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Quadrupole moments in chiral material DyFe3(BO3)4 observed by resonant x-ray diffraction
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By means of circularly polarized x rays at the Dy L3 and Fe K absorption edges, the chiral structure of the
electric quadrupole was investigated for a single crystal of DyFe3(BO3)4, in which both Dy and Fe ions exhibit a
spiral arrangement. The integrated intensity of the resonant x-ray diffraction of space-group forbidden reflections
004 and 005 is interpreted within the electric dipole transitions from Dy 2p 3

2
to 5d and Fe 1s to 4p, respectively.

We have confirmed that the handedness of the crystal observed at Dy L3 and Fe K edges is consistent with that
observed at Dy M5 edge reported in a previous study. The electric quadrupole moments of Dy 5d and Fe 4p

are derived by analyzing the azimuth scans of the diffracted intensity. The temperature profiles of the integrated
intensity of 004 at the Dy L3 and the Fe K edges are similar to those of Dy-O and Fe-O bond lengths, while the
temperature dependence at the Dy M5 edge does not match the bond-length behavior. The results indicate that
the helix chiral orientations of quadrupole moments due to Dy 5d and Fe 4p electrons are more strongly coupled
to the ligands states than Dy 4f electrons.

DOI: 10.1103/PhysRevB.93.144116

I. INTRODUCTION

Chirality is one of the most important concepts over a
wide range of science, including particle physics, cosmology,
biology, pharmacy, condensed matter physics, and industry,
etc. [1,2]. The key issue of chirality, or handedness, is the
breaking of symmetry that plays a crucial role in a variety of
fields. In condensed matter physics, the breaking of symmetry
often gives an excellent arena to manipulate the physical prop-
erties. One prominent example is found in the magnetoelectric
multiferroic materials, where the ferroelectricity appears as a
result of a phase transition which induces a magnetic order with
broken inversion symmetry [3,4]. Many multiferroics have a
cycloidal or a screw spin structure, the handedness of which
determines the sign of the spontaneous electric polarization.
In such a system, the multipole moments demonstrate the sign
of handedness together with the atomic and spin structure.

In this paper, we use the term “multipole order” to express
the order of the electron density rather than the term “orbital
order.” There have been many studies [5,6] where the “orbital
order” of the d-electron states in transition-metal compounds
were observed and discussed. In principle, the orbital order
observed in the d-electron states of transition-metal com-
pounds is another expression of the multipole moment order.
Thus, both expressions (“multipole order” and “orbital order”)
describe the order of the electron density around the ion.
This terminological difference depends on how the degeneracy
of the electronic state is lifted. Energy balance between the
crystal field and the spin-orbit coupling plays a role in lifting
the degeneracy. In the 3d transition-metal compounds, the
crystal field effectively exerts the orbital splitting, which drives
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the orbital order. On the other hand, in the 4f rare-earth
compounds, the spin-orbit coupling is so strong that the
electronic state is described by the total angular momentum J .
The quadrupole order, or the higher multipole order including
the spin state, appears in the ground state of the J multiplets as
a result of the crystal field splitting and other interactions such
as Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction.

The electron density ρ(r) around the ion can be expanded
in terms of the electric multipoles ρ(r) = ∑

l,m ρlm(r)Ym
l (r̂)

with −l � m � l. Thus, we get ρlm(r) = ∫
ρ(r)Ym∗

l (r̂)d r̂.
Here, r̂ is a radial unit vector. The electric multipoles
are directly related to the familiar Cartesian representa-
tion, for example, the dipole moment μi = ∫

ρ(r)ridr, and
the quadrupole moments qij = ∫

ρ(r)(3rirj − δij r
2)dr with

ri, j = x,y,z. Here, μx = 1
2

∫ {ρ1+1(r) + ρ1−1(r)}dr , μy =
− i

2

∫ {ρ1+1(r) − ρ1−1(r)}dr , and μz = ∫
ρ10(r)dr . The mul-

tipole moments, generally written 〈T K
Q 〉, are thus a way to give

an expected value of the spherical tensor T K
Q representing

the electron density. The spherical tensor is related to the
spherical function as T K

Q = Ym
l (r̂), with m = Q and l = K .

Here, K represents the rank of tensor, and Q (−K � Q � K)
its projection. The corresponding spherical harmonics give
their angular dependence. For example, one gets for T 2

±1 and
T 2

±2, respectively, sin ϑ cos ϑe±iϕ and 1
2 sin2 ϑe±2iϕ , where

ϑ and ϕ are the angles in the polar coordinate of the ion
concerned. This representation is quite useful in the symmetry
operation as we discuss in Sec. VI A. For the spherical electron
density, only the K = 0 component is not zero. The atomic p

or d state as well as the f state can be expanded in terms of the
multipole moments. For example, for the atomic wave function
pz = r cos ϑ , only the monopole (or charge) (K,Q) = (0,0)
and quadrupole (K,Q) = (2,0) moments are nonzero within
K � 2.
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In principle, the electric multipole 〈T K
Q 〉 is visible with an

x-ray beam because the electron has the large cross section
for the x-ray beam. In reality, however, observing a motif
of the multipoles in a crystal using x-ray diffraction is not
easy. In the conventional x-ray diffraction, which is used to
observe the crystal structure, the diffraction profile is mainly
derived from the core electrons of the consisting elements in
the matter, where the contribution of the valence electrons is
negligible. Whereas, if a system has, say, an antiferroic type of
the multipole order, where the symmetry of valence electrons
breaks the crystal symmetry, the order can be observed with a
high-intensity x-ray beam from a synchrotron radiation source.
For example, it has been found that the antiferroic quadrupole
order in CeB6 at low temperatures shows tiny superlattice
reflections ( h

2 , k
2 , l

2 ), where h, k, and l are odd numbers [7,8].
Since the discovery of linear dichroism [9] and forbidden re-

flections [10] at an absorption edge, resonant x-ray diffraction
(RXD) has been developed to investigate a variety of ordered
states, such as magnetic, charge, or orbital orders. The atomic
picture of the resonance is well known: an incoming photon
promotes a core electron to empty states, and it returns to the
same core hole, emitting a second photon of the same energy as
the incoming one. The scattering length at an absorption edge,
which is sensitive to the polarization in the primary and sec-
ondary x rays, carries site-specific information on unoccupied
valence states on and around the resonant ion. This sensitivity
provides another useful aspect of RXD as described below.

Circular dichroism in RXD has been found for low
quartz [11,12], which has an enantiomorphic space-group pair
P 3121 (right-handed screw) and P 3221 (left-handed screw). In
crystals having the space-group pair P 3121 and P 3221, reflec-
tions 00l (l �= 3n, n = integer) are forbidden in nonresonant
x-ray diffraction, but allowed in RXD for certain x-ray energies
because of the sensitivity of the atomic scattering length to the
x-ray polarization. By carefully examining the space-group
forbidden reflections observed with circularly polarized x rays,
one can identify the absolute sign of the crystallographic helix
chirality [13,14]. For the ferromagnetic or the ferroelectric
states, we hardly know the state of the valence electrons
by x-ray diffraction because the symmetry of the magnetic
order or the charge order is the same as the crystal symmetry.
However, for the system having the screw axis or the glide
plane, we can scrutinize the ordering state of the multipole
moment, observing the space-group forbidden reflections [15],
even though the symmetry is the same as the crystal symmetry.

Recently, we have successfully shown that RXD using
circularly polarized x rays not only identifies the absolute
sign of the crystallographic helix chirality, but also provides
direct information on the multipole moments accompanying
the crystallographic helix chirality [16]. We have determined
two components among five of the 4f quadrupole moments
of Dy in DyFe3(BO3)4 where the motif of the 4f quadrupole
moment coincides with the crystallographic helix chirality. In
the experiment, we have observed forbidden reflection 001
with circularly polarized soft x-ray beam at Dy M5 absorption
edge, where the x rays enhance the resonance from the 3d 5

2

state to the vacant 4f state. Accordingly, the signal observed
in the diffraction gives the information of the 4f quadrupole
moment of Dy ions.

In this study, we demonstrate that circularly polarized hard
x-ray beam at two absorption edges Dy L3 and Fe K is
also useful to determine the absolute sign of crystal chirality
in DyFe3(BO3)4, quite like the soft x-ray beam at Dy M5

absorption edge. The resonance from Dy 2p 3
2

to 5d at Dy
L3 absorption edge, and that from Fe 1s to 4p at Fe K

absorption edge, give the information of Dy 5d quadrupole
moment and the Fe 4p quadrupole moment, respectively.
We discuss the possibility of the birefringence phenomenon
and the higher-order transition like E1E2 for the observed
data. We also discuss the chirality in terms of the electric Dy
5d quadrupole moment and the Fe 4p quadrupole moment
together with the deformation of the crystal structure as a
function of temperature.

We give a general background of resonant x-ray diffraction
in Sec. II. We describe the crystal structure of DyFe3(BO3)4 as
well as the physical properties in Sec. III and the experimental
geometry in Sec IV. In Sec. V, we show the experimental
results of the resonant diffraction both at Dy L3 and Fe K ab-
sorption edges: x-ray absorption spectra, azimuth angle scans,
and the temperature dependence of the integrated intensity of
forbidden reflection 004. In Sec. VI, we analyze the azimuth
scan data and derive the Dy 5d quadrupole moment and the
Fe 4p quadrupole moment with theoretical interpretations. In
addition, we discuss the temperature dependence in terms of
the deformation of DyO6 trigonal prism and FeO6 octahedron.

II. RESONANT X-RAY DIFFRACTION

The determination of the absolute structure of enantiomers,
which are exact mirror images of each other, is not easy
because they have the same chemical formula and atom to atom
arrangements, and hence it has been considered as an important
challenge of crystallography. Among many methods applied
for the determination so far, x-ray diffraction with dispersion
corrections has played an important role for a long time.

The scattering length of x rays for an atom can be written
as

f = f0 + f ′ + if ′′, (1)

where f0 is the energy-independent x-ray scattering length and
corresponds to the Fourier transform of the electron density
around the atom, f ′ and f ′′ are the real and the imaginary parts,
respectively, of the dispersion correction. Note that the sign
of f ′′, which is positive in conventional x-ray diffraction, is
negative in our convention with the phase factor ei(K·r−ωt) with
the momentum transfer K from the x rays to the crystal. Since
the absolute configuration of the enantiomorphic compounds
was determined for tartaric acid [17] using the dispersion
correction, this method has developed significantly with the
advent of the synchrotron radiation source. It is now known as
multiwavelength anomalous diffraction (MAD) [18,19], and
has developed extensively to study the absolute configurations
of biochemical compounds. The method requires measure-
ments of the diffraction pattern at several energies around the
K or L absorption edges of the resonantly scattering elements.

It is well established that one can observe space-group
forbidden reflections at the resonant energy in the vicinity of
the absorption edge, where the scattering length is sensitive
to the polarization of the primary and secondary x rays.
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Some forbidden Bragg reflections become allowed, when
the equivalency of the local atomic configuration around the
resonant scatterer in a unit cell is broken by the screw axis,
the glide plane, or the magnetic structure. Pioneering works
have been done for the crystallographic study by Templeton
et al. [10] and for the magnetic structural study by Gibbs
et al. [20]. We use the circularly polarized x rays in the
resonant x-ray diffraction to identify the handedness of the
chiral structure. This method requires measurements of a
single forbidden reflection in contrast to MAD.

The dispersion correction terms in the vicinity of the
absorption edge are written as

f ′ + if ′′ = m
∑
n,g

(
�

�

)2 〈g|ô∗
s |n〉〈n|ôi |g〉

�ω − � + i�/2
, (2)

where g and n label the ground and intermediate states,
respectively. The difference energy � = En − Eg , where Eg

and En are their corresponding energies, and |g〉 and |n〉 are
their wave functions. The electron mass is denoted by m, �ω

is the photon energy, � is a phenomenological broadening
depending on the excited electron kinetic energy and the
core-hole width, and i and s label the incoming and scattered
waves. The transition operator, dominated by its electric part
and taken to second order, is given by

ô = (ε · r)
{

1 + i

2
(k · r)

}
. (3)

The first term in the equation gives the electric dipole or E1
transition and the second one gives the electric quadrupole or
E2 transition. The compound DyFe3(BO3)4 belongs to one
of the enantiomorphic space-group pair P 3121 and P 3221 in
the low-temperature phase, where the inversion symmetry is
broken, hence, the E1E2 term in Eq. (2) is allowed for the
forbidden reflections. However, the contribution is possibly
negligible as is discussed later.

III. STRUCTURE OF DyFe3(BO3)4

The compound DyFe3(BO3)4 consists of DyO6 trigonal
prisms with a Dy3+ ion in the center, FeO6 octahedra with a
Fe3+ ion in the center, and BO3 triangles with a B3+ ion in the
center [21]. It belongs to trigonal space group R32 (No. 155)
at room temperature. The structure has an alternative stacking
of BO3 network planes and Dy plus Fe planes along the c axis.
Space group R32 belongs to one of the 65 enantiomorphic
space groups, and includes the right-handed screws 31 or
left-handed screws 32 inside so that the crystal can have two
choices for the atomic configuration. Indeed, the chain of the
FeO6 octahedra can form, in two ways, a right-handed or a
left-handed screw along the c axis in R32. These two atomic
configurations, which are mirror images of each other, coexist
in a single crystal with large chiral domains [16].

This compound has a first-order structural phase transition
at TS ≈ 285 K [22,23], where the right- and left-handed
structures in the space group R32 transform into the space
groups P 3121 (No. 152) and P 3221 (No. 154), respectively, on
decreasing temperature. In these enantiomorphic space-group
pair P 3121 and P 3221, the stacking chain of the Dy3+ ions
forms in a right-handed or a left-handed screw along the c

DyO6

Fe(1)O6
Fe(2)O6

FIG. 1. A view of the atomic configuration of the left-handed
DyFe3(BO3)4 in space group P 3221 (No. 154). The FeO6 octahedra
and the DyO6 trigonal prisms are colored by brown and blue,
respectively. The Fe(1) ions are at the 3a site, and the Fe(2) are
at the 6c site. The unit cell is shown by gray lines. Yellow and gray
helices represent spiral arrangements of Dy and Fe ions, respectively.

axis, respectively. Figure 1 displays the atomic structure of the
left-handed DyFe3(BO3)4 in space group P 3221. Note that the
handedness of the chain of Fe3+ ions in the high-temperature
R32 phase (T > TS) is transferred to that of the screw chain
of the Dy3+ ions in the low-temperature phase (T < TS). In
the low temperatures, this compound has an additional phase
transition at TN = 38 K where both of Fe and Dy magnetic
moments show an antiferromagnetic (AF) order [22]. In the
AF ordered phase, DyFe3(BO3)4 exhibits a magnetoelectric
effect accompanied by a spin flop [24].

IV. EXPERIMENT

The experiment was carried out at the beam line 29XUL
at SPring-8 in Harima, Japan. A subsidiary experiment was
carried out at the beam line 3A at the Photon Factory in
Tsukuba, Japan. A platelike single crystal of DyFe3(BO3)4

was mounted on a copper holder in a liquid He flow-
type cryostat on a four-circle diffractometer. The hand-
edness of this crystal has been found to be left-handed,
space group P 3221 (No. 154) in the previous experi-
ment [16]. The sample size was about 2 mm × 2 mm ×
0.5 mm. The size of the incident beam was 0.5 mm × 0.5 mm.
A scintillation detector was used to observe the diffracted
beam. The intensity of the incident beam was monitored by
an ionization chamber. The incident energy was tuned by a
Si (111) double-crystal monochromator followed by a pair
of Si mirrors coated by rhodium in order to cut the higher
harmonic x rays at the beam line 29XUL. The helicity of
the circularly polarized x-ray beam was manipulated by a
diamond phase retarder of 0.6 mm in thickness. We employed
the 220 reflection of the diamond with its surface being
parallel to (111). In the experiment at PF, we used only a
σ linearly polarized x-ray beam. We measured the intensity
of space-group forbidden reflections 004 and 005 at two
absorption edges Dy L3 at E = 7.796 keV and Fe K at
E = 7.13 keV in a temperature range from T = 30 to 305 K.

Our diffraction geometry is illustrated in Fig. 2. The
azimuth angle 	 is a rotation of the sample about the
scattering vector K = ki − kf . The vectors ki and kf are the
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a*

b*

c*

FIG. 2. A schematic view of the diffraction geometry with a right-
handed coordinates x, y, and z. The scattering vector K = ki − kf is
antiparallel to the x axis. The marks (+) and (−) denote the positive
and negative helicities of the incident beam, respectively. Here, ki

and kf are the propagation vectors of the incident and diffracted
x rays, respectively, and θ denotes the Bragg angle. The σ and π

components are the unit vectors which represent the polarization of
the incident beam. Here, the σ component is perpendicular to the
plane of scattering σ = (0,0,1), and the π component is parallel to
the plane of scattering π = (cos θ, sin θ, 0). For the diffracted beam,
σ ′ = σ and π ′ = (cos θ, − sin θ, 0).

propagation vectors for the incident beam and the diffracted
beam, respectively. We define the origin of the azimuth angle
	 = 0 with respect to the direction of the reciprocal lattice
vector a∗ when it is parallel to the −y axis, or a∗‖ − (ki + kf ),
and the positive direction of 	 to be the counterclockwise
rotation as viewed looking up along the scattering vector K.
The polarization of the incident x-ray beam is defined by the
unit vectors σ and π .

The average polarization state is expressed with the Stokes
parameters P1, P2, and P3 where P3 = +1 and P3 = −1
correspond to the linear polarization parallel to the unit vectors
σ and π , respectively, P2 = +1 and P2 = −1 correspond
to the circular polarization, represented by 1√

2
(σ + iπ ) and

− 1√
2
(σ − iπ ), respectively, P1 = +1 and P1 = −1 corre-

spond to the linear polarization along the diagonal directions
between σ and π , represented by 1√

2
(σ + π ) and 1√

2
(σ − π),

respectively. For the circularly polarized P2 = +1 (−1) state,
the π (σ ) component lags the σ (π) by 90◦ according to the
phase factor exp i(k · r − ωt). Here, unit vectors σ , π , and
k̂i = ki/|ki | satisfy the right-handed rule σ × π = k̂i . The
polarization of the beam from the synchrotron radiation source
is usually well defined and the relation P 2

1 + P 2
2 + P 2

3
∼= 1

holds well.
Resonant x-ray diffraction of space-group forbidden reflec-

tions depends on the geometry of the scattering system as well
as the energy of the x-ray beam. This is because it depends
on the polarization state of the x-ray beam as described by
Eq. (3), and the unit-cell structure factor is described by a
tensor of the atomic multipoles. Hence, the azimuth angle 	

scan gives important information not only about the symmetry
of the local structure of the resonant ions, but also about the
components of the atomic multipoles.

V. RESULTS

A. X-ray absorption spectra

The x-ray absorption spectrum (XAS) and the energy
dependence of the space-group allowed reflection 003 in the
vicinity of Dy L3 and Fe K absorption edges are shown

004

FIG. 3. Energy spectra of the x-ray absorption, the intensity of
reflection 003, and that of forbidden reflection 004 around the Dy L3

absorption edge. The data were observed at the beam line 3A in PF
with the σ -polarized incident beam. Upper panel: the x-ray absorption
spectrum obtained in the total fluorescence mode is shown by red
circles and the intensity of reflection 003 is shown by blue triangles.
The absorption effect is not corrected. The white line (the maximum
absorption) is shown by a black arrow. Lower panel: the intensity of
reflection 004 as a function of the x-ray energy was observed for the
azimuth angle 	 which was scanned in a range from 131.5◦ to 133.4◦

by every 0.1◦ step at T = 200 K. The resonant effect underlying in
the intensity of reflection 004 is shaded around E = 7.796 keV.

in the top panels of Figs. 3 and 4, respectively. The XAS
were observed by measuring the total fluorescence yield. The
maximum absorption, the so-called white line, of the Dy L3

edge and that of the Fe K edge was found to be at E = 7.794
and 7.125 keV, respectively, while the minimum intensity of
reflection 003 around the Dy L3 edge and around the Fe K

edge was found at E = 7.788 and at 7.120 keV, respectively.
We have successfully observed space-group forbidden

reflections 004 and 005 in the vicinity of both absorption
edges. The intensity of these forbidden reflections is about
an order of 10−4 to that of space-group allowed reflection
003. The resonant effect for the forbidden reflections is not
easily specified by comparing the energy spectrum of reflection
003 with the XAS spectra, for both absorption edges. In
order to observe the underlying resonant effect precisely,
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FIG. 4. Energy spectra of the x-ray absorption, reflection 003,
and forbidden reflection 004 around the Fe K absorption edge. The
data were observed at the beam line 29XUL in SPring-8 with the π -
polarized incident beam. Upper panel: the x-ray absorption spectrum
obtained in the total fluorescence mode is shown by red circles and the
intensity of reflection 003 is shown by blue triangles. The absorption
effect is not corrected. The white line (the maximum absorption) is
shown by a black arrow. Lower panel: the intensity of reflection 004
as a function of the x-ray energy was observed for azimuth angles
	 = −100◦, − 105◦, − 110◦, − 114◦, − 115◦, and −126◦ at T =
50 K. The resonant effect underlying in the intensity of reflection 004
is shaded around E = 7.13 keV.

we performed energy scans for forbidden reflection 004 at
several azimuth angles 	 in a small range. The bottom
panels of Figs. 3 and 4 show energy spectra of the intensity
of reflection 004 around the Dy L3 and the Fe K edges,
respectively. As observed, reflection 004 is accompanied by
strong multiple scattering effect or Umweganregung effect
which adds apparently random bumpy structure to the spectra,
which varies with the azimuth angle as well as the x-ray
energy [25,26]. The underlying resonant enhancement is
present under the intensity curves of reflection 004, which
are bumpy due to the multiple scattering effect. The same
method was used for deducing the Te L1 resonant enhancement
previously [13]. The enhancement for both absorption edges,
observed as a single peak around E = 7.796 keV for the Dy

L3 edge and three peaks around E = 7.13 keV for the Fe K

edge, is shown by the shaded areas in the bottom panels of
Figs. 3 and 4, respectively. The feature of three peaks around
Fe K absorption edge has been reported in the literature, for
example, FeS2 [27]. We employed E = 7.796 keV for the Dy
L3 absorption edge and E = 7.13 keV for the Fe K absorption
edge in the following experiments.

B. Azimuth angle scans

We have performed azimuth angle scans for forbidden
reflections 004 and 005 at E = 7.796 keV for the Dy L3

absorption edge and E = 7.13 keV for the Fe K absorption
edge with the positive and negative circularly polarized x-ray
beams. We observed rocking curves at each fixed azimuth
angle 	. The integrated intensity was numerically integrated,
and a linear background due to the fluorescence was subtracted.
Typical rocking curves are displayed in the insets of Figs. 5
and 6. The state of the x-ray polarization was manipulated
by the diamond phase retarder for both absorption edges; the
Stokes parameters are summarized in Table I. The values are
given from the deviation angle in θ for Bragg reflection 220 of
the diamond retarder. Here, (+) and (−) represent the helicity
positive (P2 > 0) and the helicity negative (P2 < 0) states for
the circularly polarized x-ray beam, respectively. Hereafter, we
use symbols (+) and (−) for the positive and negative x-ray
helicities, respectively. Because of an accidental inaccuracy for
positioning the diamond phase retarder, we found that the P3,
the linear polarization, had unintended non-negligible values
for both the positive and the negative circularly polarized
x rays, while the P1, the diagonal linear polarization, had
negligible values. Accordingly, the values of P2 are not exactly
the same for both (+) and (−) states. This small deviation in
P2, however, does not matter for the following analysis for the
quadrupole moment as we show later.

Figures 5 and 6 show the integrated intensity of reflections
004 and 005 for the (+) and (−) states and their difference
intensity between two helicity states (−) − (+) at Dy L3

(E = 7.796 keV) absorption edge and at Fe K (E = 7.13 keV)
absorption edge, respectively. All the data were measured at
T = 100 K. The data are corrected with the experimental
Lorentz factor. The absorption correction is not necessary
because the incoming and outgoing beams have the same
angle to the sample surface for both reflections. The range
of azimuth angle 	 for all scans is from −120◦ to 90◦. The
bumpy structure of azimuth scan curves is due to the multiple
scattering effect as described in Sec. V A. The effect appears as
a pair of data points for (+) and (−) circularly polarized states
at the same 	 point. Therefore, taking the difference between
the two helicity states eliminates the multiple scattering effect
and gives rather smooth azimuth curves for both reflections
004 and 005, and at both Dy L3 and Fe K absorption
edges. However, the subtraction cannot cancel out the multiple
scattering effect completely because the degree of the linear
polarization is different for the two circularly polarized states,
as described in Table I.

We find that these azimuth functions have a 120◦ periodicity
according to the trigonal crystal symmetry. Further, the
intensity for the (−) helicity is higher than that for the (+)
helicity for reflection 004 for both absorption edges, and
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−

θ 

Ψ
+
−

−
+

Ψ

− −
− −

FIG. 5. The integrated intensity of forbidden reflections 004 (top
panel) and 005 (middle panel) observed at the Dy L3 absorption
edge (E = 7.796 keV) and T = 100 K as a function of 	. The inset
of the top panel shows rocking curves observed at 	 = 0 for (+)
and (−) helicity of the incident beam. Red squares (triangles) show
the integrated intensity measured by the incident beam with the (+)
helicity for reflection 004 (005) and blue squares (triangles) show that
measured by the incident beam with the (−) helicity for reflection
004 (005). The bottom panel shows the difference intensity (−) − (+)
between the two helicity states. The cosine curves are results of fit
to the data with Eq. (14) for the top and middle panels, and fit to the
data with Eq. (18) for the bottom panel. The points colored faintly are
strongly influenced by the multiple scattering effect, and are removed
for the fitting. The dashed lines in the bottom panel are given from
the result of the least-squares method described in the text.

this relation is reversed for reflection 005. This fact exactly
indicates that the sample used in this study belongs to the
left-handed space group P 3221, as we confirm theoretically
later. This handedness, of course, is in accord with our earlier
study of soft x-ray diffraction at Dy M5 absorption edge [16].

−

θ 

+
−

Ψ

Ψ

− −
− −

−

FIG. 6. The integrated intensity of forbidden reflections 004 (top
panel) and 005 (middle panel) observed at the Fe K absorption edge
(E = 7.13 keV) and temperature T = 100 K as a function of 	. The
inset of the top panel shows rocking curves observed at 	 = 0 for (+)
and (−) helicity of the incident beam. Red squares (triangles) show
the integrated intensity measured by the incident beam with the (+)
helicity for reflection 004 (005) and blue squares (triangles) show that
measured by the incident beam with the (−) helicity for reflection
004 (005). The bottom panel shows the difference intensity (−) − (+)
between the two helicity states. The cosine curves are results of fit
to the data with Eq. (14) for the top and middle panels, and fit to the
data with Eq. (18) for the bottom panel. The points colored faintly are
strongly influenced by the multiple scattering effect, and are removed
for the fitting.

C. Temperature dependence

We analyzed the integrated intensity of forbidden reflection
004 observed at Dy L3 and Fe K edges as a function
of temperature. Figure 7 shows the integrated intensity of
reflection 004 together with that of reflection 001 previously

144116-6



QUADRUPOLE MOMENTS IN CHIRAL MATERIAL DyFe . . . PHYSICAL REVIEW B 93, 144116 (2016)

TABLE I. The values of experimental Stokes parameters for two
circularly polarized states (+) and (−) at Dy L3 (E = 7.796 keV)
and Fe K (E = 7.13 keV) absorption edges, together with the angle
of the diamond crystal θ220 for each polarization state.

θ220 (degree) P1 P2 P3

Dy L3 7.796 keV (+) 39.111 −0.0152 +0.978 −0.114
(−) 39.073 +0.0139 −0.967 −0.203

Fe K 7.130 keV (+) 43.612 −0.0195 +0.990 −0.023
(−) 43.561 +0.0182 −0.986 −0.110

observed at Dy M5 edge with a soft x-ray beam [16]. We
measured the intensity at several azimuth angles, where the
multiple scattering effect was expected to be negligible. The
data shown here are observed at one fixed azimuth angle. We
find that the temperature evolution of the integrated intensities
of reflection 004 observed both at Dy L3 and Fe K edges
is quite different from that of reflection 001 observed at Dy
M5 edge. They show a rather monotonous increase on cooling
after the jump just below the TS while that of reflection 001
observed at Dy M5 edge shows a steep increase towards
lower temperatures. We discuss this feature comparing with
the deformation of DyO6 trigonal prism and FeO6 octahedron
in the next section.

FIG. 7. The temperature dependence of the integrated intensity of
ω scans for reflection 004. Top: the integrated intensity of reflection
004 observed at Dy L3 absorption edge (circles) and Fe K absorption
edge (triangles), and that for reflection 001 observed at Dy M5

absorption edge (open circles) [16]. The integrated intensity of
reflection 001 is multiplied by a factor to compare with the others.
Bottom: the square root of the integrated intensity of reflection 004
observed at Dy L3 absorption edge (circles) and Fe K absorption edge
(triangles) together with the bond length of Dy-O(4) (diamonds) and
the bond length of Fe(2)-O(21) (squares) [16].

VI. DISCUSSION AND ANALYSIS

A. Dy 5d and Fe 4 p quadrupole moments in the azimuth scans

The intensity I of the resonant diffraction is generally given
with the Stokes parameters [28]

I = 1
2 (1 + P3)(|Gσ ′σ |2 + |Gπ ′σ |2)

+ 1
2 (1 − P3)(|Gπ ′π |2 + |Gσ ′π |2)

+P2Im(G∗
σ ′πGσ ′σ + G∗

π ′πGπ ′σ )

+P1Re(G∗
σ ′πGσ ′σ + G∗

π ′πGπ ′σ ). (4)

Here, Gα′β is the total resonant scattering amplitude, and α′ and
β are the polarization states of the diffracted and incident x-ray
beam, respectively. The third term including P2 represents the
interference between σ and π components in the resonant
scattering process for the circularly polarized x rays. It plays a
crucial role for determination of the chirality by changing the
sign coupling with the helicity of the x-ray beam.

We use the atomic multipoles 〈T K
Q 〉, the expectation value

of the spherical tensor, to express the scattering amplitude
Gα′β as described in Ref. [28]. This method is very useful for
discussing the components of the multipole moment ordered
in materials. The total scattering amplitude is composed of
possible resonant events

Gα′β =
∑

k

r (k)
F

(k)
α′β

�ω − � + i
2�

=
∑

k

d (k)(E)F (k)
α′β, (5)

where k represents individual resonant events like E1E1,
E1E2, etc., �, �, and r (k) represent the resonant energy,
its width, and the mixing parameter, respectively, and the
scattering length Fα′β is

Fα′β =
∑
K

X
(K)
α′β D(K)	(K). (6)

Here, 	(K) represents the unit-cell structure-factor tensor of
rank K which is the sum of atomic multipoles related to the
resonant process, and X

(K)
α′β describes the conditions of the

incident and the diffracted beams. Orientation of the crystal,
with respect to states of polarization and the plane of scattering,
is accomplished by a rotation matrix D(K). Note that the atomic
scattering length expressed by Eq. (2) is summed up in the
unit-cell structure factor 	(K) including the geometric factor
X

(K)
α′β D(K), and that the tensorial character is linked with the

x-ray polarization.
As far as the Dy 4f and 5d quadrupole moments are

concerned, the structure factor for the enantiomorphic space-
group pair P 3121 (No. 152) and P 3221 (No. 154) described
in Ref. [12] is applicable to DyFe3(BO3)4 because the Dy site
is at the special position 3a (multiplicity 3 and Wyckoff letter
a), which is the same as the Si site in low quartz. For the
space groups No. 152 and No. 154, Dy ions locate at (x, 0,
± 1

3 ), (0, x, ∓ 1
3 ), and (−x, −x, 0) in a unit cell. Here, the

upper and lower signs represent the space groups No 152 and
No. 154, respectively. The unit-cell structure factor is the sum
of the atomic multipoles, each of which is defined at each
Dy ion. First, we define the atomic multipole 〈T K

Q 〉 at the
ion (−x, −x, 0), which is common for both space groups,
with a right-handed Cartesian axis (ξηζ ). Here, the ζ axis
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is parallel to the c axis, and the ξ axis parallel to the [1, 1,
0] axis, which encloses an angle of 30◦ with the reciprocal
a∗ axis. The atomic multipoles of the other Dy ions at (x,
0, ± 1

3 ) and (0, x, ∓ 1
3 ) are given as 〈T K

Q 〉 exp(2πiQ/3) and
〈T K

Q 〉 exp(−2πiQ/3), respectively, with a rotation along the ζ

axis by +120◦ and −120◦, respectively. The unit-cell structure
factor for reflection 00l is

	K
Q = 〈

T K
Q

〉{1 + e2πiQ/3e2πi(±l/3) + e−2πiQ/3e2πi(∓l/3)}. (7)

Here, we find the selection rule for reflection 00l that l + Q =
3n for space group P 3121 and l − Q = 3n for space group
P 3221, where n is an integer. The handedness emerges as the
sign of Q.

The most probable resonant process at the Dy at L3

absorption edge is the E1E1 event, the resonance between 2p 3
2

and 5d. As we discuss later, the asymmetric process E1E2 is
negligible. The atomic multipole related to the E1E1 event is
〈T K

Q 〉 with rank K = 2, in other words, the quadrupole. There
are five independent components for the quadrupole moment
with relations 〈T 2

+1〉′ = −〈T 2
−1〉′, 〈T 2

+1〉′′ = 〈T 2
−1〉′′, 〈T 2

+2〉′ =
〈T 2

−2〉′, and 〈T 2
+2〉′′ = −〈T 2

−2〉′′. Note that the atomic multipole
〈T K

Q 〉 is a complex number defined as 〈T K
Q 〉 = 〈T K

Q 〉′ + i〈T K
Q 〉′′

with 〈T K
Q 〉∗ = (−1)Q〈T K

−Q〉. The five independent components

are real numbers: 〈T 2
0 〉′, 〈T 2

+1〉′, 〈T 2
+1〉′′, 〈T 2

+2〉′, and 〈T 2
+2〉′′,

each of which corresponds to 3ζ 2 − r2, ζ ξ , ηζ , ξ 2 − η2, and ξη

components, respectively. Among the five components, 〈T 2
+1〉′,

and 〈T 2
+2〉′′ are zero for the Dy ions because the site a is on the

twofold axis which gives the relation 〈T K
Q 〉 = (−1)K〈T K

−Q〉.
The selection rule l ± Q = 3n for space-group forbidden
reflections 00l (l �= 3n) excludes the 〈T 2

0 〉′ component. There-
fore, as far as E1E1 process is concerned at Dy L3 edge, the
intensity of space-group forbidden reflections is described by
only two components 〈T 2

+2〉′, and 〈T 2
+1〉′′. Note that the mirror

operation between enantiomorphic space-group pair No. 152
and No. 154 gives

〈
T 2

+1

〉′′
No. 152 = −〈

T 2
+1

〉′′
No. 154, (8)

〈
T 2

+2

〉′
No. 152 = 〈

T 2
+2

〉′
No. 154. (9)

Equation (9) shows that the component on the basal plane
is common for both of the enantiomorphic space-group pair,
while Eq. (8) shows that the component on the ηζ plane has
the opposite sign to each other. The four amplitudes [12] for
space-group forbidden reflections 00l, l = 3n + μ (μ = ±1)
for the parity-even event E1E1 at Dy L3 absorption edge, are

Gσ ′σ = 3
2

〈
T 2

+2

〉′
eiφa , (10)

Gπ ′π = 3
2

〈
T 2

+2

〉′
eiφa sin2 θ, (11)

Gπ ′σ = 3
2 iλ

{〈
T 2

+2

〉′
eiφa sin θ + 〈

T 2
+1

〉′′
eiφb cos θe3iλ	

}
, (12)

Gσ ′π = 3
2 iλ

{ − 〈
T 2

+2

〉′
eiφa sin θ + 〈

T 2
+1

〉′′
eiφb cos θe3iλ	

}
.

(13)

Here, Bragg angle θ and the azimuth angle 	 are shown and
defined in Fig. 2. The phase factors eiφa and eiφb emerge from

Eq. (5), and depend on the x-ray energy differently to each
other [29,30]. Here, we introduce two parameters ν = ±1
and λ = ±1. The parameter ν denotes the crystal handedness,
namely, ν = +1 for the right-handed space group No. 152,
and ν = −1 for the left-handed space group No. 154, and the
parameter λ denotes the product of μ and ν, λ = μν. Note
that the rotating direction of 	 is opposite to that defined in
Ref. [12].

The intensity I for the E1E1 event at Dy L3 absorption
edge is

I = I0 + I1 cos 3(λ	 + φ), (14)

I0 = 1
2

{
(1 + sin2 θ )2T 2

a + 2 cos2 θ T 2
b + P3(1 + sin2 θ )

× cos2 θ T 2
a

} + λP2 sin θ
(
1 + sin2 θ

)
T 2

a , (15)

I1 = (
2P3 sin θ cos θ − λP2 cos3 θ

)
TaTb. (16)

Here, we define the parameters φ = 1
3 (φb − φa), Ta =

3
2 〈T 2

+2〉′, Tb = 3
2 〈T 2

+1〉′′, and we presume P1 = 0 for simplicity.
Equations (14)–(16) are the same as those of Ref. [12] in the
E1E1 transition except for the presence of the shift φ in 	. The
intensity is a threefold periodic function of the azimuthal angle
	. The circular polarization P2 is multiplied by λ, indicating
that reversing the crystal chirality ν together with reversing
the sign of circular polarization does not change the intensity.
Only the shift φ in 	 changes its sign with λ according to
Eq. (14). The relation of Eq. (8) is absorbed in Tb itself in
Eq. (16). By extracting it, we find

I1 = (2νP3 sin θ cos θ − μP2 cos3 θ )TaTb, (17)

with Tb = Tb(No. 152) = −Tb(No. 154). Equation (17) gives rela-
tions (i) I1(+ν, ± P2) = −I1(−ν, ∓ P2) for the same reflec-
tion index, (ii) when P3 = 0, I1(+ν, ± P2) = I1(−ν, ± P2)
for the same reflection index, and (iii) when P3 = 0, I1 for
reflection indices μ = +1 and μ = −1 has the opposite sign
to each other for the same values of ν and P2. The previous
observations for DyFe3(BO3)4 and low quartz [11,16,29]
support the relation (i), and also suggest the relation (ii) for
the small value of P3. The relation (iii) has been confirmed in
the data sets of Te and AlPO4 [13,14]. The difference intensity
between two helicity states (P2 = −1 and +1) is

I (−) − I (+) = A + B cos 3(λ	 + φ), (18)

with A = −2λ sin θ (1 + sin2 θ )T 2
a and B = 2μ cos3 θ TaTb.

Note that there are only two quadrupole components Ta and
Tb for the intensity at Dy L3 absorption edge.

Analyzing the Fe 4p quadrupole moments observed at the
Fe K absorption edge is more complicated because there are
nine ions in a unit cell: three of them, Fe(1), are at the special
position 3a (multiplicity 3, Wyckoff letter a) and the other six,
Fe(2), are at the general position 6c (multiplicity 6, Wyckoff
letter c) in the low-T phase. For 00l reflection, six independent
4p quadrupole components contribute in total: they are two
quadrupole components of three Fe(1) ions,

Q
(1)
ξ 2−η2 = 〈

T 2
+2

〉′(1)
eip1 ,

Q
(1)
ηζ = 〈

T 2
+1

〉′′(1)
eiq1 ,
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and four quadrupole components of six Fe(2) ions,

Q
(2)
ξ 2−η2 = 〈

T 2
+2

〉′(2)
eip2 ,

Q
(2)
ξη = 〈

T 2
+2

〉′′(2)
eiq2 ,

Q
(2)
ηζ = 〈

T 2
+1

〉′′(2)
eir2 ,

Q
(2)
ζ ξ = 〈

T 2
+1

〉′(2)
eis2 .

The components are defined with the local coordinate (ξηζ ) in
the same way as Dy components. Each component is a complex
number and has an independent phase factor according to
Eq. (5). When P1 = 0, we obtain the intensity of forbidden
reflection 00l at Fe K edge

I = I0 + I1 cos 3(λ	 + φ), (19)

I0 = 1
2

{
(1 + sin2 θ )2T 2

α + 2 cos2 θ T 2
β + P3(1 + sin2 θ )

× cos2 θ T 2
α

} + λP2 sin θ (1 + sin2 θ )T 2
α , (20)

I1 = (2νP3 sin θ cos θ − μP2 cos3 θ )TαTβ, (21)

with

Tαeiφα = 3

{
(−1)l

2
Q

(1)
ξ 2−η2 + cos ρ Q

(2)
ξ 2−η2 − μ sin ρ Q

(2)
ξη

}
,

(22a)

Tβeiφβ = 3

{
(−1)l

2
Q

(1)
ηζ + cos ρ Q

(2)
ηζ + μ sin ρ Q

(2)
ζ ξ

}
.

(22b)

Here, φ = 1
3 (φβ − φα) and ρ = 2πl( 1

6 − δ). We define δ as
0.323 33 = 1/3 − δ, and δ = 0.010 003 for one of the Fe(2)
ions, which is located at (0.549 06, 0.335 907, 0.323 33) in a
unit cell. Note that the parameters Tα and Tβ are real numbers.
As we see, Eqs. (20) and (21) have the same form as Eqs. (15)
and (17), respectively, and are obtained by replacing Ta and
Tb with Tα and Tβ . Therefore, we employ the same functions
to analyze the azimuth-angle-scan data sets for Dy L3 and Fe
K absorption edges.

We fit the data sets of the azimuth angle scans shown in
Figs. 5 and 6 for the integrated intensity of two helicity states
(P2 < 0 and P2 > 0) with Eq. (14), and for difference intensity
I (−) − I (+) with Eq. (18), together with the origin shift φ

in 	. In practice, the fitting was carried out with selected
data points to make a cosine envelope curve for each data
set, otherwise, the multiple scattering prevents us from fitting
properly. The multiple scattering generally raises the intensity
steeply. However, an envelope shape is visible by connecting
the minimum intensity points, which seem to be less affected
by the multiple scattering, for each azimuth-angle-scan profile.
We exclude pairs of data points, when both of them have clearly
higher intensities compared to the envelope lines, for the (+)
and (−) helicity states at the same 	 points. Looking at the data
carefully, we find that at some 	 points, only one out of the
pair seems to deviate from the envelope lines. The reason is not
clear, but we believe that the effect of the multiple scattering is
quite sensitive to the measurement condition simply because
the intensity of the multiple scattering is extremely high
compared to the forbidden reflections. Such a deviation might
be due to the difference of the degree of the linear polarization
for the two circularly polarized states as described in Table I
or an unknown error in the measurement. We exclude those
data points, even when one out of the pair deviates from the
envelope lines, for the analysis of the subtraction data sets.
Moreover, we find that some data points fall below the envelope
lines for reflection 005 in both Figs. 5 and 6. As reported in
the literature, for example Ref. [27], the interference between
the resonant scattering and the multiple scattering makes an
asymmetric feature for the 	 profile, and lowers the intensity
within a very small region of 	 in the vicinity of the multiple
scattering. We also exclude the points whose intensity seems
to be coincidently lowered by the interference effect described
above. Some arbitrariness is inevitable for this selection,
however, each curve shown in Figs. 5 and 6 traces the envelope
shape in each data set very well. The results of the fits are
summarized in Table. II. The points colored faintly in both
figures have been removed for the fitting.

We find that parameter A is positive for reflection 004 and
is negative for reflection 005 at Dy L3 absorption edge, which
indicates that ν = −1, i.e., the sample we observed belongs to
the left-handed space group No. 154. This is consistent with
the previous observation at the Dy M5 edge [16]. Likewise, the
parameter A for the data observed at the Fe K edge is positive
and the same discussion is applicable to the handedness
of the Fe structure in this sample. Of course, the handedness of
the Dy structure and the Fe structure is coincident in the same
space group. Moreover, we find that the relation (iii) for I1 in
Eq. (17) is confirmed between reflections 004 and 005 at both

TABLE II. The values of the parameters as results of fit to the data sets of the azimuth angle scans for reflections 004 and 005 shown in
Figs. 5 and 6. Two helicity states (P2 < 0 and P2 > 0) are represented by (−) and (+), respectively. The data sets are fit by Eqs. (14) with
parameters I0, I1, and φ and the subtracted data I (−) − I (+) are fit by Eq. (18) with parameters A, B, and φ.

Dy L3 edge Fe K edge

Helicity (P2) I0(A) I1(B) φ I0(A) I1(B) φ

004 (−) 211.2 ± 4.2 −90.1 ± 5.6 39.1 ± 1.3 131.3 ± 1.4 −14.7 ± 1.9 −33.7 ± 2.8
(+) 90.9 ± 3.7 53.9 ± 5.0 37.8 ± 1.9 21.2 ± 0.5 13.7 ± 0.8 −32.9 ± 1.2

(−) − (+) 120.3 ± 3.3 −143.9 ± 3.8 38.6 ± 0.6 109.1 ± 1.5 −26.5 ± 1.9 −33.7 ± 1.7
005 (−) 68.2 ± 2.3 27.1 ± 3.3 40.1 ± 2.4 114.0 ± 1.5 67.7 ± 2.2 10.2 ± 0.6

(+) 262.3 ± 5.2 −65.2 ± 6.8 37.9 ± 2.2 315.4 ± 4.9 −59.4 ± 6.9 0.6 ± 2.2
(−) − (+) −187.1 ± 3.8 91.6 ± 5.0 38.1 ± 1.2 −201.4 ± 3.2 123.0 ± 5.8 5.7 ± 0.9
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absorption edges, and that the origin shift φ in 	 is almost
unchanged for both the helicity states (−) and (+) at the Dy
M5 edge, which evidences that the E1E1 process is also valid
for the experimental data at the Dy L3 edge. The discrepancy
in φ about 12◦ between two helicity states has been found
in the study of low quartz [11]. This discrepancy has been
discussed in terms of the birefringence phenomenon, higher-
order transition processes like E1E2, or the x-ray polarization
itself [29]. Finally, it has been concluded that a tiny but
non-negligible off-diagonal polarization P1 possibly causes
such discrepancy, and that the effects of higher-order transition
processes and the birefringence should be very small, judging
from the ab initio simulation and the x-ray absorption near-
edge spectroscopy (XANES) experimental data. Present data
sets do not show any obvious discrepancy in φ between two
helicity states for both reflections 004 and 005 at Dy L3 edge.
The same discussion is applicable to the origin shift φ in 	 for
the data observed at the Fe K edge. The values of φ are almost
the same for both two helicity states (−) and (+) for reflection
004, although there is some deviation for reflection 005. Note
that in case of Fe K edge, the origin shifts φ for reflections
004 and 005 are not necessarily coincident. Equation (22)
shows that six independent Fe 4p quadrupole components
are summed up in two parameters, Tα and Tβ , both of which
depend on the reflection index with the interference between
these sites. Consequently, the scattering amplitude does not
necessarily have the same value of φ for reflections 004 and
005, although the circular polarization does not change φ.

Let us discuss about the quadrupole moments with the
experimental data. Analyzing the Dy 5d quadrupole moments
is easy because there are only two parameters 〈T 2

+2〉′ and
〈T 2

+1〉′′ in four equations. On the other hand, it is not easy for the
Fe 4p quadrupole moments because there are six parameters
summed up in Eq. (22). We escape to deduce anything about
the Fe 4p quadrupoles because of the complexity.

Hereafter, we discuss the Dy 5d quadrupoles. In case of pure
circularly polarized states (P2 = −1 and P2 = +1), Eq. (14)
is applicable to solve the parameters. However, in practice,
the experimental Stokes parameters described in Table I are
not simple because P3 has non-negligible values. In order
to solve the parameters, we applied the least-squares method
described in the Appendix A for the equations used to describe
reflections 004 and 005. The results are |〈T 2

+2〉′| = 7.77 ± 0.06
and |〈T 2

+1〉′′| = 5.20 ± 0.15 for the Dy 5d quadrupole moment.
The ratio is r = |〈T 2

+1〉′′/〈T 2
+2〉′| = 0.67 ± 0.02. We find that

the dashed lines at the bottom panel of Fig. 5 given by
these values are quite similar to the lines obtained from the
independent fits by Eq. (18). Note that the absolute values
are meaningless, only the ratio has a meaning, and that we
cannot determine the signs of these components because the
phase shift φ has arbitrariness of 60◦ (a half period in 	),
accompanied with the sign of I1.

As reported in Ref. [16], the ratio r = |〈T 2
+1〉′′/〈T 2

+2〉′|, or
r = (ηζ )/(ξ 2 − η2) for simplicity, for the Dy 4f quadrupole
is close to unity. It changes from 0.9 at 200 K to 1.23 at 50 K
as temperature decreases. Since the Dy 4f states are spatially
localized, it is presumed that the ratio is close to unity and that
the change with temperature is due to electrostatic effect by the
crystal electric field. On the other hand, we find that the ratio of

the Dy 5d quadrupole components is 0.67 [= (ηζ )/(ξ 2 − η2)]
at 100 K. The value clearly deviates from unity. This deviation
is probably due to the bonding between the Dy 5d state and
the oxygen 2p state. At present, however, it is difficult to give
a clear explanation for this value because the deformation of
the DyO6 prism is complicated as described in the following
subsection. A precise calculation of the electron density around
the Dy ion coupling with the oxygen ligands is required to
explain the Dy 5d state.

B. Deformation of DyO6 trigonal prism and FeO6 octahedron as
a function of temperature

According to the previous crystal structure analysis [16],
the structural phase transition lowers the site symmetry of
Dy, which is on the threefold rotation axis in the high-T R32
phase, with a translational shift along the twofold axis and a
deformation of the DyO6 trigonal prism: the Dy-O(4) bond
elongates and the Dy-O(3) and Dy-O(7) bonds shrink at
T < TS while the six oxygen atoms are equidistant from the
central Dy ion at T > TS . Accordingly, the site symmetry of
Dy changes from D3 to C2, losing the threefold symmetry
in the low-T P 3121 or P 3221 phase. Here, the number
after the chemical symbol indicates the site position in the
atomic coordinate determined by the single-crystal x-ray
diffraction measurements, of which information is provided
in the supplementary information of Ref. [16].

Likewise, the FeO6 octahedron deforms in the low-T phase.
The Fe ions are located at site 9d, which is at the site symmetry
C2: one of the three twofold axes perpendicular to the c axis, in
the high-T R32 phase. As described in the previous section, in
the low-T phase, the nine Fe ions are separated into two groups:
three Fe(1) ions are at the special position 3a, remaining on
one of three twofold axes, and six Fe(2) ions are at the general
position 6c. Figure 8 illustrates the deformation of the DyO6
trigonal prism and Fe(1)O6, Fe(2)O6 octahedrons. Here, pair
bonds Dy-O(3), Dy-O(4), and Dy-O(7) in the DyO6, and

FIG. 8. An image of deformation in a DyO6 trigonal prism and
two FeO6 octahedra in the low-T P 3221 phase due to the structural
phase transition at TS . This image is drawn by VESTA [34]. Here, the
Fe(1) ion locates at 3a site and the Fe(2) ion locates at 6b site in the
low-T P 3221 phase. The arrows show the direction of the elongation
or the shrinkage. Pair bonds Fe(2)-O(2) lose the symmetry and that the
Fe(2)-O(21) bond elongates and the other Fe(2)-O(22) bond shrinks.
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Fe(1)-O(1), Fe(1)-O(3), and Fe(1)-O(6) in Fe(1)O6 are
equidistant, respectively, in the low-T phase so as that Dy and
Fe(1) ions are kept to be on the twofold axes perpendicular
to the c axis, whereas all six bonds Fe(2)-O in Fe(2)O6

octahedron are different from each other.
We show the deformation of the DyO6 trigonal prism and

Fe(1)O6, Fe(2)O6 octahedrons as a function of temperature
by taking two typical bonds Dy-O(4) and Fe(2)-O(21) in the
bottom panel of Fig. 7 together with the square root of the
integrated intensity of reflection 004 observed at two absorp-
tion edges Dy L3 and Fe K . As seen, we find that the square
root of the integrated intensity shows a monotonous change
with temperature as well as the lengths of two bonds Dy-O(4)
and Fe(2)-O(21), indicating that the Dy 5d quadrupole moment
strongly couples with ligand oxygen atoms. On the other hand,
the integrated intensity of reflection 001 at Dy M5 edge shows
a drastic increase with decreasing temperature, indicating
that the development of the Dy 4f quadrupole moment is
independent of the deformation of the DyO6 trigonal prism.
This development is possibly caused by the population at the
respective sublevels in eight Kramers doublets in the 6H 15

2

state of Dy+3 4f electrons. Note that the splitting energy
between the first and the second sublevels is estimated to be
15 ∼ 20 cm−1 [23,31–33]. The observed different temperature
dependence of the Dy 5d, Fe 4p, and Dy 4f quadrupole
moments is explicitly attributed to the different degree of
localization of these states. While the Dy 4f states are spatially
fully localized and experience the atomic surroundings only
electrostatically by the crystal electric field, the Dy 5d and Fe
4p states are directly involved in chemical bonding.

VII. CONCLUSION

We have investigated the quadrupole moments of Dy 5d

and Fe 4p electrons in DyFe3(BO3)4 which has the chiral
helix structure of Dy and Fe ions on the screw axes. We have
performed resonant x-ray diffraction with circularly polarized
x rays at Dy L3 and Fe K absorption edges by switching the
sign of the x-ray helicity. The integrated intensity of forbidden
reflections 004 and 005 has been observed as a function of
azimuth angle 	 and temperature.

The integrated intensity of the diffracted beam is theoreti-
cally interpreted well: (i) the periodicity of azimuth angle scan
is 120◦, which agrees with crystal symmetry, (ii) the helicity
of circular polarization changes the intensity according to the
crystal handedness, (iii) the phase shift φ in azimuthal scan is
unchanged for both two helicity states (−) and (+) of the x-ray
beam at Dy L3 and Fe K edges, (iv) the intensity at Dy L3 edge
is described by two components of the Dy 5d quadrupole, (v)
on the other hand, that at Fe K edge is described by totally six
components of the Fe 4p quadrupoles for three Fe ions at the
special position 3a and six Fe ions at the general position 6c.

From the results (i) and (ii), we find that the crystal which
we studied belongs to the left-handed space group P 3221, and
this is in accord with our earlier results on soft x-ray diffraction
at Dy M5 absorption edge [16]. The result (iii) evidences
that the resonant processes at both Dy L3 and Fe K edges
are well described within the scheme of E1E1 process, and
that the birefringence phenomenon, or higher-order transition
processes like E1E2, are unnecessary to be considered for

the analysis of the experimental data. The discrepancy of the
phase shift φ between reflections 004 and 005 observed at Fe
K edge is theoretically predicted by the admixture of Fe 4p

quadrupole moments at two sites.
From the result (iv), we have determined the ratio of

two components of the Dy 5d moment at T = 100 K as
r = |〈T 2

+1〉′′/〈T 2
+2〉′| = 0.67 ± 0.02, which is smaller than r =

1.20 for the Dy 4f moment [16]. The temperature dependence
of the diffracted intensity shows a rather monotonous increase
on cooling after the jump just below the TS , while that of
reflection 001 observed at Dy M5 edge shows a steep increase
towards lower temperatures. These results indicate that the Dy
4f moment is less coupled with ligand oxygen atoms than the
Dy 5d moment.
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APPENDIX: CALCULATION FOR THE COMPONENTS OF
DY 5d MOMENT USING THE LEAST-SQUARES METHOD

The experimental x-ray polarization was not purely defined
as P1 = P3 = 0, P2 = ±1. We use the values of P2 and
P3 summarized in Table I for the analysis. The value of
P1 is negligible. There are two experimental parameters
p = 9

4 〈T 2
+2〉′2 and q = 9

4 〈T 2
+2〉′〈T 2

+1〉′′. The difference of the
integrated intensities �I between two helicity states is

�I = �I0 + �I1 cos 3(λ	 + φ),

�I0 = I−
0 − I+

0

= {
1
2 (P −

3 − P +
3 ) cos2 θ + λ(P −

2 − P +
2 ) sin θ

}
× (1 + sin2 θ ) p,

�I1 = I−
1 − I+

1

= {
2(P −

3 − P +
3 ) sin θ − λ(P −

2 − P +
2 ) cos2 θ

}
× cos θ q. (A1)

Here, the suffixes “+” and “−” represent the positive P2 > 0
and negative P2 < 0 helicities, respectively. The sum of the
squares of the difference between the experimental data and
the theoretical functions for reflections 004 and 005 is

� = (exp�I004 − cal�I004)2 + (exp�I005 − cal�I004)2. (A2)

Here, the prefixes “exp” and “cal” represent the experimental
data set selected for the fit and Eq. (A1) including parameters
p and q, respectively. The least-squares method is carried out
to make the sum � minimum. This is a simple linear-least-
squares calculation, and the values of p and q are directly
obtained. Finally, we find that p = 135.7 ± 2.14 and q =
90.8 ± 2.46, and that the components of the Dy 5d quadrupole
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are |〈T 2
+1〉|′′ = 5.20 ± 0.15, |〈T 2

+2〉|′ = 7.77 ± 0.061, and r =
|〈T 2

+1〉′′/〈T 2
+2〉′| = 0.67 ± 0.02. Note that the sign of each

component is undetermined because the sign of I1 depends
on the arbitrariness of φ by 60◦.
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