The
crystal of dimension of 0.78 × 0.56 × 0.25 mm3 (∼1.2 mg)
was oriented with the specular direction along the 〈001〉 axis,
with the 〈110〉 axis in the scattering plane. The sample was
encapsulated between two diamond slabs of 0.5 × 5 × 5 mm3

at the Institute for Transuranium Elements in Karlsruhe. The
diamond slabs were oriented with their 〈110〉 axis closely
parallel to the Np 〈001〉 direction. Diamond phonon groups
(mainly acoustic) were detected around the (400) and (300)
NpO2 Brillouin zone (BZ) centers and were distinguishable
from the NpO2 phonons because of their very steep dispersion

curves. However, due to the weakness of the optic phonons of
NpO2, these contaminated BZs were avoided.

III. THEORETICAL METHODOLOGY

A. Harmonic and quasiharmonic lattice dynamics
and lattice thermal conductivity

In the harmonic phonon approximation, thermodynamic
properties are described through the Helmholtz free en-
ergy [25]

F (T ,V ) = 1

2

∑
q,ν

�ω(q,ν) + kBT
∑
q,ν

ln
[
1 − e

−�ω(q,ν)
kB T

]
, (1)

where �ω(q,ν) is the energy of the phonon mode ν at the
wave vector q in the reciprocal space, V and T are the
volume and temperature of the system, respectively, and kB is
the Boltzmann constant. The first term on the right-hand side
accounts for the phonon mode zero-point vibrational energy
and the second term is the contribution of each mode to the
free energy due to thermal occupation of the phonon energy
levels. It is convenient to rewrite Eq. (1) in terms of the phonon
density of states g(ω,V ) as

F (T ,V ) =
∫ ∞

0
dω g(ω,V )

(
�ω

2
+ kBT ln

[
1 − e

−�ω
kB T

])
, (2)

where now the integral is over the phonon frequencies.
The Gibbs free energy G, from which thermodynamic

properties at a temperature T can be computed, is obtained
by minimizing the function F (V,T ) for a given (constant)
pressure p,

G(T ,p) = min
V

[U (V ) + F (T ,V ) + pV ], (3)

with U (V ) being the volume-dependent electronic total energy.
It is important to stress that within a harmonic potential the

normal phonon mode’s frequencies of a crystal are unaffected
by a change in volume, and as a consequence, the system does
not render any thermal expansion. This is due to the fact that
in a harmonic model the only temperature dependence is in
the phonon occupation numbers and therefore the equilibrium
volume cannot vary with temperature at fixed pressure.
However, in real crystals the harmonic approximation is not
exact and the normal phonon modes depend on the volume of
the crystal due to anharmonic terms. A way to take into account
these anharmonicities, and thus be able to evaluate the thermal
expansion, is to use the quasiharmonic approximation (QHA).
This approximation assumes that phonon frequencies are
volume dependent, but that, at a given volume, the interatomic
forces are harmonic. Even though this assumption is valid
for only small anharmonic perturbations, in practice it is a
reasonably accurate approximation for temperatures below
half the melting temperature. To conduct QHA calculations
it is needed to compute the normal phonon modes for
different crystal volumes around the equilibrium volume and
calculate the Helmholtz free energy for each as a function of
temperature. Thus, the Gibbs free energy can be obtained at
arbitrary temperatures by fitting the Helmholtz free energy
as a function of volume to a pertinent equation of state.
Subsequently, different thermodynamic properties (such as the
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linear or volumetric expansion coefficients, the bulk modulus,
and the constant-pressure heat capacity) can be calculated.

From classical kinetic theory the rate of change in the
phonon distribution function can be determined via the Boltz-
mann transport equation, from which the thermal conductivity
κ can be calculated, either by using the relaxation time approx-
imation (RTA) or from a full solution (FS) of the Boltzmann
transport equation [26]. These thermal conductivity tensors are
given by

κij

RT A
=

∑
λ

CV,λv
i
λv

j

λ τλ, (4)

κij

FS
= �

2

4kBT 2NV

×
∑
λλ′

ωλv
i
λ

sinh
(

�ωλ

2kBT

) ωλ′v
j

λ′

sinh
(

�ωλ′
2kBT

) (�∼1)λλ′, (5)

where i,j denote the Cartesian coordinates, λ stands for
q,ν, and �∼1 denotes the Moore-Penrose inverse [27] of the
collision matrix � that is given by [28]

�λλ′ = δλλ′
q

τλ

+ π

�2

∑
λ′′

|�λλ′λ′′ |2 1

sinh
(

�ωλ′′
2kBT

)
× [δ(ωλ − ωλ′ − ωλ′′) + δ(ωλ + ωλ′ − ωλ′′ )

+ δ(ωλ − ωλ′ + ωλ′′)]. (6)

Here vqν and CV,qν are the group velocity and constant-volume
heat capacity of the phonon mode ν at the q point, respectively,
�λλ′λ′′ is the strength of interaction between the three phonons
λ, λ′, and λ′′ involved in the scattering [26], and τqν is the mode
lifetime. The phonon mode lifetime τqν is calculated from the
imaginary part of the self-energy, or the phonon linewidth �qν ,
via [26]

τqν = 1

2�qν

. (7)

The phonon linewidths are determined using many-body
perturbation theory in a third-order anharmonic Hamiltonian
which considers up to only three-phonon scattering [26]. With
these considerations, its computation reduces to the knowledge
of the third-order anharmonic interatomic force constants that
can be determined from density functional theory calculations.

B. First-principles modeling and lattice dynamics calculations

The electronic structure calculations were carried out using
the Vienna Ab Initio Simulation Package (VASP) [29], with
the generalized gradient approximation (GGA) [30] as the
DFT exchange-correlation functional, as well as with its
extension to treat strongly correlated electrons, DFT with an
additional Hubbard U term (DFT+U ). Within the GGA+U

approach, the Hubbard and exchange parameters, U and J ,
respectively, are introduced to account for the strong on-site
Coulomb correlations between the neptunium 5f electrons.
This helps to remove the self-interaction error and improves
the description of correlation effects in the open 5f shell. We
have chosen a Hubbard U value of 4.0 eV and an exchange
parameter J value of 0.6 eV, which have been shown to
provide a good description of the NpO2 system [17,31] and are

consistent with accepted values for UO2 (see, e.g., Refs. [32]
and [33]). Projector augmented-wave pseudopotentials were
used with an energy cutoff of 500 eV for the plane-wave
basis, which was sufficient to converge the total energy for a
given k-point sampling. The Brillouin zone integrations of the
employed simulation cells consisting of 2 × 2 × 2 supercells
and 4 × 4 × 4 supercells were performed on a special k-point
mesh generated by 17 × 17 × 17, 7 × 7 × 7, and 3 × 3 × 3
�-centered Monkhorst Pack k-point grids, respectively. The
electronic minimization algorithm used for static total-energy
calculations was a blocked Davidson algorithm.

At low temperatures below To = 25 K, an exotic multipolar
ordered phase is formed in NpO2, which has been the
topic of many investigations. (See Ref. [11] and references
therein.) In the present study we focus on the lattice dynamics
at elevated temperatures. Therefore we choose to describe
the system as an antiferromagnetic Mott insulator. After
optimization of the fcc fluorite structure of NpO2 we find a
lattice constant of 5.497 Å, which is somewhat larger than the
experimental value of 5.42 Å. Although the GGA+U method
provides a slightly overestimated volume of the system, it has
been shown that, for actinide dioxides, it provides a better
description of the Mott gap and magnetic moments than the
local density approximation (LDA)+U [4,21,31]. We find for
these quantities for NpO2 the values of 2.35 eV and 3.1 μB ,
respectively, in agreement with previous work on NpO2. Thus,
our results provide a satisfactory qualitative description of the
electronic structure and provide a good starting point for the
simulation of the vibrational spectra.

Our phonon calculations were performed for NpO2 through
the finite-displacement method using the open-source package
PHONOPY [34], with VASP employed as the density functional
method to obtain the pairwise and cubic interatomic force con-
stants. To evaluate these, we employed supercells consisting of
4 × 4 × 4 primitive cells (192 atoms) and 2 × 2 × 2 supercells
(24 atoms). Due to the high symmetry of the cubic system,
only 2 and 128 sets of frozen phonon structures were needed
to calculate the dynamical matrices and the phonon linewidths.
During postprocessing, the phonon frequencies and lifetimes
were sampled on a 50 × 50 × 50 and 21 × 21 × 21 q-point
mesh, respectively.

For the quasiharmonic calculations, additional finite-
displacement calculations were performed on simulation cells
at approximately ±10% of the equilibrium volume in steps of
1%. Due to the fact that the largest five volumes were found
to correspond to temperatures outside the validity range of
the QHA, these structures were omitted in the calculation of
the thermal properties. Otherwise, wrong bulk modulus and
thermal expansion values would be found. In addition and
to correctly include the long-range macroscopic electric field
generated by collective ionic motions near the � point, we
have added a nonanalytical term to the dynamical matrix [35].

In contrast to the DFT-GGA methodology, the GGA+U

functional can lead to convergence to local minima of the total
energy and not the sought global minimum. This difficulty may
lead to incorrect phonon results—these being based on total-
energy calculations—such as very dispersive optical phonon
branches (cf. Ref. [36]). To avoid this problem we have used
the so-called occupation matrix control technique [37] in our
calculations.
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Lastly, the spin-orbit interaction is known to be large in
actinide materials, and it can influence the properties of ac-
tinide materials such as the equilibrium lattice parameters [38].
However, for the insulating actinide dioxides it has been
found previously that the influence of the spin-orbit coupling
(SOC) is small for the quite localized 5f states [39–41]. Our
calculations for NpO2, presented below, are consistent with
this observation. For most of our phonon calculations we have
therefore not included the SOC, but we have evaluated the
influence of the SOC by including it in a set of calculations
(shown below).

IV. RESULTS

A. Phonon dispersions

The acoustic phonons in NpO2 were easily detected by IXS
in all the main crystallographic directions, and a complete
collection of phonon groups belonging to transverse and
longitudinal acoustic branches was performed. As an example,
Fig. 1 shows the data collected along the [011] direction
off the (5,1,1) reciprocal lattice point (transverse acoustic

FIG. 1. Dispersion of longitudinal acoustic phonons propagating
along the [100] direction (top panel) and transverse acoustic phonons
propagating along the [011] direction (bottom panel). The data have
been collected at the scattering vector Q = �(ki − kf ) specified in
each panel, ki and kf being the wave vector of incident and scattered
photons, respectively.

branch) and along the [100] direction off the (4,0,0) BZ center
(longitudinal acoustic branch). The variation of the inelastic
peak intensity within the BZ is in agreement with the structure
factors obtained from our first-principles calculations of the
vibrational spectra. Satisfactory statistics for acoustic phonon
groups were obtained with counting times shorter than 30 s
per point. On the contrary, optic phonons are much weaker (as
they arise mainly from oxygen vibration modes); because of
this, counting times up to 3 min per point were adopted and
data were collected at a series of points Q = q + G around
different reciprocal lattice vectors G. Inelastic structure factor
simulations based on the first-principles calculations were
used as a guide in determining the most appropriate points in
reciprocal space at which to conduct the measurements [42].
Typical phonon groups belonging to different optic and
acoustic branches are shown in Fig. 2.

FIG. 2. Experimental IXS spectra collected for representative
phonon branches of NpO2 at constant reciprocal space positions Q
indicated by the labels. Optic phonon branches TO1 and LO2 have
a peak intensity weaker by 1 or 2 orders of magnitude than acoustic
branches. Intensity data for each panel and corresponding inset are
scaled by the same factor.
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FIG. 3. Phonon dispersion relations of NpO2 measured at room temperature along three high-symmetry directions by IXS (symbols) and
calculated (solid lines) by first-principles density functional theory in the GGA+U approach (U = 4 eV, J = 0.6 eV). ξ is the phonon wave
vector component in reciprocal lattice units (r.l.u.) of 2π/a, where a is the lattice parameter. Transverse (longitudinal) modes are indicated by
black circles (blue squares). The labels of the branches refer to the irreducible representations of the wave vector little group. The computed
total phonon density of states (pDOS) is shown in the right panel by the solid black line. Partial pDOS for Np and O atoms are indicated by
dotted blue line and dashed red line, respectively. The Np atom contribution to the pDOS dominates below ∼25 meV, whereas the higher-energy
contributions are dominated by the light O atom vibrations. The pDOS simulated for UO2 is shown for comparison (thin dashed green line).

Figure 3 shows the phonon dispersion curves at 300 K
calculated ab initio together with data points measured along
the three main symmetry directions [001] (
), [110] (�),
and [111] (�), the experimental errors being smaller than
the size of the symbols. The nine phonon branches for
the NpO2 cubic cell [symmorphic CaF2-type fcc structure
with space group Fm3̄m and three atoms per unit cell,
at RO = ±(a/4)(1,1,1) and RNp = (0,0,0)] contain double-
degenerate transverse acoustic (TA) and transverse optic (TO1;
TO2) modes, one longitudinal acoustic (LA) mode, and two
longitudinal optic (LO1; LO2) modes. The group theoretical
notation in Fig. 3 refers to the irreducible representations of
the little group of the phonon wave vector. The atom-projected
phonon density of states (pDOS) is shown in the right-hand
panel of Fig. 3. At low energies the contribution from the Np
atoms is larger than that from the O atoms, while at higher
vibrational frequencies this behavior is reversed, as expected
from the masses of the atomic components.

The measured and ab initio computed phonon dispersions
are overall in good agreement. Only the LO1 branch could
not be observed, which has a very small Np contribution.
Compared with UO2 (Refs. [3] and [4]), the main differences in
the pDOS are a softening of the optical modes and an increase
of the peak centered at around 55 meV and corresponding
to the TO2 modes, whereas the acoustic modes in NpO2 are
shifted to slightly higher frequencies.

B. Main thermodynamic properties

From the Gibbs free energy the main thermodynamic
parameters such as the bulk modulus B, the thermal expansion

coefficient α, and the lattice isobaric heat capacity Cp can be
obtained:

B = V

(
∂2F

∂V 2

)
T

, (8)

α = 1

V

[
∂

∂T

(
∂G

∂P

)
T

]
p

, (9)

Cp = −T

(
∂2G

∂T 2

)
p

. (10)

In Fig. 4 we present the ab initio calculated lattice heat
capacity Cp as a function of temperature, compared with
available experimental data [12,46,47]. The calculated curve
provides a very good description of the data measured for
the empty 5f shell analog ThO2 [13]. The agreement with
the NpO2 data is also good for temperatures in the range
between 50 and 200 K. At lower temperatures the phase
transition to the multipolar ordered phase is responsible for
the appearance of a large anomaly, which is not considered
in the theory discussed in this work. At higher temperatures
the Schottky contribution becomes relevant, as shown in
Fig. 4 by the blue dot-dashed line that corresponds to the CF
energy-level scheme provided by inelastic neutron-scattering
experiments [5,44,45]. A dilation contribution to the specific-
heat curve must also be considered. This can be estimated
using the Grüneisen relation, Cd = αγT Cp, where α is the
thermal expansion coefficient, T the temperature, and γ

is the Grüneisen parameter [43]. Our calculations provide a
value of γ � 2, almost temperature independent in the T range
between 300 and 1000 K. Using the experimental thermal
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FIG. 4. Constant-pressure heat capacity of NpO2 (black solid
line) obtained as the sum of the calculated vibrational contribution
(blue dashed line), the dilation contribution calculated by the
Grüneisen relation (green dashed line), Ref. [43], and the Schottky
contribution due to crystal field (CF) excitations (blue dot-dashed
line), calculated on the basis of the CF level scheme derived from
inelastic neutron scattering experiments [5,44,45]. Experimental data
are taken from Ref. [46] (a, red solid circles), Ref. [12] (b, red open
circles), and Ref. [47] (c, red dot line). The λ-type anomaly at 25 K
is associated with the transition to the multipolar ordered phase of
NpO2. Experimental data for ThO2 (d, blue open squares) are taken
from Ref. [13].

expansion data reported in Ref. [43], we obtain the green
dashed line in Fig. 4. The total heat capacity obtained by
summing vibrational, Schottky, and dilation contributions is
in good agreement with the experiments up to 1000 K.

For the thermal expansion coefficient we compare our ab
initio results with the available experimental data obtained by
Serizawa et al. [43] in the temperature range of 298–1600 K.
The results, plotted in Fig. 5, show that for temperatures
below 800 K the qualitative behavior between the experimental
and simulated thermal expansion is the same, apart from
a slight overestimation of the theoretical results. However,
above 800 K the trend for the simulated thermal expansion

FIG. 5. Calculated (red solid line) and experimental thermal
expansion of NpO2 (blue dashed line, from Ref. [43]). The inset shows
the calculated (black solid line) bulk modulus of NpO2 compared with
the experimental value provided by high-pressure X-ray diffraction
measurements [49] (red circle) and the analytical estimation given in
Ref. [50] (green dashed line).

changes, becoming unexpectedly almost constant and unlike
the experimental results which still show an almost linear
increase. The reason for the discrepancy between experimental
and simulated results has already been pointed out in the
previous section, namely, the validity of the QHA at high
temperatures. Since the main thermodynamic properties, such
as heat capacity, thermal expansion, or melting point, of the
actinide oxides (AnO2 with An being Th, U, Np, or Pu) are
very similar, our results emphasize the limitation of QHA
to reproduce the right expanded lattice for these compounds
at high temperatures. (For instance, the phonon dispersion
calculated for UO2 at T = 1200 K by Pang and co-workers
in Ref. [3] most probably suffers from being based on a
wrongly expanded lattice.) Yun et al. also employed the
QHA to compute the thermal expansion coefficient of UO2

and obtained reasonable agreement with experiment up to
500 K [48]. On the other hand, the influence of this limitation
seems to be less relevant when computing the heat capacity
and bulk modulus as shown above.

The calculated bulk modulus as a function of temperature is
presented in the inset of Fig. 5. The computed value at 0 K of
197.7 GPa is in agreement with the only available experimental
value (B = 200 GPa) [49] as well as with previous theory [21].
The temperature evolution of this quantity can be compared
with values obtained by Sobolev [50], who proposed a set of
analytical models for the calculation of the main thermophys-
ical properties of the actinide dioxides based on a simplified
phonon spectrum, the quasiharmonic approximation for the
lattice vibrations, and the Klemens approach for the thermal
conductivity. We find that the agreement in the whole plotted
temperature range is very good.

C. Thermal conductivity

Next, we investigate the lattice thermal conductivity κ . This
quantity is represented by a second-rank tensor that in cubic
crystals, as NpO2, becomes isotropic and can therefore be
described by a single value. As a consequence, the velocity
and transport lifetime components are in the heat transport di-
rection, parallel to a small applied temperature gradient. It has
been suggested by Gofryk et al. [51] that the presence of tem-
perature gradients interacting with the electronic moments on
UO2 breaks the cubic symmetry, thus inducing an anisotropic
thermal conductivity. A similar phenomenon could occur in
NpO2. However, in our simulations we have not considered the
temperature gradients, and therefore our computational results
corroborate the crystallographic symmetry assumptions in the
whole range of considered temperatures.

In Fig. 6 we show the temperature dependence of κ

computed from first-principles anharmonic lattice dynamics
calculations with both the RTA and the full solution of the
Boltzmann equation for temperatures ranging from 500 to
1000 K. Note that the two approaches provide undistinguish-
able results. The comparison of the calculated curve with
the one derived from the experimental values for thermal
diffusivity, bulk density, and specific heat [52,53] shows a good
agreement and supports the validity of the RTA approach in the
whole range of considered temperatures. Here it is important
to emphasize that for a correct description of the thermal
conductivity at lower temperatures it is necessary to take into
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κ 

FIG. 6. Calculated temperature dependence of the thermal con-
ductivity of the fcc NpO2 crystal using the full solution of the Boltz-
mann equation (black line) from first-principles anharmonic lattice
dynamics calculations. Simulations based on the RTA approximation
provide undistinguishable results in the shown temperature range.
The experimental thermal conductivity curve given in Ref. [53] is
shown by the red circles with connecting line.

consideration the effect of crystalline grain boundaries, point
defects, and isotopic scattering. Due to the lack of experimental
results at low temperature and the fact that those contributions
to the phonon-phonon scattering are sample dependent, we
have not addressed the low-temperature regime. However, our
results can be easily extended to include this contribution by
evaluating the phonon lifetime in Eq. (4) as

1

τ
= 1

τgb

+ 1

τpd

+ 1

τis

+ 1

τph−ph

, (11)

where τgb, τpd , τIs , and τph−ph are, respectively, the phonon
lifetimes due to phonon scattering by grain boundaries, point
defects, isotopic scattering, and anharmonicities. Furthermore,
it is important to notice that the temperature dependence of
the thermal conductivity is calculated for the structure at
T = 0 K. The thermal expansion, which will contribute to
slightly decrease the computed thermal conductivity, is not
taken into account. The negligible contribution from this effect
is evidenced by the good agreement obtained between the
theoretical and experimental results.

We now evaluate the contribution of each phonon fre-
quency to the total lattice thermal conductivity at 300 K by
integrating κ calculated within the RTA methodology for all
the frequencies spanned by the phonons. The accumulated
thermal conductivity κ̃ , plotted in Fig. 7, shows the increase of
κ with increasing frequency. To better illustrate the variation
of this quantity, we also show its derivative with respect to the
energy dκ̃/dω. Remarkably, our results show that phonons
with energy below 6 THz (∼25 meV) contribute to only 73%
of the total thermal conductivity, while the remaining 27% is
due to phonons with a higher energy. This is a striking result,
which emphasizes the importance of high-energy optical
phonons in the heat transport. To better illustrate this fact,
we show the calculated phonon linewidths in Fig. 7 along
high-symmetry lines in the BZ. The smaller linewidth along
with the larger group velocities (steeper bands) of the acoustic
phonons compared with those of the optical phonons translate
into a larger contribution to the total thermal conductivity,

FIG. 7. Phonon linewidth distribution calculated along the high-
symmetry lines for fcc NpO2 at 300 K (left panel) and accumulated
phonon thermal conductivity κ̃ as a function of the phonon energy
(right panel). Different colors in the linewidth distribution indicate
different phonon branches, while the q-dependent linewidth is
depicted by the width of the branch. The accumulated phonon thermal
conductivity is shown (right panel) by the red line, while its derivative
with respect to the energy is depicted by the blue line.

cf. Eq. (4). However, the still small linewidth of the TO1
phonons (see Fig. 8 below) and their high velocities give that
the TO1 and LO1 modes transport a relatively large amount
of heat. In contrast, the TO2 and LO2 branches have a very
weak contribution to the total thermal conductivity, mainly
due to the flat character of the dispersion bands, i.e., small
velocity. Our conclusions are in agreement with previous
theoretical and experimental results for UO2 where it was
shown that the largest amount of heat is transported by the
LO1 phonon mode [3,4]. Unfortunately, this mode contains
almost no contribution from the metal atom and hence it is
very hard to observe with IXS; thus we did not manage to
establish its energy dispersion.

At higher temperatures a decrease of the thermal conduc-
tivity is expected due to the broadening of the linewidths with
temperature. In Fig. 8 we show the calculated changes of the
phonon linewidth with the phonon frequency at T = 300 K. As
expected, the acoustic phonons present the lowest linewidths,
while the LO2 modes show the largest. However, in agreement
with the results for the thermal conductivity, we also find that
the linewidths of the TO1 phonons are of the same order

FIG. 8. Variation of the half of the phonon linewidth for NpO2

with respect to the phonon frequency. Different phonon branches are
indicated with different colors, while the average phonon linewidth
is represented by a black line.
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FIG. 9. GGA+U at 0 K (red line), GGA+U+SOC at 0 K (green
dashed line), and GGA+U at 300 K (blue dashed line) calculated
phonon dispersions (left panel) and corresponding phonon density
of states (right panel) of NpO2. Note that the spin-orbit coupling
has a relatively small influence on the ab initio computed phonon
dispersions, comparable to that of an increased temperature.

as those of the acoustic phonons in the range 8.5–9.5 THz
(∼35–39 meV).

Lastly, to evaluate the effect of the spin-orbit coupling on
the phonon properties, we have carried out a calculation of
the phonon dispersions including the SOC in the electronic
structure. The results, shown in the left panel of Fig. 9,
are compared with the phonon dispersions computed without
SOC along the high-symmetry lines at T = 0 and 300 K.
Accounting for the SOC leads on average to a phonon softening
comparable to an increase of the temperature of the system.
This can be more easily appreciated in the right panel of Fig. 9,
where the phonon density of states is shown. The computed
densities of states highlight the relatively small importance
of the SOC on the thermal conductivity of the system that,
as shown above, has a negligible dependence on the thermal
expansion.

V. DISCUSSION AND CONCLUSIONS

The phonons and thermal behavior of UO2 have been
extensively investigated in the past, both experimentally and
theoretically [2–4,36,48,51,54]. This makes UO2 an ideal
material for comparison with our data obtained for NpO2. An
issue that recently has emerged is the origin of the lattice
thermal conductivity of UO2, specifically, which phonon
modes are carriers of the thermal conductivity. Dynamical
mean field theory (DMFT) calculations predicted that only
LA modes contribute to the heat transport [54]. More recent
measurements and ab initio calculations on the basis of the
GGA+U method came to a different conclusion, namely, that
LO phonons transport a surprisingly large fraction of 30% of
the total heat [3,4]. We observe that our calculations for NpO2
are in good accordance with the latter work on UO2, as we
find that 27% of the total heat in NpO2 is transported by the
optical modes. The low contribution of the LO phonons to the
total heat transport in UO2, as predicted by DMFT, could be
related to the predicted steeply dispersive LO phonons, giving
low group velocities that are 2–3 times lower than obtained
in measurements. The DMFT predicted thermal conductivity
at 1000 K was also a factor of 2 lower than the experimental

FIG. 10. Phonon linewidth distribution calculated along the high-
symmetry lines for fcc UO2 at 300 K (left panel) and accumulated
phonon thermal conductivity κ̃ as a function of the phonon energy
(right panel). Different colors in the linewidth distribution indicate
different phonon branches, and the q-dependent linewidth is depicted
by the width of the branch. The accumulated phonon thermal
conductivity is shown (right panel) by the red line, while its derivative
with respect to the energy is depicted by the blue line.

value of 3.9 W m−1 K−1 (Refs. [55] and [56]). For comparison,
the thermal conductivity of NpO2, computed here with the
GGA+U method, is 4.2 W m−1 K−1 at 1000 K, i.e., quite
close to the value known for UO2, and in good agreement with
the measured value [52] of 4.1 W m−1 K−1 for NpO2. NpO2
has a smaller thermal conductivity than UO2, at least in the
temperature range 600–1000 K, for which experimental values
are available. [At 600 K, κ(UO2) is about 31% larger than
κ(NpO2) [53].] This is accounted for by our simulation, which,
however, overestimates the experimental value for NpO2 by
∼20% at 600 K.

For further comparison with UO2 we provide in Appendix A
(Fig. 10) the ab initio calculated phonon dispersions and
phonon linewidths of UO2 at 300 K. Compared with UO2,
the main differences in the calculated phonon DOS are a
softening of the optical modes and an increase of the peak
centered at around 55 meV (TO2 modes), whereas the acoustic
modes in NpO2 are shifted to slightly higher frequencies (cf.
Fig. 3). The calculated value of the bulk modulus in NpO2
(B = 197.7 GPa, at 0 K) is in good agreement with the
experimental value (B = 200 GPa) [49] and slightly smaller
than the one determined by high-pressure x-ray diffraction
for UO2 [B(UO2) = 207 ± 2 GPa] [57]. The computed
accumulated phonon thermal conductivity of UO2 is also
shown in Fig. 10 and discussed in the Appendix. Consistent
with our observations for NpO2, we find that the optical phonon
branches do contribute significantly to the lattice thermal
conductivity.

The good agreement of the measured and ab initio calcu-
lated phonon dispersions indicates that the GGA+U method
provides a good description of the crystal lattice vibrations
of NpO2 and thus permits one to perform ab initio studies
of its thermodynamic properties. We find that the calculated
heat capacity and bulk modulus are in good agreement
with available measured quantities. The calculated thermal
expansion, however, agrees with experiment only up to 1000 K.
The failure in the description of the thermal expansion at higher
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temperatures indicates the limitation of the quasiharmonic
approximation to study actinide dioxides beyond ∼1000 K.
The phonon linewidths and the thermal conductivity of NpO2
have been evaluated using first-principles anharmonic lattice
dynamics simulations. We obtain an excellent agreement with
the scarcely available experimental values for the thermal con-
ductivity. We have established that optical phonons contribute
significantly to the heat transport (by about 27%), mainly
due to their large velocities and short lifetimes, which, for
TO1 phonons are comparable to acoustic phonons. Taking
the spin-orbit interaction into account in the first-principles
calculations leads to a small softening of the phonon modes,
an effect which is comparable to an increase of the lattice
temperature and which results in a negligible influence on the
phononic thermal properties.

Our first-principles simulations and measurements of the
phononic properties of NpO2 are relevant for the modeling
of nuclear fuel materials, for which high thermal conductiv-
ities are desirable. Our results demonstrate that the density
functional theory at the level of GGA+U approach, although
usually not sufficient to describe low-energy-scale interactions
such as the Kondo screening, works very well to simulate
quantities associated with larger energy scales, such as lattice
vibrations and structural, mechanical, and thermodynamical
properties.

Finally, as only very small crystals are required, the methods
described in this article can be easily extended to PuO2 and
AmO2, for which no experimental data on the dispersion of
phonon branches are available.
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APPENDIX: COMPARISON TO UO2

The lattice vibration contribution to the thermal properties
of UO2 (a key element for the safety assessment of the
operation of nuclear power plants) has been extensively
investigated [2–4,51]. To perform a comparison between UO2

and NpO2 we have applied the computational methodology
described above to simulate the phonon dispersion and phonon
lifetimes of UO2. Figure 10 shows the dispersion relations
along the high-symmetry direction of the UO2 fcc lattice,
together with the accumulated phonon thermal conductivity.
The ab initio calculated value of the latter quantity (κ̃calc =
9.06 W m−1 K−1) compares well with the experimental value
κ̃INS = 8.4 ± 1.5 W m−1 K−1 obtained at 295 K by Pang
et al. from inelastic neutron scattering measurements [3] and
with the macroscopic room-temperature thermal conductivity
reported by Hyland (κ̃mac = 9.7 W m−1 K−1) [55]. Note that
for UO2 the optical phonon branches contribute significantly
to the total lattice thermal conductivity.

[1] B. N. Brockhouse and A. T. Stewart, Rev. Mod. Phys. 30, 236
(1958).

[2] G. Dolling, R. A. Cowley, and A. D. B. Woods, Can. J. Phys.
43, 1397 (1965).

[3] J. W. L. Pang, W. J. L. Buyers, A. Chernatynskiy, M. D.
Lumsden, B. C. Larson, and S. R. Phillpot, Phys. Rev. Lett.
110, 157401 (2013).

[4] J. W. L. Pang, A. Chernatynskiy, B. C. Larson, W. J. L. Buyers,
D. L. Abernathy, K. J. McClellan, and S. R. Phillpot, Phys. Rev.
B 89, 115132 (2014).

[5] N. Magnani, P. Santini, G. Amoretti, and R. Caciuffo, Phys. Rev.
B 71, 054405 (2005).

[6] R. Caciuffo, G. Amoretti, P. Santini, G. H. Lander, J. Kulda, and
P. de V. Du Plessis, Phys. Rev. B 59, 13892 (1999).

[7] S. Carretta, P. Santini, R. Caciuffo, and G. Amoretti, Phys. Rev.
Lett. 105, 167201 (2010).

[8] R. Caciuffo, P. Santini, S. Carretta, G. Amoretti, A. Hiess, N.
Magnani, L.-P. Regnault, and G. H. Lander, Phys. Rev. B 84,
104409 (2011).

[9] G. Amoretti, A. Blaise, R. Caciuffo, D. Di Cola, J. M. Fournier,
M. T. Hutchings, G. H. Lander, R. Osborn, A. Severing, and
A. D. Taylor, J. Phys.: Condens. Matter 4, 3459 (1992).

[10] R. Caciuffo, G. H. Lander, J. C. Spirlet, J. M. Fournier, and
W. F. Kuhs, Solid State Commun. 64, 149 (1987).

[11] P. Santini, S. Carretta, G. Amoretti, R. Caciuffo, N. Magnani,
and G. H. Lander, Rev. Mod. Phys. 81, 807 (2009).

[12] E. F. Westrum, Jr., J. B. Hatcher, and D. W. Osborne, J. Chem.
Phys. 21, 419 (1953).

[13] D. W. Osborne and E. F. Westrum, Jr., J. Chem. Phys. 21, 1884
(1953).

[14] P. Santini, S. Carretta, N. Magnani, G. Amoretti,
and R. Caciuffo, Phys. Rev. Lett. 97, 207203
(2006).

[15] N. Magnani, S. Carretta, R. Caciuffo, P. Santini, G. Amoretti, A.
Hiess, J. Rebizant, and G. H. Lander, Phys. Rev. B 78, 104425
(2008).

[16] R. Caciuffo, J. A. Paixão, C. Detlefs, M. J. Longfield, P. Santini,
N. Bernhoeft, J. Rebizant, and G. H. Lander, J. Phys.: Condens.
Matter 15, S2287 (2003).

[17] M.-T. Suzuki, N. Magnani, and P. M. Oppeneer, Phys. Rev. B
82, 241103 (2010).

[18] J. A. Paixão, C. Detlefs, M. J. Longfield, R. Caciuffo, P. Santini,
N. Bernhoeft, J. Rebizant, and G. H. Lander, Phys. Rev. Lett.
89, 187202 (2002).

[19] T. Maehira and T. Hotta, J. Magn. Magn. Mater. 310, 754
(2007).

[20] I. D. Prodan, G. E. Scuseria, and R. L. Martin, Phys. Rev. B 76,
033101 (2007).

[21] B.-T. Wang, H. Shi, W. Li, and P. Zhang, Phys. Rev. B 81,
045119 (2010).

[22] M.-T. Suzuki, N. Magnani, and P. M. Oppeneer, Phys. Rev. B
88, 195146 (2013).

144301-9

http://dx.doi.org/10.1103/RevModPhys.30.236
http://dx.doi.org/10.1103/RevModPhys.30.236
http://dx.doi.org/10.1103/RevModPhys.30.236
http://dx.doi.org/10.1103/RevModPhys.30.236
http://dx.doi.org/10.1139/p65-135
http://dx.doi.org/10.1139/p65-135
http://dx.doi.org/10.1139/p65-135
http://dx.doi.org/10.1139/p65-135
http://dx.doi.org/10.1103/PhysRevLett.110.157401
http://dx.doi.org/10.1103/PhysRevLett.110.157401
http://dx.doi.org/10.1103/PhysRevLett.110.157401
http://dx.doi.org/10.1103/PhysRevLett.110.157401
http://dx.doi.org/10.1103/PhysRevB.89.115132
http://dx.doi.org/10.1103/PhysRevB.89.115132
http://dx.doi.org/10.1103/PhysRevB.89.115132
http://dx.doi.org/10.1103/PhysRevB.89.115132
http://dx.doi.org/10.1103/PhysRevB.71.054405
http://dx.doi.org/10.1103/PhysRevB.71.054405
http://dx.doi.org/10.1103/PhysRevB.71.054405
http://dx.doi.org/10.1103/PhysRevB.71.054405
http://dx.doi.org/10.1103/PhysRevB.59.13892
http://dx.doi.org/10.1103/PhysRevB.59.13892
http://dx.doi.org/10.1103/PhysRevB.59.13892
http://dx.doi.org/10.1103/PhysRevB.59.13892
http://dx.doi.org/10.1103/PhysRevLett.105.167201
http://dx.doi.org/10.1103/PhysRevLett.105.167201
http://dx.doi.org/10.1103/PhysRevLett.105.167201
http://dx.doi.org/10.1103/PhysRevLett.105.167201
http://dx.doi.org/10.1103/PhysRevB.84.104409
http://dx.doi.org/10.1103/PhysRevB.84.104409
http://dx.doi.org/10.1103/PhysRevB.84.104409
http://dx.doi.org/10.1103/PhysRevB.84.104409
http://dx.doi.org/10.1088/0953-8984/4/13/010
http://dx.doi.org/10.1088/0953-8984/4/13/010
http://dx.doi.org/10.1088/0953-8984/4/13/010
http://dx.doi.org/10.1088/0953-8984/4/13/010
http://dx.doi.org/10.1016/0038-1098(87)90540-0
http://dx.doi.org/10.1016/0038-1098(87)90540-0
http://dx.doi.org/10.1016/0038-1098(87)90540-0
http://dx.doi.org/10.1016/0038-1098(87)90540-0
http://dx.doi.org/10.1103/RevModPhys.81.807
http://dx.doi.org/10.1103/RevModPhys.81.807
http://dx.doi.org/10.1103/RevModPhys.81.807
http://dx.doi.org/10.1103/RevModPhys.81.807
http://dx.doi.org/10.1063/1.1698923
http://dx.doi.org/10.1063/1.1698923
http://dx.doi.org/10.1063/1.1698923
http://dx.doi.org/10.1063/1.1698923
http://dx.doi.org/10.1063/1.1698683
http://dx.doi.org/10.1063/1.1698683
http://dx.doi.org/10.1063/1.1698683
http://dx.doi.org/10.1063/1.1698683
http://dx.doi.org/10.1103/PhysRevLett.97.207203
http://dx.doi.org/10.1103/PhysRevLett.97.207203
http://dx.doi.org/10.1103/PhysRevLett.97.207203
http://dx.doi.org/10.1103/PhysRevLett.97.207203
http://dx.doi.org/10.1103/PhysRevB.78.104425
http://dx.doi.org/10.1103/PhysRevB.78.104425
http://dx.doi.org/10.1103/PhysRevB.78.104425
http://dx.doi.org/10.1103/PhysRevB.78.104425
http://dx.doi.org/10.1088/0953-8984/15/28/370
http://dx.doi.org/10.1088/0953-8984/15/28/370
http://dx.doi.org/10.1088/0953-8984/15/28/370
http://dx.doi.org/10.1088/0953-8984/15/28/370
http://dx.doi.org/10.1103/PhysRevB.82.241103
http://dx.doi.org/10.1103/PhysRevB.82.241103
http://dx.doi.org/10.1103/PhysRevB.82.241103
http://dx.doi.org/10.1103/PhysRevB.82.241103
http://dx.doi.org/10.1103/PhysRevLett.89.187202
http://dx.doi.org/10.1103/PhysRevLett.89.187202
http://dx.doi.org/10.1103/PhysRevLett.89.187202
http://dx.doi.org/10.1103/PhysRevLett.89.187202
http://dx.doi.org/10.1016/j.jmmm.2006.10.127
http://dx.doi.org/10.1016/j.jmmm.2006.10.127
http://dx.doi.org/10.1016/j.jmmm.2006.10.127
http://dx.doi.org/10.1016/j.jmmm.2006.10.127
http://dx.doi.org/10.1103/PhysRevB.76.033101
http://dx.doi.org/10.1103/PhysRevB.76.033101
http://dx.doi.org/10.1103/PhysRevB.76.033101
http://dx.doi.org/10.1103/PhysRevB.76.033101
http://dx.doi.org/10.1103/PhysRevB.81.045119
http://dx.doi.org/10.1103/PhysRevB.81.045119
http://dx.doi.org/10.1103/PhysRevB.81.045119
http://dx.doi.org/10.1103/PhysRevB.81.045119
http://dx.doi.org/10.1103/PhysRevB.88.195146
http://dx.doi.org/10.1103/PhysRevB.88.195146
http://dx.doi.org/10.1103/PhysRevB.88.195146
http://dx.doi.org/10.1103/PhysRevB.88.195146


P. MALDONADO et al. PHYSICAL REVIEW B 93, 144301 (2016)

[23] M. Krisch and F. Sette, in Light Scattering in Solids, Novel
Materials and Techniques, edited by M. Cardona and R. Merlin,
Topics in Applied Physics Vol. 108 (Springer-Verlag, Berlin,
2007), pp. 317–369.

[24] M. E. Manley, J. R. Jeffries, A. H. Said, C. A. Marianetti, H.
Cynn, B. M. Leu, and M. A. Wall, Phys. Rev. B 85, 132301
(2012).

[25] A. Togo, L. Chaput, I. Tanaka, and G. Hug, Phys. Rev. B 81,
174301 (2010).

[26] A. Togo, L. Chaput, and I. Tanaka, Phys. Rev. B 91, 094306
(2015).

[27] A. Ben-Israel and T. N. E. Greville, Generalized Inverses,
Theory and Applications (Springer-Verlag, New York, 2003).

[28] L. Chaput, Phys. Rev. Lett. 110, 265506 (2013).
[29] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15

(1996).
[30] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[31] A. Modin, M.-T. Suzuki, J. Vegelius, Y. Yun, D. K. Shuh,

L. Werme, J. Nordgren, P. M. Oppeneer, and S. M. Butorin,
J. Phys.: Condens. Matter 27, 315503 (2015).

[32] S. L. Dudarev, D. N. Manh, and A. P. Sutton, Philos. Mag. B
75, 613 (1997).

[33] Y. Yun, J. Rusz, M.-T. Suzuki, and P. M. Oppeneer, Phys. Rev.
B 83, 075109 (2011).

[34] A. Togo, Phonopy (2009), URL http://phonopy.sourceforge.net/
index.html.

[35] R. M. Pick, M. H. Cohen, and R. M. Martin, Phys. Rev. B 1,
910 (1970).

[36] M. Sanati, R. C. Albers, T. Lookman, and A. Saxena, Phys. Rev.
B 84, 014116 (2011).

[37] B. Dorado, B. Amadon, M. Freyss, and M. Bertolus, Phys. Rev.
B 79, 235125 (2009).
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