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Anharmonicity effects in the frictionlike mode of graphite
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Graphite is a prototypical solid lubricant demanding a thorough understanding of its low-friction behavior.
The E2g(1) Raman active vibrational mode of graphite is associated with the rigid-layer relative movement of its
graphene sheets. Thus, this mode can provide a good means of exploring the low resistance of graphene layers
to slip with respect to each other. To take advantage of this fact, the anharmonicity of the E2g(1) mode has to
be carefully characterized and evaluated since the atomic arrangement of carbon atoms in the ambient condition
ABA stacking of graphite evidences potential asymmetry. The calculated one-dimensional energetic profile of the
E2g(1) mode reveals this local anisotropy around the energy minima and can be microscopically interpreted in
terms of electron density interactions. Morse-type potentials accurately fit the energetic profiles at different
interlayer separations, and provide simple analytical expressions for evaluating harmonic and anharmonic
contributions to the �-point E2g(1) frequency ωE2g (1) under a perturbative algebraic treatment. We quantify how
the anharmonic contribution increases with the available energy (E) at zero pressure, and how this contribution
decreases as hydrostatic pressure (p) or uniaxial stress is applied for a given available energy. The calculated
ωE2g (1) − p and ωE2g (1) − E trends indicate an increasing (decreasing) of frictional forces in graphite with pressure
(temperature). Our conclusions are supported by the good agreement of the calculated frequencies with existing
Raman experiments under hydrostatic pressure conditions.
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I. INTRODUCTION

Graphite is among the best solid lubricants, but it is also
known that graphite behaves as a poor lubricant in vacuum [1].
Such a diverse behavior makes graphite a target model in many
frictional/tribological studies at both macroscopic [2] and
atomic [3–5] levels. Graphite also was the first system studied
in the seminal work by Mate et al. [6], when the friction force
microscope was developed. Nowadays, graphene has emerged
into the scene of frictional studies [7–9] and many works have
been focused on understanding the underlying mechanisms of
friction in graphite [10,11] and graphene [12]. For instance,
novel terms such as superlubricity [13,14] have been coined
to refer to the near-zero friction force observed between a
graphite substrate and a graphite flake in an incommensurate
configuration.

The vibrational E2g(1) mode of graphite describes a
rigid-layer relative movement of the graphene sheets (see
Fig. 1), thus informing on the forces that graphene layers have
to overcome in order to initiate relative displacements [15,16].
By means of the characterization of this vibrational mode and
the evaluation of the energetic profile accompanying its atomic
movements, it is possible to get insight into the corrugation
energy landscape and the frictional behavior of graphite at
a microscopic level. One of the relevant points at this regard
is to accurately take into account the anharmonicity of this
Raman active mode. It is expected to be noticeable, leading
to a stress-induced blue-shift of its frequency greater than in
other IR and Raman higher-frequency modes [17,18]. This
vibrational mode may be also used to verify the presence of
graphene among graphitelike samples containing few layers
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graphene. Although present in graphite and absent in graphene,
the Raman active E2g(1) mode “cannot be (directly) used as
method for an experimental verification of graphene” [19] due
to its low Raman intensity [20]. However, since the frequency
of this mode is a measure of the splitting experienced by the
E2g mode in graphene into the infrared active E1u and the
Raman active E2g(2) modes of graphite [21], the lower
frequency of this E2g(2) mode in graphite with respect to
graphene could be used as a potential way to discriminate
between graphite and graphene, albeit this is a matter of
current controversy [22].

From a more theoretical perspective, it should be noticed
that in the E2g(1) mode, the in-plane and out-of-phase atomic
movements (see Fig. 1) yield negligible modifications in the
intralayer C-C network. The frequency of this shearlike mode
was observed below 50 cm−1 at ambient conditions (see, for
example, Refs. [21,23,24] and references therein) and provides
a direct and accurate manifestation of the weak van der Waals
(vdW) interactions between graphene sheets in graphite. This
is a relevant issue that deserves some comments since the
interplay between vibrational modes and vdW and covalent
interactions in graphite has aroused interest with detailed
analysis for decades. In the pioneer works of Dresselhaus et al.
[21,23] and the more recent studies of Cousins et al. [24], the
focus was on the simultaneous modelization of both types
of interactions (also introducing anharmonic contributions)
to account for experimental elastic data and �-point vibra-
tional frequencies. As highlighted in these works, difficulties
in the parametrization of C interactions appear not only
due to the coexistence of both strong and weak interactions but
for the fact that the former are well localized and the later are
of a nondirectional type. Clearly, a theoretical determination
of the energy profile involved in the E2g(1) mode would
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FIG. 1. On the left, energetic profile versus the relative displace-
ment of the middle layer of the ABA equilibrium configuration for a
given interlayer distance along a selected direction (the x direction).
On the right, arrangements of the trilayer slab associated with graphite
stackings at critical points. C atoms in the central layer B are in green.
C atoms in A layers are in red. Arrows indicate the atomic movements
involved in the E2g(1) vibrational mode.

benefit an unambiguous characterization of vdW interactions
in graphite-based materials.

By performing detailed first-principles calculations, it is
possible to accurately describe the simultaneous energetics
involved in intralayer and interlayer C-C interactions. Among
the number of computational simulations related to this topic,
and in the context of our study, it is worth mentioning the
early works of di Vincenzo et al. [17] [with explicit reference
to anharmonicity in the E2g(1) mode] and Gonze et al. [25],
where the lack of an accurate computational methodology was
discussed. More recently, vdW contributions were specifically
taken into account in the calculations [15,16,26–29], and the
particular energetic barrier involved in the transition from
the stable ABA to the AAA stacking of graphene sheets
in graphite was calculated [15,16,26,27]. From the energetic
profiles connecting both stackings, the vibrational frequency
of the E2g(1) mode can be straightforwardly calculated [16].
Anharmonicity of phonons in carbon-based materials has also
been the subject of rigorous theoretical studies by Bonini et al.
[22] and Paulatto et al. [30] (and references therein). In these
works, the focus is on the phonon scattering mechanisms and
the characterization of phonon decays [22] with the aim at
determining thermal transport properties of these materials
[30], though neither explicit nor implicit reference to friction
phenomena was reported.

Fortunately, an extensive experimental work [18], including
effects of hydrostatic pressure on this frequency, provides
a pertinent source of information to compare with these
computational studies. Moreover, from the frequency (ω)
and pressure (p) experimental data of Hanfland et al. [18],
linear Grüneisen parameters were derived, thus allowing for
a comprehensive discussion of anharmonicity in the E2g(1)
mode.

Taking into account the above considerations, we pursue
in this investigation to provide a thorough understanding of
anharmonicity in the E2g(1) mode of graphite by rendering,
modeling, and evaluating this vibrational mode under different
stress conditions. By rendering we mean an illustrative

description of the atomic arrangements with specific attention
to the local anisotropy around the absolute energy minima,
and an interpretation of the surface energy potential landscape
using intuitive images of charge density interactions. A
simple four-spring model and a perturbative treatment using
Morse-type functions are enough to reasonably account for
the anharmonicity associated to this mode. The evaluation
stage consists in a detailed analysis of part of our previous
DFT-based calculations in graphite under different stress
conditions [16]. Specifically, we examined the results of a
three-layer graphene slab in which the middle layer is forced to
slide between two other ones, which remain fixed at different
interlayer distances, thus mimicking the atomic movements
involved in the E2g(1) mode [16]. Morse functions accurately
account for energy changes along the vibrational coordinate of
this mode at different interlayer separations. It will be shown
that anharmonicity decreases as this parameter decreases or,
equivalently, hydrostatic pressure or uniaxial stress is applied.
Overall, our calculations provide a quantitative assessment of
the anharmonic contribution of this rigid-layer frequency mode
of graphite under different strain scenarios, and inform on the
trends that frictional forces show as temperature increases and
pressure is applied.

The rest of the paper is divided in four more sections. In
the next one, we present geometrical and energetic proofs to
show that the E2g(1) mode must evidence anharmonicity. In
Sec. III, we introduce a simple four-spring model along with
the algebraic treatment of anharmonicity and its dependence on
stress. In Sec. IV, harmonic and anharmonic calculated results
are analyzed at zero pressure and up to 14 GPa, including
explicit comparison with available experimental data in the
same pressure range. The paper ends with the main conclusions
of our work.

II. PROOFS OF ANHARMONICITY FROM ATOMIC
ARRANGEMENTS AND ENERGETIC CONSIDERATIONS

To start with, we look at Fig. 1 just to visualize the three
different stackings distinguished at the right which are perti-
nent for the analysis of the E2g(1) mode. The two symmetric
minima are equivalent and exemplify the equilibrium ABA
stacking, in which half of the atoms of layers B share the z

axis with half of the atoms of layers A. The z axis is the one
perpendicular to the graphene layers. By displacing the middle
graphene layer from the ABA configuration (first minimum
at around 2.8 Å) along one side of the x axis we reach the
highest-energy configuration, the AAA stacking. On the other
hand, when the B layer is shifted to the other side of the x

axis, a third stacking labeled AB′A and associated with the
low-energy maximum is found. In this AB′A configuration
there is not any single C atom in layers B above or below any
C atom in layers A. Although at first sight the periodicity of
the structure might induce to think otherwise, the existence
of these two different energy profiles around the equilibrium
ABA configuration forces the E2g(1) mode to follow a strong
anharmonic conduct. This is one key point for understanding
the anharmonicity of this frictional-like mode of graphite.

The two panels of Fig. 2 should be used in order to gain a
further insight of the main repulsive electrostatic interactions
involved in the energy profile displayed in Fig. 1. Although
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FIG. 2. Schematic representation of the bonding charge densities and interaction patterns for different graphite stackings (see text) along
the z axis. Left panel: frontal (sliding) view, along the x axis, as indicated by the arrow. Right panel: side view, along the y axis, as indicated
by the arrow.

it only gathers a schematic representation of the positions of
atoms and bond charge densities perpendicular to the graphene
planes (see Ref. [25] for some true computed and experimental
maps), this figure contains the basic information to interpret
the relative energetic order of the three atomic configurations.
In the left panel, we have inspected the frontal view along
the x axis for these three stackings. As expected, the AAA
stacking shows the highest number of repulsive interactions
between C-C intralayer bonds of different layers. In this AAA
configuration, the repulsions are more effective because both
atoms and bonds are on top of each other. In contrast, there is
not any clear reason in this picture which explains why ABA
is less energetic than AB′A. However, if we consider the inter-
actions along the y axis (side view) in the second panel then a
justification can be given. Realizing that the chosen axis does
not cross any C atom in any layer, in the AB′A stacking the C-C
bonds are overlayed displaying a bridelike arrangement with
C-C bond densities always on top of each other. In contrast,
in the ABA stacking the bonds never overlay each other, and
only one bond in layer B is crossed for every three bonds in
layer A. Since the ABA stacking shows the less number of
interlayer repulsive interactions, this simple picture provides
an explanation to understand the preference of graphite for the
ABA stacking in agreement with the energetic profile of Fig. 1.

To quantify the energy changes along the normal coordinate
of the E2g(1) mode, we briefly recall to our recent first-
principles total-energy calculations for a trilayer graphene
(3LG) [16]. 3LG is a periodic slab model of three graphene
layers in an initial ABA stacking representing the Bernal-type
configuration of stable bulk graphite. The calculations were
performed within the density-functional theory (DFT) for-
malism with a plane-wave pseudopotential approach us-
ing the Perdew-Burke-Ernzerhof (PBE) generalized gradient
exchange-correlation functional [31] as implemented in the
VASP code [32]. We followed the standard projector augmented
wave all-electron description of the electron-ion-core interac-
tion. Brillouin-zone integrals were also approximated using the
Monkhorst-Pack method [33], and the energies converged to
1 meV with respect to k-point density (16 × 16 × 8 k meshes)
and the plane-wave cutoff (600 eV). Grimme’s correction
[34] was included to account for dispersion interactions.
In our previous work [16], it was noticed that Grimme-D2
correction tends to overestimate the weak dispersion forces

between graphite layers (see also Rêgo et al. [29]) yielding a
calculated c lattice parameter (6.43 Å) slightly lower than
the experimental value (6.70 Å). Nevertheless, an overall
agreement with the experimental data was found as also
discussed by Bucko et al. [35].

We simulated the atomic movements by fixing the atoms of
the A layers, and displacing the B layer along the x direction
a number of different distances away from its equilibrium
position up to the next equivalent ABA stacking, relaxing the
geometry in every point. To prevent the B layer to reach again
the initial minimum of the potential energy surface after the
geometry optimization, we fixed the x and y coordinates of
one of the C atoms of the B layer, leaving its z coordinate and
the coordinates of the unconstrained C atom (and therefore
the C-C distance) as free parameters in the relaxation process.
As a first result, we found no differences between the bond
length (1.42 Å) of bulk graphite and the 3LG slab model at the
bulk interlayer equilibrium distance. In order to include the
structures AB′A, AAA, and the specular image of the initial
ABA stacking in the sliding path, we used the TETR code [36]
to displace the B layer 48 points in steps of 0.0889 Å, for a total
displacement of 4.2672 Å not only along the normal direction
of this frictionlike vibrational mode of symmetry E2g (1), but
also for different sliding directions from 0◦ to 110◦ in 10◦ steps.
To simulate the effect of hydrostatic pressure or uniaxial stress
on the mode, we repeated the process at different fixed inter-
layer distances, and used our reported equations of state [16].

A series of isomorphous energetic profiles similar to that
shown in Fig. 1 were obtained with these computational
parameters at selected interlayer spacings decreasing from
3.450 to 2.800 Å [16]. To summarize our previous calculations,
we display in Fig. 3 the complete energetic landscape involved
in the E2g(1) vibrational mode. Notice that the center of the
gray and black regions are associated with the AAA and
ABA configurations, respectively, whereas the AB′A stacking
appears at the saddle points connecting two adjacent maxima
and minima. In this picture, we recover the energetic profile
shown in Fig. 1 as we move along the 0–180 direction. The
local asymmetry around the ABA minimum at the origin is
apparent, thus illustrating the energetic difference as the B
layer is displaced either backward or forward from the origin
along this direction. On the contrary, as expected from the
hexagonal symmetry of the graphene sheet, if we examine the
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FIG. 3. Polar energy landscape for the E2g(1) mode. A normalized energy scale with a constant energy step is used. White lines stand for
0–180 and 90–270 directions.

90–270 direction we find a totally symmetric energetic profile
around the ABA minimum at the origin without finding either
the AAA or the AB′A stacking. These two specific directions
exemplify the high anisotropy of the energetics involved in
the E2g(1) mode, which is also relevant for the analysis of its
anharmonicity.

III. MODELING THE ANHARMONICITY
OF THE E2g(1) MODE

A rather simple spring model accomplishing the bonding
interactions involved in the E2g(1) mode is depicted in Fig. 4.

FIG. 4. Scheme of the four-spring model. Symbols are defined in
the text.

Similar semiempirical models have been successfully applied
to graphite vibrational modes in the past [20]. The model
considers four springs attached to a C atom in the middle layer
and having the other ends attached to C atoms in the A layers.
The four springs have the same value of the constant ks , and
their lengths are equal in pairs. Their natural lengths L1 and
L2 depend on the interlayer distance c/2. The value of a is the
C-C bond length (a = 1.42 Å under zero stress). By changing
the effective length of the springs, we simulate the atomic
displacement of the C atoms in the middle layer along the x

coordinate under a potential given by the equation

V (x) = ks

[
(
√

(c/2)2 + (x + 2a)2 − L1)2

+ (
√

(c/2)2 + (x − a)2 − L2)2
]
, (1)

that leads to the following expression for the harmonic
frequency (m is the oscillating mass):

ωH =
√

V ′′(0)

m
; V ′′(0) = ks

8 + 5e2

(1 + e2)(4 + e2)
; e = c/2

a
.

(2)

We will check the validity of the above expression in the next
section.

A different approach is understanding anharmonicity in a
perturbative fashion. Since the behavior of the real potential
curve is slightly different to the harmonic one, a third-order
Taylor expansion of the potential suffices for our purposes. A
quartic term introduces a smaller and positive correction in
the frequency, but here we are only interested in the first-order
anharmonicity. Hence, the potential can be simply expressed
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as the sum of a quadratic and a cubic term:

V (x) = 1
2kx2 + 1

2αx3. (3)

The quadratic term includes information about the second
derivative of the potential, and allows us to obtain the value
of the harmonic constant k. On the other hand, the cubic
term corrects the harmonic potential through the parameter
α, related with the third derivative of the real potential.

By means of a perturbative treatment of both the period
and the displacements from the equilibrium point of this
asymmetric oscillation, it is straightforward to derive an
expression for the frequency as a sum of the harmonic
frequency (ωH ) and a perturbation (ω′) [37]:

ω = ωH + ω′, (4)

with

ωH =
√

k

m
; ω′ = −15

16

A2α2

m2ω3
H

. (5)

The anharmonic perturbation depends on the available vibra-
tional energy through the harmonic amplitude A, E = 1

2kA2,
and its harmonic frequency, but also on the value of α and
the mass of the system. In the equation above, we see that
anharmonicity is always a negative contribution to the actual
frequency.

Aiming for a physical interpretation of our results, we used
a Morse-type potential VM , already included in the analysis of
di Vincenzo et al. [17], to fit the computed data:

VM (x) = Ve + M
(
1 − e−N(x−xe))2

, (6)

where Ve = VM (xe) is the potential energy of the system
for one carbon atom at the equilibrium ABA configuration
of graphite. The main advantage is that the anharmonic
contribution can be represented as a function of the available
vibrational energy and the parameters of the Morse potential
M and N :

ω(E) = ωH

[
1 − 15

16

E

M

]
; ωH = N

√
2M

mC

, (7)

being mC the mass of one single carbon atom.
Our modeling also considers the use of Eqs. (8) and

(9), previously employed in the analysis of the experimental
data [18]:

ω(p)

ω(0)
=

[
δ0

δ′ p + 1

]δ′

; δ0 =
(

d ln ω

dp

)
p=0

;

δ′ =
[

d

dp

(
d ln ω

dp

)]
p=0

. (8)

The relation between frequency and pressure allows us to
obtain δ0 and δ′, which are linear analogs to those included
in the Murnaghan equation of state, through a least-squares
fit. Since the perturbative model provides the anharmonic
contribution to the frequency of the E2g(1) mode, Eq. (8) can be
used to assess the quality of our computed dependence on pres-
sure of the anharmonicity of this mode by simply comparing
calculated and experimental fitting parameters. Furthermore,
the pressure dependence of the frequency can also be used to

evaluate the linear or one-dimensional Grüneisen parameter
γ‖ through the equation [38]

ω(p)

ω(0)
=

[
c(p)

c(0)

]−3γ‖
, (9)

where c is the lattice parameter associated with the interlayer
separation. γ‖ has been discussed by Hanfland et al. [18]
following the above scaling relation proposed by Zallen [38]
to conclude that, due to its larger value, the anharmonicity
of the E2g(1) mode is greater than that of the high-frequency
E2g(2) one. We notice that instead of an average value for
this linear Grüneisen parameter, as reported by Hanfland et al.
[18], we evaluate a number of γ‖-p values for a better view of
the dependence of anharmonicity on pressure.

A final remark concerning our modeling is related with
the equivalence of uniaxial and hydrostatic stresses. We have
not found any meaningful difference in the interlayer spacing
obtained under the same stress conditions either hydrostatic
or uniaxial along the c axis. It should therefore be understood
that the blue-shift experienced by this frequency is a pure
effect of the enhancement of vdW interactions as the spacing
between graphene layers decreases. This can be of interest
in the discussion of the contributions (covalent and vdW) to
the frequencies of other in-plane modes, as the E2g(2) one
recently analyzed by Sun et al. [28], who proposed a partition
of the Grüneisen parameter into in-plane and out-of-plane
contributions.

IV. FREQUENCY EVALUATION AND
COMPARISON WITH EXPERIMENT

Evaluation of the anharmonicity of a vibrational mode
involves not only the knowledge of the energy around the
energy minimum, but also its dependence on displacements
far from the equilibrium. It becomes necessary to examine
whether a simple analytical expression as the Morse func-
tion fits in a reliable manner, the one-dimensional potential
landscape of graphite between the AAA and AB′A maxima
(see Fig. 1). We have analyzed the quality of Morse fittings
to the E2g(1) energetic profiles calculated in Ref. [16] for a
number of interlayer distances, including the computed [16]
and experimental [39] zero-pressure c values 6.43 and 6.71 Å,
respectively. Reduced χ -square values are in the range
10−8−10−9, the residuals are equally distributed between
negative and positive values with sums approximately 10−8

in all cases, four orders of magnitude less than the increment
of the calculated DFT values. These results corroborate that
Morse potentials describe accurately the energetics of the
E2g(1) vibrational mode. Selected examples of the Morse
fittings for different interlayer distances are shown in Fig. 5.

We subsequently used the Morse fitting parameters to
obtain harmonic frequencies for all interlayer spacings. The
results are collected in Table I. We notice that our computed
harmonic frequency at the zero-pressure equilibrium geometry
(50 cm−1) is in good agreement with the experimental value
of Hanfland et al. (44 cm−1) [18]. Most of previous reported
experimental and calculated values for the frequency of this
mode lie in the range 40–50 cm−1 [17,21,23,24,40–42].

Now, we are in conditions for quantifying the anharmonic-
ity of the graphite frictional mode. The anharmonic effect is
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C. MENÉNDEZ et al. PHYSICAL REVIEW B 93, 144112 (2016)

0

1

2

3

4

5

6

7
8

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

V
M

−
V

e
(m

eV
)

x − xe (Å)

c
=

6.
70

0
Å

c
=

6.
45

0
Å

c
=

6.
23

0
Å

c
=

6.
05

0
Å

FIG. 5. Morse potential fittings for the calculated data at different
values of the lattice parameter c. Notice that the smaller the value of
c, the more harmonic each curve becomes.

due to the softening experienced by a normal vibration mode
due to a modification of the interaction distance. In the classical
picture of the nonlinear oscillations [see Eq. (7)], this effect
depends both on the available energy of the system (amplitude
of the oscillation) and on the harmonic frequency ωH , which
is constant at a given pressure. An increase in energy produces
a decrease in the vibrational frequency due to the fact that
the system is in a higher vibrational state. To illustrate this
contribution, we show in Fig. 6 how the frequency ω is reduced
as the available energy increases at zero pressure. In particular,
we can see that the potential asymmetry leads to a red-shift
of 2 cm−1 when the harmonic amplitude of the vibration is
around 0.2 Å (the available energy is around 2 meV), and
decreases linearly up to −6 cm−1 when the available energy
reaches 10 meV. Thus, we can conclude that the contribution
of anharmonicity to the actual frequency of the E2g(1) mode
cannot be neglected. By quantifying the oscillation width, we
have another perspective of the importance of anharmonic
effects. For a harmonic vibration, the oscillation width is
simply 2A. It amounts a value of 0.350 Å when the available
vibrational energy is 2 meV. If the potential asymmetry is taken
into account, the oscillation width goes up to 0.385 Å. Such

TABLE I. Calculated Morse fitting parameters, and harmonic
frequencies for selected interlayer distances.

c/2 (Å) N (Å
−1

) M (eV) xe (Å) ωH (cm−1)

3.3500 0.91810 0.04265 2.84208 41.81
3.2500 0.88189 0.06414 2.84200 49.25
3.2050 0.85967 0.07793 2.84205 52.92
3.1600 0.83405 0.09541 2.84203 56.81
3.1150 0.80186 0.11870 2.84203 60.92
3.0700 0.76087 0.15140 2.84204 65.29
3.0250 0.71026 0.19935 2.84197 69.93
2.9125 0.56217 0.43618 2.83832 81.37
2.8000 0.50181 0.53746 2.83922 91.67
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|ω |

FIG. 6. Variation of total ω, harmonic ωH , and anharmonic
contributions ω′, with the available vibrational energy E at zero
pressure.

an almost 10% increasing in the vibrational elongation is large
enough to be taken into account in the analysis and evaluation
of graphite properties.

The available vibrational energy is related to the tempera-
ture of the graphite sample. However, a rigorous relationship
is not straightforward if we look for an accurate estimation
of the effect of T on the anharmonic contribution to the
frequency. Phonon-phonon and phonon-electron interactions
in graphite are important [22] and could lead to a complex
temperature-energy dependence. This is out of the scope of our
study. Nevertheless, we can give an estimation of the available
vibrational energy at a given temperature by considering the
vibrational partition function within the harmonic approxima-
tion. For example, at room temperature the estimated value of
the vibrational energy is about 3 meV/atom, which leads to an
anharmonic contribution of −2.6 cm−1, higher in absolute
value but of the order of magnitude of the plotted values
reported by Bonini et al. [22] for the E2g(2) high-frequency
mode. In the classic limit, energy and temperature are linearly
related and the decreasing trend of the frequency as the
available energy increases would indicate the same behavior
when temperature is considered. This suggests that the intrinsic
anharmonic effect leads to a decreasing in the fictional forces
of graphite as temperature increases.

Concerning the effect of pressure, the expected behavior of
an increasing harmonic frequency as the interlayer separation
decreases or the pressure/uniaxial stress increases was ob-
tained. This result is also in agreement with an intuitive view
of friction, a reduction on the graphene interlayer distance
means that the interaction between layers becomes stronger.
As the graphene layers approach each other, the springs are
compressed making more difficult the relative displacement
of the layers along the x axis. Specifically, we illustrate in
Fig. 7 (left) how the same trend is followed by the actual
calculated harmonic frequencies (Table I) and the results from
the four-spring model [Eq. (2)] when arbitrary values (to
be in the same scale) for the spring constant and the mass
(ks = 1, m = 1) is used. Results nicely reveal that the trends
are comparable in a qualitative way.
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If we look for the effect of pressure on the anharmonic
contribution, then Fig. 7 (right) has to be examined. Regardless
the available energy of the system, continuous reduction of
the anharmonicity is found as pressure is applied. This is
also in agreement with the changes observed in the shape
of the energetic profiles of Fig. 5 as the c parameter decreases,
where the potential asymmetry is reduced. As expected, the
vibrational frequency of the E2g(1) mode (Fig. 8) increases
as a consequence of the enhancement of π -type interactions
between graphene layers upon compression. In addition,
the progressive approaching of the bond charge densities
perpendicular to the graphene sheets enhances repulsive
interactions that are greater and more effective in the AAA
and AB′A configurations than in the minimum energy ABA
configuration (see discussion of Fig. 2). A stiffer potential
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FIG. 8. Variation of the normalized frequencies with pressure
according to our calculations at different energies and experimental
values. Pressure and c are also related through a Murnaghan-type
equation (see Ref. [18]).

results as pressure increases (see also Ref. [16]) and, therefore,
a higher vibrational frequency is obtained.

It is to be noted that the effect of pressure on the actual
frequency is about one order of magnitude larger than and
opposite to the effect of anharmonicity. The resulting nor-
malized frequency (harmonic plus anharmonic perturbation)
for available energies between 0 and 7.5 meV is plotted in
Fig. 8 up to 14 GPa. Comparison with the fit to experimental
data of Hanfland et al. [18] reveals that the pure harmonic
contribution is unable to account for the pressure dependence
of the frequency of this mode. Only when the anharmonic
contribution is taken into account, a faithful description of the
experimental data is obtained. The fitting parameters δ0 and δ′
obtained for an available energy of 4.5 meV [0.104(6) GPa−1

and 0.47(5), respectively], are in excellent agreement to those
derived from the experiment [18]: δ0 = 0.110(8) GPa−1 and
δ′ = 0.43(3). It must be stressed that the available energy has
to be understood as an average thermal energy available for
the system.

Let us finalize our analysis by comparing calculated and
experimental linear Grüneisen parameters (γ‖). This is an
excellent descriptor of the anharmonicity of the E2g(1) mode
and how the blue-shift in frequency is linked to the reduction
of the lattice parameter c as pressure is applied. It is also
to be emphasized that changes in Grüneisen-type parameters
unveil changes in the bond strength involved in the specific
vibrational mode. By combination of Eqs. (8) and (9), we
can evaluate the pressure dependence of γ‖ using δ0 and δ′
obtained under both harmonic and anharmonic scenarios. In
order to compare with available experimental data, average γ‖
values were also calculated. The overall results are displayed
in Fig. 9.

Inspection of this figure clearly illustrates two key aspects
on the anharmonic behavior of the E2g(1) mode. By analyzing
calculated average γ‖ values, it can be seen that only those con-
sidering anharmonic contributions lie within the confidence
interval of the experimental value reported by Hanfland et al.
[18], and this reinforces the idea that a realistic description of
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graphite physical properties requires a good quantification of
anharmonic effects. But Fig. 9 also evidences a strong variation
of γ‖ with pressure, in clear analogy with the requirement for
introducing the so-called Anderson-Grüneisen parameter in
equation-of-state theory [43]. In particular, it is shown that γ‖
roughly varies from 2.0 at zero pressure to 1 at 14 GPa. In
addition, the asymptotic convergence of γ‖ seems to reinforce
the idea that anharmonicity decreases with increasing pressure,
at least in such an anharmonic mode. In any case, the whole
trend reveals that the actual anharmonic behavior of E2g(1)
is largely influenced by pressure or stress, so the use of an
average Grüneisen parameter will never provide an accurate
description of graphite properties along the c axis.

Changes in Grüneisen parameters of the order of 1 have
been typically associated with indications of interaction
changes, i.e., from intermolecular to intramolecular interac-
tions or changes from ionic to covalent bonds [38,44]. In
the case of graphite, the decreasing of γ‖ can be correlated
with the progressive emergence of directional charge bonding
interactions between sheets. As pressure increases, graphene
layers approach, and bond charge densities perpendicular to the
plane begin to interact, increasing their directional character
as a consequence of the reduction of their interaction volume.
Although, according to Isea [45], it is not until 2.0 Å when two
C atoms start to show a covalent bond, our analysis indicates
that the nature of the interactions is changing in that sense.
In fact, covalent interlayer bonding in bilayer graphene was
already reported by Andres et al. for interlayer separations
around 1.5 Å in the AA stacking [26], thus confirming the
change in the nature of the interactions involved in the E2g(1)
mode as pressure increases.

V. CONCLUSIONS

By detailed exploration of relative rigid-layer displace-
ments of graphite layers, we have detected the existence of
two different stackings (AAA and AB′A) around the ABA

equilibrium configuration. DFT-based calculations reveal that
whereas ABA is the absolute minimum of the energy surface,
AAA and AB′A are two maxima with different energies. In
consequence, the E2g(1) mode associated with this shearlike
displacement must evidence anharmonicity. In fact, the whole
potential energy surface discloses that the anharmonicity is
anisotropic with specific displacement directions showing
harmonicity.

The energetic profiles of the E2g(1) mode at different
uniaxial or hydrostatic stress conditions can be accurately
described with simple Morse-type functions that can be
manipulated following a perturbative treatment to account
for a partition of the vibrational frequency in harmonic
and anharmonic contributions. As no meaningful changes
in intralayer C-C distances are found along the vibrational
coordinate, our results provide a source of information of pure
interlayer interactions that can be useful in the analysis of other
vibrational modes where both interlayer and intralayer effects
are simultaneously present [28].

The anharmonic contribution to the E2g(1) frequency at
zero pressure depends on the amplitude of the vibration and can
be evaluated by introducing an available energy to the system.
In the range 0–10 meV, the reduction of the actual frequency
can be as large as 6 cm−1 if anharmonicity is taken into account.
On the other hand, pressure increases the value of the frequency
and decreases the anharmonic contribution. Both effects are
a consequence of the enhancement of interlayer interactions
due to the approaching of graphene sheets as pressure is
applied. We have quantified the increasing of the harmonic
frequency (also reproduced qualitatively with a simple four-
spring model) and the decreasing of the anharmonicity, still
greater than 1–2 cm−1 even at 14 GPa. When comparing
with experimental ω-p pressure data [18], we found a very
good agreement only when anharmonicity is included in our
calculations. The best fit is obtained when the vibrational
energy of the E2g(1) mode is 4.5 meV. Our results indicate
that frictional forces between graphene sheets in graphite
decrease as temperature increases (the available vibrational
energy is higher) and increase as pressure is applied. Details
of the calculations of frictional forces and coefficients using
our 3LG slab model were previously reported in a separate
study [16].

The anharmonicity of this mode is well characterized by
the linear c-like Grüneisen parameter γ‖. We have evaluated
its dependence on pressure adding information to existing
experimental data that only reported an average value [18].
We observed again that only average γ‖ computed with
anharmonic curves are able to provide values within the
confidence interval of the experimental value. However, we
have shown that this average value must be substituted by
the γ‖(p) curve since a noticeable decreasing of this linear
Grüneisen parameter is obtained in the 0–14 GPa range. Both
the asymptotic value reached by all the curves close to a value
of 1 and the difference between the zero pressure and the
14-GPa value of γ‖ are worth to be remarked: the former
because the asymptotic value indicates the decreasing of the
anharmonicity towards a harmonic behavior of this mode and
the latter because it is related to a change in the nature of the
chemical interactions between graphene layers, as previously
illustrated in few-layer graphene systems [26].
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