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Ideal compressive strength of fcc Co, Ni, and Ni-rich alloys along the 〈001〉 direction:
A first-principles study
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We perform density functional theory based first-principles calculations to identify promising alloying elements
(X) capable of enhancing the compressive uniaxial theoretical (ideal) strength of the fcc Ni-matrix along the 〈001〉
direction. The alloying element belongs to a wide range of 3d , 4d , and 5d series with nominal composition of 6.25
at. %. Additionally, a full elastic study is carried to investigate the ideal strength of fcc Ni and fcc Co. Our results
indicate that the most desirable alloying elements are those with half d-band filling, namely, Os, Ir, Re, and Ru.
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I. INTRODUCTION

The mechanical strength and structural stability of a crystal
under axial loading or shearing are primary issues for engi-
neering materials. In real materials, the strength is determined
by the complex microstructural properties associated with
defects, such as vacancies, dislocation networks, and grain
boundaries. A mechanical failure occurs when applied stresses
exceed mechanical strength of the imperfect-weakest region
of the lattice. The effective theoretical (ideal) strength [1]
(ETS) of a crystal is indicated by the stress and strain values
at which the crystal becomes mechanically unstable in terms
of Born criteria, while the maximum theoretical strength [2]
(MTS) corresponds to the first maximum/minimum of the
stress-strain curve. A realistic description of strength involving
precise modeling of the dislocation activity for long periods of
time poses a great challenge and renders standard electronic
structure calculations unfeasible. However, the theoretical
strength of solids has an upper bound or limit which is
referred to as the ideal theoretical strength [2] (ITS). The ideal
strength has been considered as a primary intrinsic mechanical
parameter of single crystal materials [3–5], because it relates
features of chemical bonding and crystal chemistry with
the mechanical properties of perfect lattices, such as bond
switching or breaking, common slip [3], initiation of failure
or nucleation of cracks or dislocations [2,6], as demonstrated
by nanoindentation experiments [7], and thus should be an
essential mechanical parameter of materials.

Perfect crystals, throughout homogeneous by definition,
would fail as a result of the lattice as a whole becomes me-
chanically unstable. In this sense, “fail” means the upper limit
of the theoretical strength of a real crystalline material. This in-
stability occurs when the lattice, in the presence of the applied
forces, can lower its total energy by spontaneously undergoing
an additional arbitrary set of small uniform deformations.
However, other instabilities may occur under homogeneous
deformation of a solid, e.g., related to phonons [3,8–12].

Nickel is chiefly valuable in the modern world for the alloys
it forms, thanks to its excellent mechanical properties such as

*Present address: School of Metallurgy and Materials - University
of Birmingham; a.breidi@hotmail.com

hardness and ductility, and its high melting point. About 60%
of world production comes into nickel steels and the remainder
is used in new Ni-base superalloys. On the other hand, cobalt
is characterized by a higher melting point, where cobalt-base
superalloys are the second-largest share of the total end use
of its productions. The temperature stability of Co-base alloys
makes them suitable for use in turbine blades for gas turbines
and jet aircraft engines, though nickel-base single crystal alloys
surpass them in this regard [13].

Important efforts have been made to understand the be-
havior of elemental solids [14–16], compounds [17–23] at
the atomic level. Studies, so far, have focused on elemental
nickel, and no theoretical effort, to the best of our knowledge,
has been made to investigate solid solution strengthening of
nickel, which can be understood due to the tremendous amount
of time and calculations needed to treat properly low symmetry
systems, i.e., random alloys.

The ideal strength of Ni under uniaxial loading in a 〈001〉
direction has been studied long time ago by Milstein [24]
using semiempirical approaches when describing interatomic
interactions. However, within such schemes, parameters are
fitted predominantly to equilibrium properties of the material
studied, so that their transferability to the loaded states
are not guaranteed. In contrast, first-principles electronic
structure calculations based on density functional theory
can be performed reliably for variously strained structures
and are thus capable of determining the theoretical strength
without resort to untrustful extrapolations. Recently, Černý and
Pokluda [25,26] calculated the maximum theoretical strength
σmax and the ultimate strain εmax of Ni under uniaxial tension
and compression for 〈001〉, 〈110〉, and 〈111〉 orientations of
the loading axis. Liu et al. [27] investigated the maximum
theoretical shear strength in the slip systems {111}〈112〉 and
{111}〈110〉. Consequently, it turns out that the compressive
stress along the direction 〈001〉 (7.1 GPa) [24] and the
shear stress in the slip systems {111}〈112〉 (5.1 GPa) [27]
are the weakest. It follows that the different loading modes
[24–27] produced different theoretical strengths, however,
the lowest one is the most pertinent for the onset of dis-
locations motion. In this regard, the corresponding mode
is the weakest link when analyzing a complex distorted
environment dislocation cores, grain boundaries, and other
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FIG. 1. Atoms (within the gray background) used in this study as
alloying elements added to the nickel matrix to form Ni-6.25 at. % X

random alloys.

extended defect with decisive impact on materials plasticity
and strength.

In the light of this background, the core issue we investigate
is strengthening the Ni matrix with transition metal (TM)
alloying elements at a particular alloy composition, 6.25 at. %
specifically. The loading mode is the uniaxial compressive
direction 〈001〉 because it is the weakest uniaxial load.
We seek answers to several core questions: Which alloying
atoms induce strengthening or embrittlement effects? How
significant could such effects be? Does fcc Co possess higher
or lower ideal strength than fcc Ni? How do Ni and Co fail in
compressive uniaxial stress?

In the present paper we employ first principles supercell
method to investigate in depth the abovementioned issues. The
studied systems are elemental Ni and Co, and the Ni1−xXx

alloys (limiting to x = 6.25 at. %, or x = 1/16), with most of
3d (Ti through Zn), 4d (Zr through Cd), and 5d (Hf through
Au) alloying element species X (see Fig. 1). The composition
6.25 was specifically chosen because it allows us to generate
reasonably big supercells having optimized correlation
functions, very close to the real chemically disordered alloys
at this very composition. Moreover, this composition is of
practical interest because it represents an average value of
the various refractory TM elements added to the Ni matrix to
form Ni-base superalloys.

We predict that the ideal strength of Ni can be significantly
altered via alloying. We demonstrate that strengthening effect
via solid solution is heavily related to the alloying element
d-electron number. We give evidence to support this argument
by comparing with available experimental data and previous
investigations done on elemental TM solids.

II. COMPUTATIONAL METHOD

A. Theory: uniaxial load

For the case of unconstrained uniaxial load on fcc crystal,
an external stress is applied perpendicular to a cube face, say
along the 〈001〉 direction, parallel to the a1 axis. All of the
three angles will retain their initial values of π

2 until the crystal
fails. As the edge a1 incrementally contracts, the edges a2 and
a3, by symmetry, will elongate, where a2 = a3 is seen to be
maintained by symmetry.

The equilibrium state (ak
1,a

k
2,a

k
3) is determined through

minimizing the total energy by relaxing the stresses σ k
2 and

σ k
3 in the direction perpendicular to the loading axis

(
∂E

∂a2

)
(ak

1 ,ak
2 ,ak

3 )

= 0, (1a)

(
∂E

∂a3

)
(ak

1 ,ak
2 ,ak

3 )

= 0. (1b)

The above equations satisfy the unconstrained nature of the
applied stress, implying

σ k
2 = σ k

3 = 0 , (2a)

σ k
1 = 1

a0
1 × ak

2 × ak
3

(
∂E

∂εk
1

)
(ak

1 ,ak
2 ,ak

3 )

, (2b)

where E is the total energy per (super) cell, εk
1 = (ak

1−a0
1)

a0
1

is

the uniaxial strain, a0
1 is the lattice parameter of the original

unstrained fcc lattice, and ak
2 × ak

3 is the area of the basis of the
cell in the plane perpendicular to the loading axis. The inflexion
point in the (E − εk

1) curve, or the first minimum point
of the (σ k

1 − εk
1) curve provides the maximum (in absolute

value) theoretical compressive strength (MTCS). MTCS is
given by Eqs. (2) which correspond to conditions for the
strained lattice to be in equilibrium with respect to internal and
external forces. However, the tetragonal lattice may become in
unstable equilibrium prior to reaching the inflexion point, in the
possible case of hitting an instability point, such as soft phonon
modes, violation of Born criteria for stability, or magnetic spin
arrangement. In principle, the analysis of the phonon spectrum
of a strained lattice at each equilibrium state along the loaded
path is necessary and sufficient to ascertain the stability of
the investigated material; but such calculations based on DFT
are extremely time demanding and were performed only for
tensile tests in pure Al [8–12,15]. In our study, we probe
the mechanical stability of cubic crystals in terms of Born
criteria under uniaxial load as derived by Hill et al. [28] and
Milstein [1], which emphasize that there must be a positive
expenditure of energy on going from the stable equilibrium
state (ak

1,a
k
2,a

k
3) to any nearby state via small homogeneous

deformations. Thereby, the conditions imposed on the elastic
stiffness constants are [1]

C11 > 0 ; (3a)

C55 > 0 ; (3b)

C44 > 0 ; (3c)

C22 − C23 > 0 ; (3d)

(C22 + C23) − 2C2
12

C11
> 0 , (3e)

where

Cij = 1

ak
1 × ak

2 × ak
3

(
∂2E

∂εi∂εj

)
(ak

1 ,ak
2 ,ak

3 )

, (4)

and the strains in this case are expressed as

εi = ai − ak
i

ak
i

i = 1,2,3 ; (5a)

εi = ai − ak
i i = 4,5,6 , (5b)

where a4, a5, and a6 are the angles between the tetragonal cell
edges a2 and a3, a1 and a3, and a1 and a2, respectively.

The above relations are the necessary and sufficient con-
ditions for the lattice to be in stable equilibrium in terms of
Born criteria. In applying the above formalism, one proceeds
through determining the equilibrium state (ak

1,a
k
2,a

k
3) at every
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strain ε1
k through employing Eqs. (1). Subsequently, one must

calculate the whole set of tetragonal elastic constants in order
to determine if the lattice would be stable in this state, as
illustrated in Eqs. (3). This process is continued until one of
the stability relations is violated. The value of σ k

1 at which
the instability occurs is the effective theoretical compressive

strength (ETCS) of the crystal and (ak
1−a0

1)
a0

1
is the effective

theoretical compressive strain.

B. First-principles calculations

In this paper we investigate random alloys neglecting the
contribution from possible short-range order effects. These
alloys are modeled by a 128-atom fcc-based 4 × 4 × 2(×4)
supercell. To get random distribution of atoms we minimize the
Warren-Cowley short-range order (SRO) parameters [29,30]
at several nearest neighbor coordination shells. We found the
SRO parameters to be less than 0.002 at the first eight coordi-
nation shells. The projector augmented wave (PAW) method
[31] implemented in the Vienna first-principles simulation
package (VASP) [32–34] was used to calculate total energies.
The exchange correlation energy was treated in the GGA with
the PBE96 functional [35]. After necessary tests to control
the stability of energy, the energy cutoff was set to 350 eV.
In accordance with the supercell size, in the self-consistent
calculations, we have used 4 × 4 × 8 Monkhorst-Pack k-point
mesh [36].

All the calculations are done either neglecting spin polar-
ization considering that the state is nonmagnetic (NM), or
in the ferromagnetic (FM) state. The operational temperature
of Ni, Co, and Ni-rich alloys, within the domain of their
applications, is beyond 1200 K. Consequently, in the proximity
of this temperature fcc Ni and Ni-rich alloys are paramagnetic,
while fcc Co is ferromagnetic. In the considered Ni-6.25
at. % X alloys, at low temperatures, spin-polarization effects
become very weak. However, it is not most probably true for
the high temperature states, where local magnetic moment
on Ni can survive due to longitudinal spin fluctuations [37].
Nevertheless, we neglect these effects, as we do not include
thermal excitations in the present investigation.

III. fcc Ni and Co

It is important to mention here that the ground state structure
of Cobalt is hcp [38]. However, it undergoes a phase transition
to fcc at 690 ± 6 K [38]. The fcc phase is ferromagnetic (FM)
below the curie temperature (1388 K) [39]. In fact, our interest
in studying the uniaxial ideal strength of the fcc FM phase
of Co is motivated by its intermediate and high temperature
applications. In accordance with the methodology described
in Sec. II, we conducted simulations of the compressive test in
pure fcc Ni and fcc Co. The corresponding strain energies as a
function of the compressed axial parameter a1 are displayed in
Fig. 2(a). As manifested in Fig. 2(a) the strain-energy profiles
have a parabolic, symmetry-dictated convex character centered
around the fcc ground state. Upon decreasing a1, the strain
reach their inflexion points (marked by blue vertical lines) due
to non-linear effects, which correspond to the MTCS.

The compressive stresses calculated according to Eq. (2b)
are shown in Fig. 4. The inflexion points at the energy vs strain
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FIG. 2. (a) Strain energy of fcc Ni (b) variation in the elastic
constants related to face-centered tetragonal lattice as given by
Eqs. (4), (c) Born criteria of stability Eq. (3d), and (d) Eq. (3e)
of NM (dashed-lines) and FM (solid-lines) Ni, along the tetragonal
deformation path as a function of the compressed [001] axial
parameter ak

1. The blue vertical lines mark the values of the lattice
parameters ak

1 at which the lattice is stress-free (right line) or becomes
unstable (left lines).

curves (represented by the lattice constant ak
1 in Figs. 2 and 3),

respectively, correspond to maximum stresses NM/FM Ni and
FM Co can sustain if their structures type do not undergo a
phase transition prior to the relevant elastic limits (inflexion
points). A comparison of MTCS values obtained by us and
by others are shown in Table I. We reproduce almost exactly
the MTCS value (9.37 GPa) of FM Ni obtained earlier [26]
(9.40 GPa). For NM Ni our MTCS (5.93 GPa) differs from that
reported in Ref. [24] (7.1 GPa). We attribute this difference to
less accurate description of interatomic interaction in the latter
paper. On the other hand, we determined the MTCS value for
fcc FM Co to be 8.20 GPa. Unfortunately, we can’t compare
it with results obtained by other methods because, to best of
our knowledge, no previous works have treated the theoretical
strength of fcc Co. In fact, it makes sense to compare MTCS
of FM Co and NM Ni and not FM Ni, because of their high-
temperature applications where Ni is paramagnetic and Co is
ferromagnetic. In this regard, we note that FM Co MTCS value
(8.20 GPa) is larger than NM Ni (5.93 GPa) by 27.6%.
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of stability Eq. (3d), and (d) Eq. (3e), along the tetragonal deformation
path as a function of the compressed [001] axial parameter ak

1.

To be certain that the MTCS values are indeed the ETCS
ones and to determine the mode of failure of fcc Ni and Co crys-
tals, we examine their mechanical stabilities at every applied
load according to Born criteria. We should mention here that
this type of study is essential to check if an instability comes
forth before the inflexion point has been reached. Hence, we
calculated the six independent face-centered tetragonal elastic
constants as functions of lattice parameter ak

1 using Eqs. (4).
From Fig. 2(d), it is seen that failure first occurs in compression
when condition number 5 [Eqs. (3e)] is violated. As clearly
manifested, the studied crystals do not show any instability
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1 along the tetragonal deformation path
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1. The blue

vertical lines mark the values of the lattice parameters ak
1 at which

the lattice is stress-free (right line) or becomes unstable (left lines).

until reaching their inflexion points in compression. Contrary
to the scenario taking place in tension [24] where Ni crystal
bifurcates to orthorhombic phase (C22 = C23) well below its
inflexion point without increasing its elastic energy, here the
crystals fail in compression because they can’t support an
additional compressive load.

Let us note that a similar research regarding the epitaxial
deformation of nickel and cobalt in the (001) plane has already
been performed by Zeleny et al. [40]. As can be seen from
their Figs. 5(a) and 5(c), the total energies have a similar shape
at biaxial deformation as the total energies in our Figs. 2(a)
and 3(a). Also, the epitaxial stresses calculated in that paper
[Figs. 5(b) and 5(d)] are similar in shape with uniaxial stresses
exhibited in our Fig. 4.

IV. Ni-RICH ALLOYS

In this section we present and discuss the main results of this
study, i.e., MTCS of Ni-rich alloys. To begin with, we present
in what follows the equilibrium lattice parameters (aeq) of the
stress-free Ni-6.25 at. % X alloys and compare them with
available experimental data. Both aeq and MTCS properties
display clear trends with the number of d electrons in the TM
alloying elements.

A. Lattice parameters

Before proceeding to the theoretical strength part, we
examine here the lattice parameter expansion of the Ni

TABLE I. A comparison between our and other predicted values of the maximum theoretical compressive strengths (GPa)/strains (unitless)
upon different uniaxial loading.

Element Phase Method 〈001〉 〈110〉 〈111〉
Ni fcc-FM our work 9.37/ − 0.08
Ni fcc-FM PAW-VASP [26] 9.4/ − 0.10 N/A 49.9/ − 0.15

Ni fcc-NM our work 5.93/ − 0.08
Ni fcc-NM semiempirical [24] 7.1/ − 0.091 N/A N/A

Co fcc-FM our work 8.20/ − 0.1
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FIG. 5. (a) Equilibrium lattice expansion expressed in percent
(%) as a function of (a) atomic-radius [41] difference (%) and (b) 3d ,
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The triangles mark data interpolated from experiments [42–48].

host-matrix upon alloying with 3d, 4d, and 5d TM elements.
We recall that the calculations have been done on 128-atom
supercells, including 8 alloying atoms. The supercells volume
was relaxed and the atomic positions were locally minimized
with respect to energy.

The lattice parameter for a known crystal structure,
empirically, is related to the atomic radius, so the depen-
dence of an alloy lattice parameter on the alloying element
composition is typically explained by the atomic radius of
alloying atoms, though there are few exception to this rule.
In Fig. 5(a) the lattice expansion of Ni-6.25 at. % X is
plotted against the alloying element (X)-solvent (Ni) atomic
radius difference where datasets are classified according to
the periods in the periodic table. The atomic radius of the
investigated alloying element X is Wigner-Seitz radius (WS)
obtained from the room temperature (RT) experimental atomic
volumes (V RT

exp = 4
3πWS3) of the alloying element ground

state structure [41]. It is visible that the lattice expansion
increases as a function of the alloying element radius, though
the dependence is not strictly linear.

Figure 5(b) plots our predictions, along with the assessed
experimental results [42–48], of the lattice expansion as a
function of alloying element d-band filling. The experimental
data correspond to alloys prepared at high temperature, well
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FIG. 6. Variation of the percent additional strength as a function
of 3d , 4d , or 5d alloying element for alloy composition Ni-6.25
at. % X.

beyond 1000 K, high enough to be chemically disordered.
Most of these alloys are most probably weakly ferromagnetic
or paramagnetic at the temperatures where their lattice parame-
ters have been measured. In accordance with the experimental
data, all of the 4d, 5d, and most of 3d alloying elements
induce an increase in the lattice expansion. Moreover, a nearly
parabolic trend is observed for each of the 3d, 4d, and 5d

series, with minima corresponding to the Fe/Ru/Os column.
However, one notes a sudden increase in the lattice expansion
for Mn and Fe alloying elements, contrary to the decreasing
trend as a function of 3d electron count. This is due to the
magnetism of Fe and Mn atoms in ferromagnetic Ni at room
temperature [49,50].

It is important to note that, in spite of the large disparity
in atomic radii existing within the 3d period, the magnitude
of the resulting change in the lattice expansion parameter per
6.25 at. % alloying element addition is too small (0–0.8%),
while alloying elements from 4d and 5d with comparable radii
to the 3d alloying elements induce more important change
(0.6–1.4%). However, all these alloying elements, except Hf
and Zr, induce less than 1.35% change, and consequently they
are compressed to a high degree in the fcc Ni lattice.

B. Theoretical strength

Figure 6 plots the values of the MTCS for Ni-6.25 at. %
X alloys as a function of the number of d electrons for the
alloying elements (X). The strength displays a concave and
an almost parabolic dependence on the alloying element d

electron count for 4d and 5d series, with maximum values
occurring at Ru and Os, respectively. For 3d series, we
observe rather a plateau from V to Fe with a relatively small
deviation for Mn. The general trend shown here is for the
ideal strength to reach a maximum at approximately the Mn
or Fe column of the periodic table. In particular, for the
5d elements, the maximum strength is predicted to occur at
band filling slightly higher than Re. Additionally, we observe
that the alloying elements of the column Fe/Ru/Os having
the highest compressed values in the Ni matrix at ambient
conditions [see Fig. 5(b)] produce the highest MTCS values.
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Our findings show that alloying Ni with TM elements lying
toward the center of the 3d, 4d, and 5d periods enhances
considerably the strength of Ni-matrix, much more than
alloying elements residing towards the peripheries, thanks
to their well-known maximum cohesive energies [51–54].
In fact, it is well known that the bulk moduli of the 3d, 4d, and
5d TM elemental metals exhibit a parabolic trend, as shown by
Pettifor [55] using canonical d-band theory and these trends
have been confirmed by other authors, e.g., Rose and Shore
[56]. Interestingly, de Jong et al. [57] observed, using small
supercells, however, that alloying HCP-Re with elements of
half d-band filling increases both bulk and shear moduli.

V. CONCLUSIONS

The solid solution enhancement of the theoretical compres-
sive strength associated with various TM elements alloyed
with Ni was systematically investigated using DFT-based
calculations. Since our calculations are quasistatic, they miss
phonon-induced instabilities [12] near the inflexion point and
may, therefore, overestimate the ideal strength.

We found fcc Ni and Co fail by compression and not by
undergoing a phase transition. Additionally, we found the
strength of FM Co to be larger than that of NM Ni by 27%,

an observation of practical interest for Co-based materials. We
predict a parabolic dependence of the strength of the alloys on
the alloying element d-electrons number for 4d and 5d series,
where alloying Ni with elements having half d-band filling
gives rise to maximal strengthening, namely Os (40%), Ru
(35%), Ir (34%), and Re (31%). Subsequently, the potency of
the TM-alloying elements in improving the strength is clearly
related to their d-electrons count. Our results are valid only
for the compressive strength along the 〈001〉 loading direction,
provided no phonon or other instability is encountered prior
to reaching the inflexion point in the energy versus elongation
curve, however we suggest that the observed strength peak
associated with half d-band alloying elements is universal and
hence is independent from strength-test type. A shearing of
these alloys with respect to the most susceptible slip systems
{111}〈112〉 is most probable to reproduce qualitatively similar
parabolic trends with maxima situated at half d-band alloying
elements.
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