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Topological properties of ferromagnetic superconductors
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A variety of heavy fermion superconductors, such as UCoGe, UGe2, and URhGe exhibit a striking coexistence
of bulk ferromagnetism and superconductivity. In the first two materials, the magnetic moment decreases with
pressure, and vanishes at a ferromagnetic quantum critical point (qcp). Remarkably, the superconductivity in
UCoGe varies smoothly with pressure across the qcp and exists in both the ferromagnetic and paramagnetic
regimes. We argue that in UCoGe, spin-orbit interactions stabilize a time-reversal invariant odd-parity
superconductor in the high pressure paramagnetic regime. Based on a simple phenomenological model, we predict
that the transition from the paramagnetic normal state to the phase where superconductivity and ferromagnetism
coexist is a first-order transition.
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I. INTRODUCTION

The B phase of 3He (3He-B) is a time-reversal invariant
topological superfluid state: it can be visualized, in an appro-
priately chosen basis, as a px + ipy paired state of up-spin
fermions, a px − ipy paired state of down spin fermions, and
a pz paired state of fermions with opposite spins [1–4]. In
the simple case where there is a single closed Fermi surface
enclosing the origin of momentum space [5], it supports
gapless surface states of Majorana fermion zero-energy modes
[3]. A two-dimensional analog known as the planar phase can
be viewed as a px + ipy paired state of up-spin fermions, and
px − ipy paired state of down-spin fermions. Such a system
has zero-energy modes corresponding to a Kramers doublet
of Majorana fermion edge excitations, where opposite spin
Majorana fermion modes counterpropagate. To date, however,
an electronic analog of 3He-B has not been established in an
experimentally realized material.

In this paper, we argue that a promising area for observing
time-reversal invariant topological superconductivity is, ironi-
cally, in systems that exhibit a coexistence of ferromagnetism
and superconductivity [6–13]. Examples of materials in this
category include UGe2 [14,15], URhGe [16–18], and UCoGe
[14,19–22]. Although time-reversal symmetry is certainly
broken in the ferromagnetic phase, the Curie temperature can
be tuned with pressure, vanishing altogether beyond a quantum
phase transition at p = pc. We shall focus here on UCoGe,
where superconductivity occurs for both ferromagnetic (p <

pc) and paramagnetic (p > pc) regimes [20,21]. A schematic
phase diagram of UCoGe is shown in Fig. 1. A particularly
striking feature of the phase diagram is the smoothness of Tc

as the pressure is tuned past pc. This feature suggests that the
superconductivity for p > pc and p < pc must belong to the
same irreducible representation. Motivated by this observation,
and considering the effect of the most important energy scales,
we will argue that the high-pressure regime of UCoGe could
be a time-reversal invariant topological superconductor—an
electronic realization of the B phase.

Given the complexity of heavy fermion materials, it is diffi-
cult to start from a microscopic theory to establish the existence
of topological superconductivity in this system. Instead, we
shall take on a more phenomenological approach and take into

account the key energy scales. Specifically, we invoke (i) the
proximity to ferromagnetism, (ii) the orthorhombic crystalline
symmetry, and (iii) the presence of strong spin-orbit coupling
to argue in favor of a ground state that is an electronic analog
of 3He-B. The homogeneous coexistence of ferromagnetism
and superconductivity suggests that superconductivity has
odd-parity. The orthorhombic symmetry disfavors the spon-
taneous breaking of time-reversal symmetry of the supercon-
ductivity at high pressures, where ferromagnetism is absent.
Last, the strong spin-orbit coupling further favors a B-like
phase over a chiral phase. Based on these observations, we
construct an effective model and predict that the transition
from the normal, paramagnetic metal to the coexistence region
is a first-order transition.

II. PHENOMENOLOGICAL MODEL

The schematic phase diagram of UCoGe is shown in Fig. 1.
We have referred to the superconductivity that coexists with
ferromagnetism as SC1, and have labeled as SC2 the supercon-
ductivity that condenses from the paramagnetic normal state.
Generically, there will be a phase transition between SC1 and
SC2, since the former breaks time-reversal symmetry, whereas
the latter can preserve time-reversal symmetry.

The properties of these materials arise largely from the dy-
namics of 5f electrons of the uranium atom. Let �k,m,σ ,(m =
−�, · · · ,�; σ =↑ ,↓) represent the electron destruction
operator for each f orbital (� = 3), spin, and momentum
state. A low-energy effective Hamiltonian that captures all
the relevant energy scales has the following form:

H = H0 + Hs.o + Hex + HBCS. (1)

The first term is the kinetic energy in the absence of spin-orbit
coupling and magnetism:

H0 =
∑

k,m,σ

εk,m�
†
k,m,σ �k,m,σ , (2)

where εk,m are band energies relative to the Fermi level and
are taken to be diagonal in both the spins and the orbitals. The
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FIG. 1. Schematic phase diagram of a ferromagnetic supercon-
ductor in the presence of strong spin-orbit interactions. We claim that
in the low-pressure ferromagnetic (FM) regime, the superconductor
SC1 is the B2 phase, whereas in the high pressure paramagnetic (PM)
regime, the superconductor SC2 is the B phase.

spin-orbit coupling has the form

Hs.o = λ

2

∑
k

∑
m,m′,σ,σ ′

�
†
k,m,σ

�Lmm′ · �τσσ ′�k,m′,σ ′ , (3)

where La
b,c are angular momentum matrices in the coordinate

representation (for the case of � = 1, La
b,c = −iεabc), and τ a

are Pauli matrices. The exchange interaction is a short-ranged
Hubbard-like repulsive interaction among electrons in the
same orbital that ultimately produces ferromagnetism in the
normal state:

Hex = −U
∑
k,m

Sz
k,mSz

−k,m, (4)

where �Sq,m = ∑
k

∑
σ,σ ′ �

†
k,σ,m�τσσ ′�k+q,m,σ ′ is the Fourier-

transformed spin density of electrons in orbital m. In the
presence of spin-orbit coupling, the exchange interaction
has Ising symmetry and the moment lies along a particular
axis of the crystal [23]. This interaction can in principle be
derived from a knowledge of the microscopic orbitals that
are occupied. In the spirit of our phenomenological treatment,
however, we shall make use of the Ising form above. Last, the
superconductivity in this system involves quasiparticle states
close to the Fermi level and is captured by an effective BCS
interaction:

HBCS =
∑
k,k′

∑
a,b,σ,σ ′

Vk,k′�
†
k,a,σ �

†
−k,a,σ ′�−k′,b,σ ′�k′,b,σ . (5)

In UCoGe, the Fermi temperature TF ∼ 40 K [24], whereas the
Curie temperature and maximum superconducting transition
temperature are TC = 3 K and Tsc = 0.5 K, respectively [21].
Therefore, it is reasonable to assume the following hierarchy
of energy scales: H0,Hs.o > Hex � HBCS.

III. CONSEQUENCES OF PROXIMITY TO
FERROMAGNETISM

The close proximity of superconductivity to ferromag-
netism places significant constraints on the possible pairing
symmetry in this material, i.e., on the form of Vk,k′ . To

FIG. 2. Lowest order Feynman diagrams involving the ferro-
magnetic (solid external legs) and superconducting (dashed external
legs) order parameters. The solid internal loops represent fermion
propagators. In the mean-field approximation, the diagrams are
evaluated at zero energy and momentum. Diagram (c) is nonzero
only for an odd-parity superconductor.

obtain insight into this issue, we shall consider the lowest
order coupling between the magnetic and superconducting
order parameters by decoupling the above interactions via
a Hubbard-Stratanovich transformation and by integrating
out fermion fields. The resulting effective action governs the
order parameter fluctuations in the vicinity of the point where
the finite temperature Curie transition and superconducting
transition intersect. The action has the form

Seff = M2/U +
∫

k

∫
k′

�̄kV
−1
k,k′�k′ + Tr

∞∑
n=1

1

n

(
GÔ

)n
, (6)

where G is the Green function in the Nambu basis, Ô is a
matrix involving both the magnetic and superconducting order
parameters and depends on the choice of superconducting
pairing symmetry, and we have discarded an irrelevant constant
involving the logarithm of the normal-state Green function.
Keeping the ferromagnetic order parameter M to be Ising-like,
with the easy-axis chosen to be along ẑ, we consider the
possibility of both singlet and triplet superconducting states
in the vicinity of the putative tetracritical point, where all
order parameters can be taken to be small in a Landau ex-
pansion. For spin triplet states, we employ the standard vector
notation for the superconducting order parameter: �σσ ′(k) =
i[�σ · �d(k)σy]

σσ ′ . We consider four possible scenarios for the
superconducting order parameter: (1) singlet pairing, (2) triplet
pairing with �d ‖ ẑ, (3) triplet pairing with �d ⊥ ẑ, and (4)
“nonunitary” triplet superconductivity with |�↑↑| �= |�↓↓|.

The lowest order Feynman diagrams in the expansion of
the trace are shown in Fig. 2. The external legs correspond to
the order parameter fields (solid lines correspond to ferromag-
netism and dashed lines correspond to superconductivity), and
thick solid lines along the loops are fermion propagators. We
shall compute these in the mean-field approximation, setting
all momenta and frequencies of external legs to zero. Diagrams
(a) and (b) contribute to quartic couplings between the order
parameters of the form c|�|2M2 and are present both for
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singlet and triplet superconducting orders. The coefficient c

is readily expressible in terms of G± = [iωn ± ε(k)]−1, the
Matsubara Green functions of the paramagnetic normal state:

c1,2 = 2
∫

k

∑
iωn

[G3
+G− + G3

−G+ + G2
+G2

−] (cases 1, 2),

c3,4 = 2
∫

k

∑
iωn

[G3
+G− + G3

−G+ − G2
+G2

−] (cases 3, 4).

(7)

The quartic coupling between ferromagnetism and supercon-
ductivity is repulsive in all four cases. It is identical for a singlet
superconductor and for a triplet state with �d ‖ ẑ, and the same
is true for a nonunitary triplet superconductor and for a triplet
superconductor with �d ⊥ ẑ. It is evident from the expression
above that the coefficient c is more repulsive for singlet
states and states with �d ‖ ẑ than for nonunitary states and
for unitary states with �d ⊥ ẑ. The difference in the coefficient
c between cases (1, 2) and cases (3, 4) can be obtained in a
standard fashion: one finds that this difference is c1,2 − c3,4 =
7β2ρ0ζ (3)/(2π2), where β = 1/T , ρ0 is the density of states
at the Fermi energy, and ζ (z) is the Riemann-Zeta function.
Thus, the biquadratic coupling between ferromagnetism and
superconductivity is less repulsive when the d vector is
perpendicular to the ferromagnetic moment.

By contrast, diagram (c) represents a cubic coupling and
is present only for a spin-triplet superconductor with �d ⊥ ẑ.
It is a coupling of the form γM(|�↑↑|2 − |�↓↓|2), where the
constant γ is

γ =
∫

k

∑
iωn

[G2
−(k)G+(k) − G2

+(k)G−(k)]. (8)

The coefficients above can readily be expressed in terms of
derivatives of the density of states at the Fermi level. However,
a qualitative point that ought to be stressed is that while the
coefficient c is manifestly positive in all cases, the sign of
γ is opposite for the two spin species. Furthermore, near
the transition from the normal, paramagnetic metal to the
coexistence phase of ferromagnetism and superconductivity,
the cubic coupling plays a more important role. As we shall
see below, it leads to first-order transitions.

The main result of this analysis is the intuitive notion that
the most likely form of superconductivity in this material is
spin triplet superconductivity with �d ⊥ ẑ. For these states, the
magnetism does not act as a pair breaker. This conclusion
ought to be relatively robust and independent of microscopic
details, so long as inversion symmetry is preserved.

IV. EFFECT OF CRYSTALLINE SYMMETRY
AND SPIN-ORBIT COUPLING

In this section, we analyze the problem in the vicinity of
the superconducting phase transition. Here, we can obtain
robust, model independent conclusions since all allowed gap
functions are solutions of the linearized BCS gap equations
and their form is dictated largely by the symmetry properties
of the normal state. The relevant symmetry considerations stem
from the fact that (1) UCoGe is an orthorhombic material, and

(2) spin-orbit coupling is among the largest energy scales,
requiring all symmetry transformations to act simultaneously
on the spin and the momentum. In an orthorhombic system,
when the normal state is paramagnetic, the point group
symmetries include 180 degree rotations about the crystalline
axes, inversion, and reflections about each crystalline axis. In
such a system, there are four irreducible representations, all
of which are nondegenerate and correspond to time-reversal
invariant phases:

A1u : �d(k) = αkxx̂ + βkyŷ + γ kzẑ,

B1u : �d(k) = αkyx̂ + βkxŷ + γ kxkykzẑ,
(9)

B2u : �d(k) = αkzx̂ + βkxkykzŷ + γ kxẑ,

B3u : �d(k) = αkxkykzx̂ + βkzŷ + γ kyẑ,

where we again describe the order parameter in the standard
vector form, via �σσ ′ (k) = i[�σ · �d(k)σy]

σσ ′ , and the quantities
α, β, γ are real numbers. The first state corresponds to the
Balian-Werthamer state [1] of 3He, in an orthorhombic system.
It is a fully gapped state in both d = 3 and d = 2 (in the
latter case, γ = 0). The remaining three solutions possess point
nodes on a closed Fermi surface in the vicinity of which the gap
vanishes quadratically. We stress that since symmetry allowed
gap functions are nondegenerate irreducible representations,
time-reversal symmetry cannot be spontaneously broken in
the paramagnetic regime. This rules out the possibility of the
A phase near Tc and the B phase is the state that is most likely
to be realized in the paramagnetic regime.

Next, we consider the symmetry allowed solutions in the
orthorhombic system in the ferromagnetic side. Since time-
reversal is broken by ferromagnetism, the resulting point group
symmetries are somewhat different than the paramagnetic
case. Suppose the moments lie along the ẑ direction, the
symmetries of the system include (1) 180-degree rotation about
the z axis, (2) reflection about the z axis, (3) reflections about
the x, y axes followed by time-reversal, and (4) 180-degree
rotation about the x, y axes followed by time-reversal. In this
case, the simplest allowed gap functions have the form

A1u : �d(k) = (αkx + iβky)(x̂ − iŷ) + (γ kx + iδky)(x̂ + iŷ),
(10)

where α,...,δ are real but their sign is arbitrary. Physically,
this state consists of a superposition of px ± ipy pairing for
both up and down spins. In two dimensions, such a state is
fully gapped, whereas in three dimensions, it possesses point
nodes with Weyl Fermions on a closed Fermi surface. Thus,
it is quite natural to expect that as the moment vanishes,
the nonunitary state above undergoes a transition to the B
phase in the paramagnetic side, which also belongs to the A1u

irreducible representation. The transition observed in UCoGe
would thus be analogous to the transition between the B phase
and B2 phase of 3He.

In an orthorhombic crystal, the A2 (where both spin
species have the same chirality, say px + ipy) and B2 phases
are indistinguishable. By contrast, in tetragonal systems,
the presence of additional vertical mirror planes, say the
reflection ẑ → ẑ, x̂ → ŷ, ŷ → x̂, guarantees that the A2 and
B2 phases are distinct phases. Thus, suppose that the effective
orthorhombicity in UCoGe were weak, such that to a great
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extent, symmetry analysis based on a tetragonal system might
suffice (this would require that the energy scale associated
with the superconducting transition temperature to be larger
than the energy scale associated with the orthorhombicity,
say a difference in hopping integrals along x, y directions.
This regime may well be inapplicable to the case of UCoGe,
but we nonetheless present the argument here in the interest
of generality). The natural question then arises: would SC1

in Fig. 1 be likely in the A2 or B2 phase? Based on the
fact that the Tc curve as a function of pressure is smooth,
we may assume that both SC1 and SC2 belong to the same
irreducible representation as before. However, the presence
of strong spin-orbit coupling always favors the planar B-like
phases over the A phase in tetragonal systems, within the
scope of the weak-coupling theory. This alone, in conjunction
with the smoothness of the Tc curve, with the assumption of
continuous (or at worst weakly first order transitions in this
system) suffices to bolster the likelihood that SC1 is in the B2
rather than A2 phase.

To summarize the analysis of this section, we have taken
into account the orthorhombic symmetry and spin-orbit cou-
pling to conclude that the only allowed irreducible representa-
tions correspond to B-like states. The orthorhombic symmetry
precludes multidimensional irreducible representations that
may lead to spontaneous time-reversal symmetry breaking
of the high-pressure superconductor. Furthermore, the fact
that the superconducting Tc as a function of pressure exhibits
smooth behavior suggests that the irreducible representation
is likely unchanged as a function of pressure. This in turn
implies that the ferromagnetic superconductor is an analog
of the B2 phase, i.e., the B phase in a Zeeman field. In the
case when the Fermi surface is closed, such a superconductor
must necessarily possess point nodes. While strong coupling
feedback effects, which stabilize the A phase in 3He, may
occur here, they will have to overcome the constraints above
imposed by crystalline symmetry, which are absent in 3He.

V. FIRST-ORDER TRANSITION INTO
THE COEXISTENCE PHASE

Based on the considerations above, we now study the
generic phase diagram of our system within the framework
of Landau theory. Given the presence of strong spin-orbit
coupling and the observation of easy-axis ferromagnetism,
we take our magnetization to be an Ising field. Since the
analysis above lead to the conclusion that a superconductor
with �d ⊥ �M is most favored, we shall take the superconducting
order parameter to consist of equal spin pairing along the axis
of the magnetization: i.e., we take the two components of
the order parameter to be �↑↑ and �↓↓ and neglect opposite
spin-pairing components �↑↓. This approximation is sufficient
for the present analysis, where we consider phase transitions
into the ferromagnetic superconductor.

Therefore, under these simplifications, a Landau theory can
be constructed based on three order parameters: M , �↑↑, and
�↓↓. In the absence of coupling between the magnetic and
superconducting orders, the free-energy density takes the form

f0 = 1
2AMM2 + BMM4 + 1

2A�(|�↑↑|2 + |�↓↓|2)

+B�(|�↑↑|2 + |�↓↓|2)2 + C�(|�↑↑|2 − |�↓↓|2)2. (11)

(a) λ2 = -0.05
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(b) λ2 = -0.01
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FIG. 3. Phase diagrams in the A�/AM plane constructed by
minimizing the free energy f = f0 + δf1 + δf2. The parameters
used are BM = 1, B� = 1, C� = 2, λ1 = 0.5, (a) λ2 = −0.05, and
(b) λ2 = −0.01. The blue line denotes the superconducting phase
transition and the red line denotes the ferromagnetic phase transition.
The four phases of UCoGe are reproduced with this model: the normal
phase (N), the ferromagnetic phase (FM), the superconducting phase
(SC), and the ferromagnetic superconducting phase (FM+SC). The
model predicts the generic existence of first order phase transitions
(black line) near the boundary between the N and FM+SC phases.

As we have discussed above, the most relevant coupling
between magnetism and superconductivity is of the form

δf1 = λ1M(|�↑↑|2 − |�↓↓|2). (12)

Finally, in the presence of spin-orbit coupling, spin is no
longer a conserved quantity. Hence, one might envision a
spin nonconserving process in which a spin-up Cooper pair
scatters into a spin-down Cooper pair. Such a process could be
described by

δf2 = λ2(�∗
↑↑�↓↓ + c.c.). (13)

We have minimized the free energy f = f0 + δf1 + δf2

and have studied the resulting phase diagrams in the A�/AM

plane. In Fig. 3(a), the phase diagram is shown for the
set of parameters: BM = 1, B� = 1, C� = 2, λ1 = 0.5, and
λ2 = −0.05. The blue line denotes the superconducting phase
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transition, the red line denotes the ferromagnetic phase transi-
tion, and the thick black line denotes where these transitions
become first order. First, note that our minimal phenomenolog-
ical model is able to produce the general structure of the phase
diagram of UCoGe, namely, the existence of the four phases:
a normal phase (N), a purely ferromagnetic phase (FM), a
ferromagnetic superconducting phase (FM+SC), and a purely
superconducting phase (SC).

The existence of the SC phase deserves further comment
as previous works found that the superconducting order was
always accompanied by ferromagnetic order [25]. We find
that for C� = 0, this is indeed the case. The reason for this
is apparent by examining the form of V1 = λ1M(|�↑↑|2 −
|�↓↓|2). Because V1 is linear in M , when |�↑↑|2 − |�↓↓|2 is
nonzero, the minimum of free energy must be shifted away
from M = 0. In order to stabilize a purely superconducting
phase, a term that favors |�↑↑|2 = |�↓↓|2 must be present. If
|�↑↑|2 = |�↓↓|2, then V1 vanishes and the superconducting
order can exist with M = 0. A term of the form C�(|�↑↑|2 −
|�↓↓|2)2 with C� > 0 provides such an effect. Its inclusion is
therefore critical to constructing a proper phenomenological
theory for UCoGe.

The existence of the first-order transition in the region near
the N → FM+SC phase transition is found to be a robust
feature of our model insensitive to the choice of parameters.
This agrees with our discussion of the overall cubic order of
V1, and with prior work [25]. The location of the first-order
transition is also as expected—the transition directly from the
N phase to the FM+SC phase is where the magnetic and
superconducting order parameters can grow from zero equally.
Notably, this property of V1 also induces the nearby FM →
FM+SC and SC → FM+SC phase transitions to be first order.

Finally, we comment on the effects of varying λ2 on the
structure of the phase diagram. Shown in Fig. 3(b) is the
phase diagram for the same model parameters as in Fig. 3(a),
except with λ2 = −0.01. Increasing λ2 stabilizes the purely
superconducting phase at more positive values of A� and also
decreases the range of the N → FM+SC transition. Beyond
a certain threshold value for λ2, the N → FM+SC transition
collapses to a point. The case of λ2 = −0.05 is already past this
threshold. However, the overall structure of the phase diagram
is preserved including the existence of the first-order transition.

To summarize, we have presented in this section a simple
Landau free-energy theory appropriate for UCoGe. Our
minimal model is able to reproduce the general structure of

the UCoGe phase diagram and predicts a first-order phase
transition near the boundary between the normal phase and
ferromagnetic superconducting phase. The existence of this
first-order transition is a necessary consequence of the cubic
coupling term between the magnetic and superconducting
order parameters, which is allowed by time reversal symmetry.
As such, we claim its existence to be a robust, generic property
of UCoGe independent of any specific microscopic model.

VI. DISCUSSION

In this paper, we have constructed a phenomenology of
the phase diagram of UCoGe, and have argued that the
superconductivity in this system is an electronic analog of the
B-phase of Helium-3. Our argument is based on the proximity
to ferromagnetism, the orthorhombic crystalline symmetry,
and the role of strong spin-orbit coupling. We highlight that
a consequence of such superconducting states is that the
apparent “tetracritical” point in the phase diagram of this
material is absent, and the transitions in its vicinity are likely
first order transitions.

To make further progress, a more microscopic treatment
is clearly desired. In this regard it would be interesting to
obtain information of the topology of the Fermi surface in
this material based on ab initio calculations. This information
would enable us, in conjunction with our phenomenological
arguments above, to state whether Majorana fermion surface
states in this material would be topologically protected. In the
future, we would also like to study topological excitations in
this system; in the low pressure phase where ferromagnetism
and superconductivity coexist, topological excitations are Ising
domain walls for ferromagnetism, and ordinary vortices of
the superconductor. The manner in which such domain walls
trap fermion zero modes is an interesting question and their
experimental signatures remain unclear. We wish to address
these issues in future work.
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