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We analyze the superconducting instabilities in the vicinity of the quantum-critical point of an inversion
symmetry breaking order. We first show that the fluctuations of the inversion symmetry breaking order lead to
two degenerate superconducting (SC) instabilities, one in the s-wave channel, and the other in a time-reversal
invariant odd-parity pairing channel (the simplest case being the same as the of 3He-B phase). Remarkably,
we find that unlike many well-known examples, the selection of the pairing symmetry of the condensate is
independent of the momentum-space structure of the collective mode that mediates the pairing interaction. We
found that this degeneracy is a result of the existence of a conserved fermionic helicity χ , and the two degenerate
channels correspond to even and odd combinations of SC order parameters with χ = ±1. As a result, the system
has an enlarged symmetry U (1) × U (1), with each U (1) corresponding to one value of the helicity χ . Because
of the enlarged symmetry, this system admits exotic topological defects such as a fractional quantum vortex,
which we show has a Majorana zero mode bound at its core. We discuss how the enlarged symmetry can be
lifted by small perturbations, such as the Coulomb interaction or Fermi surface splitting in the presence of broken
inversion symmetry, and we show that the resulting superconducting state can be topological or trivial depending
on parameters. The U (1) × U (1) symmetry is restored at the phase boundary between the topological and trivial
SC states, and allows for a transition between topologically distinct SC phases without the vanishing of the order
parameter. We present a global phase diagram of the superconducting states and discuss possible experimental
implications.
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I. INTRODUCTION

Over the last few decades, it has become clear the
classification of states of matter extends beyond the paradigm
of Landau’s spontaneous symmetry breaking [1–3]. Even
states that have the same symmetries can display distinct
properties due to the topology embedded in their many-
body wave functions. For example, three-dimensional (3D)
superconducting (SC) states, which all break U (1) gauge
invariance, but maintain time-reversal symmetry, can be
further classified by their topological properties [4,5]. Dif-
ferent from conventional s-wave superconductors, these so-
called topological superconductors exhibit exotic quasiparticle
excitations at their boundaries, and at the cores of various
(vortex) defects. Nontrivial topological superconductors have
exciting potential applications in, e.g., topological quantum
computation [6], and this has sparked intense theoretical and
experimental efforts in search of these materials [7–21]. Unlike
most topological insulators, whose topological properties stem
from their band structure alone, topological superconductors
require cooperation between band structure and interactions
for their existence. This makes their prediction in real materials
more challenging. Indeed, most of the predicted topological
superconductors are unconventional superconductors, and the
pairing symmetry is usually odd parity, such as p wave or f

wave [7,22].
In the search for unconventional superconductivity, one

important scenario is where Cooper pairing is mediated by
the soft bosonic fluctuations of collective modes [sometimes
in the vicinity of a quantum-critical point (QCP)], with
examples ranging from liquid 3He [23,24] to heavy-fermion

materials [25]. This scenario has often been suggested as
a possible mechanism for the cuprates [26–29] and Fe-
pnictide [30] superconductors. In this picture, the QCP
underlying the superconducting phase plays an important
role in renormalizing the normal (nonsuperconducting) state
properties, and equally importantly helps determine the pairing
symmetry of the superconducting state.

Along this line of reasoning, Kozii and Fu [31] analyzed
the superconducting instabilities mediated by the fluctuations
of an order that is odd under inversion symmetry and invariant
under time reversal, presumably close to a QCP where the
inversion symmetry is spontaneously broken. Such an order
parameter can emerge from spin-orbit coupled systems with
spontaneously broken inversion symmetry [32–34], and will
couple to the fermionic degrees of freedom via a term of
the form ∼φc

†
kα(dk · σ αβ)ckβ , where σ transforms as spin

under inversion and time reversal, and dk is an odd function
of k. In the ordered state, the Fermi surface splits into
two, as a result of the broken inversion symmetry. On the
other hand, in the disordered phase, the fluctuations of the
inversion breaking order mediate an effective four-fermion
interaction which is attractive in the Cooper channel. As a
result, it was found that, together with conventional s-wave
pairing, there exists also a time-reversal invariant odd-parity
pairing instability. In the simplest case, where dk ∝ k, it is a
p-wave pairing, the same as in the superfluid 3He-B phase.
In that work the authors worked under a restricted, “zeroth
order,” approximation where the pairing interaction mediated
by the parity fluctuations is assumed to be independent of the
transferred momentum and frequency. Within this treatment, it
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was found that, remarkably, the two superconducting channels
have the same onset temperature Tc, and it was speculated
that other interactions, such as the Coulomb interaction, or
an external Zeeman field, could lift this degeneracy and favor
the odd-parity superconducting state. Furthermore, it was also
proposed that the pyrochlore oxide Cd2Re2O7 and doped
SrTiO3 heterostructures are candidate materials for this type
of unconventional superconductor.

This analysis leaves open a number of important issues.
First, the analysis was based on approximating the propagator
mediated by parity fluctuations to be independent of momen-
tum and frequency, while in reality they become strongly
dependent on the transferred momentum and frequency close
to the onset of the inversion symmetry breaking order. Since
the momentum dependence of the effective interaction usually
plays an important role in determining the pairing symmetry,
an immediate open question is how it affects the relative
strength of the odd-parity pairing instability compared with
the conventional s-wave pairing, when treated with a more
realistic analysis.

Second, the degeneracy between s-wave and odd-parity
pairing channels indicates that the two are strong competitors
below Tc, and their interplay in the superconducting phase
remains to be addressed. It is possible that either one of s-wave
or odd parity channels may order, or they may even coexist.
Indeed, if they do coexist, there is also the question of whether
their relative phase becomes locked, which could lead to a
spontaneous breaking of some discrete symmetry. To study the
interplay between the different SC channels, we will explicitly
expand the free energy to quartic order in terms of the SC
order parameters and determine the coefficients. Third, the
topological properties of the superconducting state(s) remain
to be identified and analyzed, particularly for the possible
coexistence states of s-wave and odd-parity SC orders.

In this article we plan to address all of these issues. We
will usually use the simplest case of the inversion breaking
order as an example, i.e., where dk ∝ k, and the resultant
odd-parity pairing is p wave. We will explicitly show that
the s-wave and the p-wave channels are degenerate, even
when an arbitrary momentum and frequency dependence of the
effective interaction is included. We find that this seemingly
accidental degeneracy has a deeper reason, namely, the effec-
tive interaction conserves the helicity σ · k of fermions on the
FS, since the Yukawa coupling between low-energy fermions
of opposite helicity and the mediating bosonic mode vanishes.
As a result, the fermions of the two different helicities pair
independently, leading to two independent superconducting
order parameters �1 and �2. The even and odd combinations
of �1 and �2 are exactly the s-wave pairing and the odd-parity
pairing, namely, �s/p ∼ �1 ± �2. What is more, from this
reasoning it is clear that the system has a U (1) × U (1)
symmetry at this level. A similar role of the conserved helicity
on the singlet-triplet pairing degeneracy was also noticed [12]
in the context of the phonon superconductor CuxBi2Se3.

In a realistic system, various small perturbations can
lift the degeneracy between s-wave and odd-parity pairing
channels. We show that the Coulomb interaction, which was
not included in the effective interaction, lifts the U (1) × U (1)
symmetry, and favors the odd-parity pairing over the s-wave
one; heuristically because it avoids the short-range repulsion.

On the other hand, the FS splitting in the broken inversion
symmetry phase also lifts the U (1) × U (1) symmetry because
the FS mismatch gives a “residual” coupling between fermions
on FS’s of opposite helicity. This residual interaction favors the
s-wave pairing instead. The combination of these two effects
leads to, in the simplest case where dk ∝ k, a p + s state,
and which superconducting component, �p or �s, is larger
depends on which effect is stronger. We identify that the latter
effect is stronger as the system goes deeper into the ordered
state, and present a global phase diagram for the SC orders in
Fig. 3 as a function of temperature and an extra parameter that
tunes the inversion breaking order.

Interestingly, we will show that, if |�p| > |�s |, then the
system is a topological superconductor, and if |�p| < |�s |,
then it is a topologically trivial one [11,21]. At the phase
boundary between the topological and trivial phases, we
show that, at higher temperatures, the transition between
topologically distinct states occurs through the vanishing of
the SC order parameter on one or more FS, while at lower
temperatures, the transition circumvents the vanishing of the
SC order parameter by taking a path that effectively breaks
time-reversal symmetry due to strong fluctuations of the
relative superconducting phase [35]. Since the two effects that
compete to choose the s- and p-wave pairing are tuned to
cancel at this phase boundary, the two pairing channels are
again degenerate and the U (1) × U (1) symmetry of the free
energy is restored. Such an enlarged symmetry enables exotic
vortex defects, including a fractional quantum vortex [36,37].
The core of the half quantum vortex traps a Majorana zero
mode and has non-Abelian braiding statistics [38,39].

The remainder of this paper is organized as follows. In
Sec. II we introduce the model for the pairing problem near
the onset of an inversion symmetry breaking order. In Sec. III
we show that the s-wave channel and the odd-parity channels
are degenerate. In Secs. IV and V we analyze the origin of
this degeneracy, derive the Ginzburg-Landau free energy up
to quartic order, and present the global phase diagram for the
superconducting order. In Sec. VI we discuss the topological
properties of the superconducting phases and other relations
to experiments. Finally, we present our conclusion in Sec. VII.
We present extra calculational details in the Appendix.

II. MODEL

We consider an isotropic, itinerant electronic system in the
vicinity of an inversion symmetry breaking QCP. Generically,
the inversion symmetry breaking order parameter couples with
the fermion via a bilinear form [31]

Q̂ =
∑
k,αβ

�αβ(k)c†kαckβ, (2.1)

where �†(k) = �(k) and

�(k) = 〈φ〉dk · σ , (2.2)

where the “director” dk = −d−k is odd under inversion, and
the bosonic field φ transforms as a singlet under inversion
and time reversal. The order parameter � breaks inversion
symmetry but not time-reversal symmetry, which dictates that
the Pauli matrices σ = (σ 1,σ 2,σ 3) are even under inversion
and odd under time reversal. They can represent the actual
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electron spin operators [33] (with the caveat that in order to
stabilize the inversion breaking order in a p-wave channel a
small but finite intrinsic spin-orbit coupling is required [34]),
or pseudospin operators in the so-called “manifestly covariant
Bloch basis” (MCBB) [32] extracted from a multiband spin-
orbit-coupled system. In the ordered phase, 〈φ〉 condenses and
splits of the initially doubly degenerate Fermi surface (FS).
Importantly, on each piece of the FS, the (pseudo)spin σ is
aligned or anti-aligned with dk.

In the disordered phase, 〈φ〉 = 0, but close to the onset of
the inversion symmetry breaking order phase, the fluctuations
of φ = φ(q) are soft and give rise to an effective four-fermion
interaction of the form

SV = −
∑

q

V (q)Q̄(q)Q̄(−q), (2.3)

where q = (ω,q). Here V (q) ≡ 〈φ(q)φ(−q)〉 is the bosonic
propagator of the order parameter field φ associated with
the inversion symmetry breaking, and it generally depends
on both the momentum and frequency transfer (and is what
was approximated to be independent of both in Ref. [31]).
The boson-fermion vertex is given by a Yukawa-type coupling
term

Q̄(q) =1

2

∑
k

c
†
k+qα[(dk + dk+q) · σ αβ]ckβ. (2.4)

In the following sections we consider the types of supercon-
ducting order mediated by this effective interaction.

III. DEGENERACY OF s-WAVE AND ODD-PARITY
SUPERCONDUCTING CHANNELS

In this section we study the superconducting instabilities
from the interaction given by Eq. (2.3). We first consider a two-
dimensional (2D) system with an isotropic (circular) Fermi
surface (FS) with a parabolic fermionic dispersion. At the end
of this section we generalize this treatment to the isotropic 3D
case with a spherical FS. We further assume a specific case
where dk = λk/kF , where kF is the Fermi momentum and λ

is a dimensionless parameter. We will show that in this case
the odd-parity superconducting pairing is naturally of p-wave
symmetry, and we will later generalize the results to other
forms of dk. The two superconducting order parameters in the
s-wave channel and p-wave channel that we consider are given
by

Hs =�s
αβc

†
kαc

†
−kβ = �s iσ

y

αβ c
†
kαc

†
−kβ

and

Hp =�
p

αβc
†
kαc

†
−kβ = �p k̂ · (iσσy)αβ c

†
kαc

†
−kβ. (3.1)

In particular, for k̂ = (kx,ky)/kF , the p-wave order parameter
is identical to that of the 3He-B phase [23,24], which is odd in
parity, but is invariant under time reversal and rotation in both
spin and momentum space. It is well known that this form
of p-wave pairing generates a topological superconducting
phase [4,5]. For simplicity we will refer to this specific type
of order as p wave in the following.

Now let us consider the weak coupling case, for which the
system is close to, but still away, from the quantum critical

FIG. 1. (a) The diagrams for the linear gap equations for the SC
orders �s and �p , represented by the shaded triangle. (b) The fermion
momenta k and k′ on the FS in the rotated basis [see Eq. (3.7)].

point (QCP) of the inversion breaking order. In this situation,
contributions to the bosonic and fermionic self-energies can
be neglected at the lowest-order of approximation, and the
SC instability is obtained by summing up a suitable set of
ladder-type diagrams, which we show in a compact form in
Fig. 1(a).

The linearized gap equations that determine the ordering
instabilities can be expressed as

�αβ(k′) = 1

4

∑
k

G(k)G(−k)V (k − k′)�δγ (k)

× [(dk + dk′ ) · σ αδ][(d−k + d−k′) · σ βγ ], (3.2)

where � is either �s or �p. Here

G(k) = G(ωm,k) = 1

iωm − vF · k
(3.3)

is the fermionic Green function near the FS, and V (k − k′) is
the propagator of the bosonic field φ,

V (k − k′) = 1

(ωm − ω′
m)2 + (k − k′)2 + ξ−2

, (3.4)

where ξ is the correlation length of the fluctuations of the
inversion symmetry breaking order parameter.

The product of Green functions in Eq. (3.2) is logarithmi-
cally divergent in the infrared, and in the limit T � vF ξ−1, the
integration over momentum perpendicular to the FS sets both
k and k′ on the FS (i.e., the Eliashberg approximation). For a
circular FS, and for dk = λk̂, the SC gap becomes a function
of FS angle only, �(k) = �(k̂). After integrating over the
perpendicular momentum, we then have

�αβ(k̂
′
) = − N (0)λ2

4
log

(�

T

) ∫
dθ (k̂)

2π
V (k̂ − k̂

′
)�δγ (k̂)

× [(k̂ + k̂
′
) · σ αδ][(k̂ + k̂

′
) · σ βγ ], (3.5)

where θ (k̂) is the FS angle, � is the upper energy cutoff, and
N (0) is the density of states near the FS. For convenience we
define

κc ≡ N (0)λ2

4
log

�

T
. (3.6)

Next we show that both �s and �p are eigenfunctions
of the angular integration kernel in Eq. (3.5), and they are
degenerate. To see this, it is most convenient to work in a
rotated basis where k̂

′ = x̂, and we define the angle between
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k and k′ as θ [see Fig. 1(b)]. In this basis,

(k̂ + k̂
′
) · σ αδ = σx

αδ(1 + cos θ ) + σ
y

αδ sin θ,

�s
δγ (k̂) = �s(iσ y)δγ , (3.7)

�
p

δγ (k̂) = �p
( − cos θσ z

δγ + i sin θδδγ

)
.

Plugging these identities into the right-hand side of Eq. (3.5),
we find that the right-hand side for �s,p is given by

I s = − κc�
s

∫
dθ

2π
V (θ )[σx(1 + cos θ ) + σy sin θ ]

× (iσ y)[σx(1 + cos θ ) + σy sin θ ]T , (3.8)

Ip = − κc�
p

∫
dθ

2π
V (θ )[σx(1 + cos θ ) + σy sin θ ]

× (− cos θσ z + i sin θ )[σx(1 + cos θ ) + σy sin θ ]T .

(3.9)

After some Pauli matrix algebra, we can write

Is =κc�
s(iσ y)

∫
dθ

2π
V (θ )(2 + 2 cos θ ) ≡ V0κc�

s(k̂
′
),

Ip =κc�
p(−σ z)

∫
dθ

2π
V (θ )(2 + 2 cos θ ) ≡ V0κc�

p(k̂
′
),

(3.10)

where in the last step of each equation we used Eq. (3.7) at
θ = 0, and we have defined

V0 ≡
∫

dθ

2π
V (θ )(2 + 2 cos θ ). (3.11)

From this we see that the s-wave and the p-wave channels
are indeed degenerate. Combined with Eq. (3.6), the critical
temperature is given by

Tc = �e−1/(κcV0) = � exp

(
− 4

λ2N (0)V0

)
(3.12)

for both orders.
Note that, the momentum dependence of the bosonic

fluctuations V (θ ) turns out to play no role in distinguishing
the critical temperatures for the s-wave and p-wave pairing
channels. Thus, even though a degeneracy between these two
channels was obtained in Ref. [31] by approximating V (θ ) as
a constant, we have now shown that this conclusion applies for
any form of V (θ ). This is surprising since, in many well-known
cases of unconventional superconductivity, the momentum
dependence of the bosonic fluctuations typically has a strong
effect on selecting the pairing symmetry. For example, in the
3He-A phase [23,24] the p-wave pairing channel is enhanced
by ferromagnetic fluctuations peaking around Q = 0; in
high-Tc cuprate [28] and Fe-pnictide [30] superconductors
the d-wave and s±-wave pairing channels are enhanced by
antiferromagnetic fluctuations peaking around Q = (π,π ) and
Q = (π,0)/(0,π ), respectively. Also, in the candidate chiral
superconductor Sr2RuO4, it has been speculated that the
p-wave pairing channel is enhanced by spin fluctuations with
momentum Q = 2kF due to the nearly nested β band [40,41].
However, the situation that we have here is distinct from all
of the examples above since we find a strong tendency for
p wave (or s wave) no matter what the momentum structure

of the bosonic modes is. We will show in the next section
that there is a deeper reason for this robust degeneracy, and
uncover why the p-wave instability discussed here is not fine
tuned and does not rely on any peak structure of the bosonic
susceptibility in momentum space.

We can easily see that the degeneracy between the s- and
p-wave SC orders extends to the case of a 3D spherical FS as
well. In the gap equation (3.5), one can always define θ in a
rotated x̂, ŷ basis within the 2D plane formed by k and k′, and
the only difference in the 3D case would be that one needs to
integrate over an additional ϕ angle, but rotational invariance
implies that the resulting integrals are independent of ϕ and
the degeneracy persists.

Finally, we note that our analysis can be generalized to any
odd-parity pairing channel of higher angular momenta l =
2n + 1. To obtain odd-parity pairing instabilities with higher
l’s, the corresponding QCP required is characterized by a dk

with the same winding number l over the FS. The analysis of
the SC orders is similar to that above, and the only difference
would be replacing cos θ and sin θ in Eqs. (3.7)–(3.11) with
cos lθ and sin lθ , and the p-wave order with a more general
form

Hodd = �odd d̂ k · (iσσy)αβ c
†
kαc

†
−kβ. (3.13)

Therefore, in the vicinity of such a QCP, the s-wave channel
and odd-parity pairing channel with l = 2n + 1 are degen-
erate. Without loss of generality, we simply use the case
where l = 1 (namely the p-wave case) as an example of
the odd-parity pairing for the rest of this article, and our
conclusions naturally apply for QCP’s with any l.

So far we have considered a system close to but away
from the QCP. The full quantum-critical pairing problem is
more complicated [26,28,42–49] in the sense that (i) bosonic
and fermionic self-energies and vertex corrections can have
nonanalytic behavior and generally cannot be neglected, (ii)
the Eliashberg approximation which confines the important
fermionic degrees of freedom to the vicinity of the FS is gener-
ally invalid, and (iii) the contribution from nonladder diagrams
is generically comparable to that from the ladder diagrams.
These issues have been studied and addressed in previous
works [27,28,43,45,46,49–53] for different quantum critical
pairing problems within a large-Nf framework, where Nf

corresponds to the number of fermionic flavors. In particular,
it was found that the Eliashberg approximation and the ladder
approximation become exact in the Nf → ∞ limit. Within
our work, we refrain from presenting a full quantum-critical
analysis, but instead simply assume the degeneracy described
above holds in the critical regime, at least approximately.

IV. THE U(1) × U(1) SYMMETRY

A. Free energy of the superconducting order parameters

We begin by considering first the simplest case of a
p-wave inversion breaking order that yields a degeneracy
between s-wave and p-wave superconducting order as an
example. Due to this degeneracy, near the critical temperature
for the superconducting thermodynamic phase transition the
free energy has the form F = α(|�s |2 + |�p|2) + O(�4) at
quadratic order.
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βs βp βm βm

FIG. 2. The diagrams for β coefficients in which �s is repre-
sented by wavy lines and �p by double lines. The fermion lines
merging at a given vertex carry opposite frequencies and momenta.

At quartic order, the free energy is generically given by

F = α(|�s |2 + |�p|2) + βs |�s |4 + βp|�p|4

+ βm|�s |2|�p|2 + β ′
m

[
�2

s (�∗
p)2 + �2

p(�∗
s )2

]
. (4.1)

For generic coefficients, this free energy has the expected
global U (1) symmetry of a superconductor. For our case, the
coefficients βs , βp, βm, and β ′

m in Eq. (4.1) can be directly
calculated and are given by the square Feynman diagrams
shown in Fig. 2. Their explicit expressions are

βs = β

4
Tr[(iσ y)(iσ y)†(iσ y)(iσ y)†] = β

2
,

βp = β

4
Tr[(i k̂ · σσy)(i k̂ · σσy)†(i k̂ · σσy)(i k̂ · σσy)†]

= β

2
,

βm = β Tr[(i k̂ · σσy)(i k̂ · σσy)†(iσ y)(iσ y)†] = 2β,

β ′
m = β

4
Tr[(i k̂ · σσy)(iσ y)†(i k̂ · σσy)(iσ y)†] = β

2
, (4.2)

where β is the momentum and frequency integral over the four
Green functions, given by

β =
∑
m,k

G2(ωm,k)G2(−ωm, − k) =
∑
m,k

1(
ω2

m + ε2
k

)2 , (4.3)

and εk is the fermionic dispersion. Equation (4.3) yields a
temperature dependence of β, both for a 2D or 3D FS, that
goes as 1/T 2, however the exact numerical coefficient is not
of particular interest to us here.

The free energy in terms of �s and �p up to quartic order
is then

F = α(|�s |2 + |�p|2) + β

2
(|�s |4 + |�p|4)

+ 2β|�s |2|�p|2 + β

2

[
�2

s (�∗
p)2 + �2

p(�∗
s )2]. (4.4)

This free energy has an additional symmetry that can be made
more transparent if we define

�1 = (�s + �p)/
√

2, �2 = (�s − �p)/
√

2. (4.5)

After some algebra, one can rewrite Eq. (4.4) in the much
simpler form

F = α(|�1|2 + |�2|2) + β(|�1|4 + |�2|4) + · · · . (4.6)

Hence, we see that, at least to quartic order, �1 and �2

decouple, and the symmetry of the free energy is actually

U (1) × U (1). Next we will analyze the origin of this de-
coupling, and show that it actually holds to all orders in the
Ginzburg-Landau expansion.

B. Origin of the enlarged symmetry

The degeneracy of s-wave and p-wave pairing, and the
enlarged U (1) × U (1) symmetry, is not accidental, and holds
beyond a low order perturbative expansion in �. To see
this, observe that the Hamiltonian HSC, given by Eqs. (3.1)
and (4.5), is

HSC ≡Hs + Hp

=
√

2�1c
†
k

(
1 + k̂ · σ

2

)
(iσ y)(c†−k)T

+
√

2�2c
†
k

(
1 − k̂ · σ

2

)
(iσ y)(c†−k)T , (4.7)

where c
†
k = (c†k↑,c

†
k↓). We define the fermionic helicity χk ≡

k̂ · σ and the helicity projection operator

P±(k) ≡ 1 ± χk

2
. (4.8)

This operator projects the single-particle fermion states,
created by c

†
k, onto helicity eigenstates with χk = ±1, namely

ck,± ≡ P±(k)ck, χkck,± = ±ck,±. (4.9)

It is easy to show that P±(k) satisfies P±(k)2 = P±(k) and

P±(k)σy = σyP±(−k)T . (4.10)

Using these properties, we further obtain that

HSC =
√

2�1c
†
k,+(iσ y)(c†−k,+)T +

√
2�2c

†
k,−(iσ y)(c†−k,−)T ,

(4.11)

where ck,± ≡ P±(k)ck. Therefore, we identify �1 and �2 as
the superconducting order parameters that couple to fermions
with helicity ±1, respectively.

It turns out that the helical pairing fields �1 and �2 enable a
more straightforward understanding of the enlarged symmetry,
even though �s and �p are more physically transparent. We
first notice that the boson-fermion vertex for fermions on the
FS with momentum k and k + q, given by Eq. (2.4), can be
rewritten as

Q̄(q) = 1

2

∑
k

c
†
k+qα[(dk + dk+q) · σ αβ]ckβ

= λ

2

∑
k

c
†
k+qα(χk + χk+q)αβckβ, (4.12)

where we have used dk = λk̂ on the FS. It is clear that the
vertex Q̄(q) only couples fermions with the same helicity, since
otherwise χk + χk+q = 0. Hence, the fermions in different
helicity sectors completely decouple.
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In the helicity basis, the interaction vertex has a much
simpler form

Q̄(q) = λ
∑
kα

[(c†k+q,+)α(ck,+)α − (c†k+q,−)α(ck,−)α]

= λ
∑

k

cos(θ/2)[c†k+q,+ck,+eiϕ/2 + c
†
k+q,−ck,−e−iϕ/2].

(4.13)

In the last line we used the fact that the spin orientations of, say,
c
†
k+q,+ and ck,+ are different, hence the inner product in the

(pseudo)spin space is cos(θ/2)eiϕ/2, where (θ,ϕ) characterizes
the angles between k and k + q in 3D.

We can now obtain the linearized gap equations for the
helical pairing fields �1 and �2. Within the Eliashberg
approximation, the important fermionic degrees of freedom
are close to the FS. After integrating over momenta normal to
the FS and over frequency, we have

�1,2 = − 4κc

∫
dθ

2π
V (θ ) cos2(θ/2)�1,2. (4.14)

Recalling Eq. (3.11), we obtain a critical temperature Tc that is
identical to that in Eq. (3.12). Indeed, since �1 and �2 are just
linear combinations of �s and �p, their critical temperatures
have to be the same, and none of these critical temperatures
depend on the form of the bosonic propagator V (θ ).

To summarize, in this subsection we have shown that: (i)
the fermionic interaction mediated by the fluctuations of the
inversion breaking order in Eq. (2.3) is diagonal in the helicity
basis, and (ii) fermions within each helicity sector form Cooper
pairs (leading to pairing fields �1 and �2) separately. There-
fore, each pairing field has an independent U (1) symmetry.
This is the origin of the U (1) × U (1) symmetry in Eq. (4.6).
From the argument above we also see that the decoupling of
�1 and �2 will hold at all orders of the Ginzburg-Landau
expansion.

V. LIFTING (AND RESTORING)
THE ENLARGED SYMMETRY

The decoupling between �1 and �2 relies on the fact that
the boson-fermion interaction vertex induced by the inversion
breaking QCP only couples fermions with the same helicity.
We now want to consider the stability of this symmetry in
a realistic system. We expect that this enlarged symmetry
generically will only be approximate, and, except for some
fine-tuned cases, the U (1) × U (1) symmetry is explicitly
broken down to a single U (1) symmetry. For simplicity we
will focus our discussion in a clean system; we note that the
possible role of magnetic impurities on the pairing symmetry
has been analyzed very recently for a noncentrosymmetric
system in Ref. [21].

We can argue for this breakdown as follows. To begin
with, we have not yet addressed the effect of the screened
Coulomb interaction. The Coulomb interaction acts in the
density-density channel, and thus generically couples fermions
with opposite helicities, inducing an effective Josephson
tunneling term (between the two species of fermions) that
will take the form ∼�1�

∗
2 in the free energy. This term breaks

the U (1) × U (1) symmetry by locking the relative phase of the

two components of the superconducting order parameter. The
repulsive nature of the screened Coulomb interaction prefers
the system to have a sign change in the gap function, since
this will cancel the on-site wave function of the Cooper pair
and avoids the short-range repulsion. Thus, up to quartic order
terms, the free energy becomes

F = α(|�1|2 + |�2|2) + αC(�1�
∗
2 + �∗

1�2)

+ β(|�1|4 + |�2|4), (5.1)

where αC > 0. A simple analysis of this free energy yields
that for the ground state, �1 = −�2, and from Eq. (4.5), we
see that this represents a pure p-wave state.

Another important complication arises in the ordered phase
of the inversion symmetry breaking order parameter φ. In
this case the FS splits into two with Fermi momenta kF1 and
kF2, respectively, and each having a fixed helicity χk = ±1
on the entire FS. To leading order, kF1 − kF2 ∝ 〈φ〉. The
helical pairing fields �1 and �2 are still well defined with
the two split FS, and in the ordered state 〈φ〉 �= 0, the
fluctuations of the φ field about its mean-field value mediate
an attractive interaction for �1 and �2. In general, the analysis
of the pairing problem in the symmetry-broken phase is more
complicated [54,55], since the splitting of the FS renormalizes
both the bosonic propagator and the boson-fermionic vertex.
However, as far as the pairing symmetry is concerned, the
explicit form of the bosonic propagator does not matter, and
for our case dk = λ(|k|)k̂ still holds, as long as rotational
invariance is preserved [34]. Thus much of our analysis on
the pairing symmetry in the disordered phase naturally carries
over to the ordered state. However, in this case the cancellation
of interhelicity coupling in the boson-fermion vertex, namely
Eq. (4.12), does not hold.

Let us take a closer look at this question. For the case
of l = 1, dk = λ(|k|)k̂, but the values of λ for the low-energy
fermions on the two FS are not the same. Denoting λ(kF1) = λ1

and λ(kF2) = λ2, we have λ1 − λ2 ∝ kF1 − kF2 ∝ 〈φ〉, and for
the fermionic part of the vertex,

Q̄(q) =
∑
kα

{
λ1(c†k+q,+)α(ck,+)α − λ2(c†k+q,−)α(ck,−)α

+ λ1 − λ2

2
[(c†k+q,+)α(ck,−)α − (c†k+q,+)α(ck,−)α]

}
,

(5.2)

which is no longer diagonal in the helical basis. The result of
the residual off-diagonal interaction, which now can couple
fermions with opposite helicities, is that �1 and �2 are
again linearly coupled. However, in this case this residual
interaction is attractive in the pairing channel, just like the
pairing interactions within each helical sector. Thus it prefers
�1 and �2 to be of the same sign, which will maximize the
condensation energy.

Now, together with the effect of the Coulomb interaction,
the free energy for �1 and �2 in the ordered phase 〈φ〉 �= 0
becomes

F = α1|�1|2 + α2|�2|2 + (αC − αS)(�1�
∗
2 + �∗

1�2)

+ β1|�1|4 + β2|�2|4 + · · · , αC,S > 0. (5.3)
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The magnitude of αS is larger for a larger interhelicity
interaction strength, which is proportional to (λ1 − λ2)2, and
hence increases as the FS splitting increases, i.e., as 〈φ〉
increases. The coefficients α1, α2, β1, and β2 can be obtained by
a Hubbard-Stratonovich transformation and then integrating
out the low-energy fermions with both helicities. Using the
standard technique, we obtain

α1 = 1

g1
−

∑
m,k

1

ω2
m + ε2

1k

, α2 = 1

g2
−

∑
m,k

1

ω2
m + ε2

2k

,

β1 =
∑
m,k

1(
ω2

m + ε2
1k

)2 , β2 =
∑
m,k

1(
ω2

m + ε2
2k

)2 , (5.4)

where g1,2 ∝ λ1,2 are the effective couplings in the SC channel
for the FS with helicity ±1, respectively, and the two fermionic
dispersions can be approximated by ε1k � vF (|k| − kF1) and
ε2k � vF (|k| − kF2), respectively.

Note that the same free energy as Eq. (5.3) can also be
derived in terms of �s and �p. However, the derivation is
much more tedious since: (i) the Green functions in a general
basis have a matrix form, and (ii) the inversion symmetry
is broken, and hence many more terms, such as �s�

∗
p and

|�s |2�s�
∗
p, are allowed in the free energy. As a check we

have verified that it leads to the same result as in Eq. (5.3), and
present the technical details in the Appendix A.

The ground state configuration of Eq. (5.3) depends now on
the sign of αC − αS . For αC > αS , the relative phase between
�1 and �2 is π . Note that since α1 �= α2 and β1 �= β2, the
magnitudes of �1 and �2 are different. Simple algebra shows
that, in terms of the s-wave and p-wave order parameters,
this corresponds to a state where �s = ε�p, where ε is a
real number (hence time reversal is not broken) and |ε| <

1. We denote this state as a p + εs state. This mixing of s-
and p-wave channels [56] can be viewed as a result of the
broken inversion symmetry due to 〈φ〉 �= 0. On the other hand,
for αC < αS , the phase difference between �1 and �2 in the
ground state is 0, and this corresponds to �p = ε�s . We denote
this state as s + εp. We show in the next section that the p + εs

state is a topological superconducting state, while the s + εp

state is trivial.
Interestingly, when αC = αS , i.e., at the phase boundary

between p + εs and s + εp, in Eq. (5.3), �1 and �2 decouple
from each other, and the U (1) × U (1) global symmetry is
restored in the free energy. Since α1 �= α2, there exist two
mean-field transition temperatures T1 and T2, corresponding,
respectively, to the onset of |�1| �= 0 and |�2| �= 0. Note that,
away from the phase boundary, only the higher transition
temperature matters since, away from the αC = αS line, �1 and
�2 are coupled, and either one of them developing a nonzero
magnitude immediately induces the other one. Without loss of
generality, we assume that T1 > T2.

We can summarize the analysis in this section in the
mean-field phase diagram shown schematically in Fig. 3.
On the disordered side of the inversion symmetry breaking
order φ, the SC order is of p-wave symmetry, and is
hence a time-reversal invariant topological superconductor. On
the ordered side, the SC order is an admixture of p-wave
and s-wave orders, and which one is larger in magnitude
depends on the interplay between αS and αC . As discussed

pp+ s

s+ p

Inversion 
breaking order

x

s+ p p+ s
T 2

1
T T

FIG. 3. The mean-field phase diagram for the inversion symmetry
breaking order and the superconducting orders. Main figure: The
x axis is an arbitrary parameter controlling the onset of the
inversion symmetry breaking order. The pairing symmetry of the
superconducting orders are labeled. The dotted line separate phases
with the same symmetry but with different topological classification.
Close to this dotted line the system has an approximate U (1) × U (1)
symmetry. For simplicity we have presumed the phases extend to the
quantum-critical regime. Inset: Details of the phase diagram at the
topological phase boundary. Due to the U (1) × U (1) symmetry there
exist two transition temperatures T1 and T2.

above, αS is an increasing function of the expectation value
φ, hence we expect an p + εs state immediately into the
inversion breaking order phase, and a s + εp state deep into
the ordered region (assuming that the screened Coulomb
interaction is approximately a constant strength). The s + εp

state and p + εs state have an identical classification as far
as symmetry is concerned, but as we will show below, they
have distinct topological classifications. It is exactly at the
phase boundary between s + εp and p + εs states that the
U (1) × U (1) symmetry is restored in the free energy, and at
which there generically exist two transition temperatures T1,2

corresponding to the two U (1).

VI. PROPERTIES OF THE SUPERCONDUCTING STATE

A. Topological characterization of the superconducting states

First, we discuss the topological properties of the su-
perconducting states. Both the p + εs state and the s + εp

state preserve time-reversal symmetry and have fully gapped
fermionic quasiparticles on their helical FS’s. Thus, these
states are candidates for time-reversal invariant topological
superconductors. For the 3D case, in the weak-coupling limit
we are considering, their topology can be determined by
computing the FS topological index [57]

NW = 1

2

∑
i=1,2

sgn(�i)Ci, (6.1)

where sgn(�i) is the sign of the pairing field on the Fermi
surface i, and Ci is the winding/Chern number of the Berry
curvature piercing the closed Fermi surface. For the 2D case,
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by a dimensional reduction procedure, the topology is charac-
terized by a Z2 topological invariant N2D = (−1)NW [57].

In our case, where dk ∝ k and the inversion breaking
order has p-wave character C1 = −C2 = +1 (without loss
of generality). For the pure superconducting p-wave state and
the p + εs-wave state, the �1 and �2 fields on the two helical
FS’s have opposite signs, and hence NW = ±1. For the s + εp

state, �1,2 have the same sign and NW = 0. Therefore, in
both 2D and 3D cases, the system is a time-reversal invariant
topological superconductor in the p and p + εs states, while it
is topologically trivial in the s + εp state. We note in passing
that, strictly speaking, the topological indices are sharply
defined only at T = 0, but we presume that the topological
properties of the superconducting states at T = 0 survive at
finite temperature.

The phase boundary between the s + εp and p + εs states
characterizes a phase transition where the topological index
changes. For T2 < T < T1, we have �1 �= 0 and �2 = 0 on
the phase boundary, which means that at the “topological”
phase transition, the SC order parameter on one of the
two FS vanishes. However, interestingly, for T < T2, both
|�1,2| �= 0 at the phase boundary and the transition between
the topological and trivial states occurs without a vanishing
SC order parameter. Extrapolating to T = 0, we see that
at this phase boundary the system undergoes a topological
phase transition without a gap closing of the fermionic
quasiparticles [35]. This is possible because the relative phase
of �1 and �2 is not fixed on this boundary, and there is a
gapless bosonic critical mode present. This critical mode can
be regarded as a Leggett mode [58], which plays the role
of a Goldstone mode of the additional spontaneously broken
U (1) phase symmetry at the phase boundary (see Sec. VI D
for details). In this regime of temperature, one can have a
path connecting the topological state to the trivial state where
the relative phase can smoothly rotate from 0 to π . However,
time-reversal symmetry would be broken along this path, and
the topological index in Eq. (6.1) is ill defined [35]. Thus, in
this second mechanism, the transition between a topological
superconductor and a trivial one circumvents the vanishing of
the SC order parameter. We illustrate the two topological phase
transition paths with and without fermionic “gap closing” in
Fig. 4.

s+ p p+ s

T 2

T 1(a)

(b)

T 1

FIG. 4. The phase transition between the trivial s + εp state and
topological p + εs state. For T2 < T < T1 [case (a)] the transition
occurs with a vanishing SC order parameter �2 = 0, with �1 �= 0,
while for T < T2 [case (b)] the transition occurs with �1 �= 0 and
�2 �= 0. At T = 0 there is a quantum phase transition between these
two superconducting states without a gap closing of the fermionic
quasiparticles but by going through a path that breaks effectively the
time-reversal symmetry.

B. Topological defects at the topological phase boundary

Along the topological phase boundary, the system has a
U (1) × U (1) global symmetry in the free energy. Owing to
this enlarged symmetry, various topological defects can now
exist.

For the 2D case, the system supports two types of
superconducting vortices. The first type is a fractional vortex,
where only one of the the SC order parameters has a phase
winding [39,59]. In this case the magnetic flux through the
vortex is a fractional multiple of h/2e. To see this, we write
down the free energy in terms of the two phase modes

F = ρ1

2
(∇φ1 − 2eA)2 + ρ2

2
(∇φ2 − 2eA)2, (6.2)

where ρ1,2 ∝ |�1,2|2 are the superfluid stiffnesses of the two
superconducting components, and �1,2 = |�1,2| exp(iφ1,2).
For simplicity, first consider the case ρ1 = ρ2 ≡ ρ, where the
free energy takes the even simpler form

F = ρ

4
[∇(φ1 + φ2) − 4eA]2 + ρ

4
[∇(φ1 − φ2)]2. (6.3)

For a vortex in which only one phase angle winds, say φ1,
we can easily see that the magnetic flux through this vortex
is � = hc/4e, one half of the standard superconducting flux
quantum �0 = hc/2e. In this case, this is just a half-quantum
vortex.

For our case, the U (1) × U (1) symmetry occurs in the
inversion broken phase, and ρ1 �= ρ2. Then we can rewrite
Eq. (6.2) as

F = ρ1 + ρ2

2

[
ρ1

ρ1 + ρ2
∇φ1 + ρ2

ρ1 + ρ2
∇φ2 − 2eA

]2

+ ρ1ρ2

2(ρ1 + ρ2)
[∇(φ1 − φ2)]2. (6.4)

A simple calculation [36] shows that for vortices in φ1 and φ2

alone, the fluxes are, respectively,

�1 = �0ρ1

ρ1 + ρ2
, �2 = �0ρ2

ρ1 + ρ2
, (6.5)

i.e., both �1 and �2 are fractional, and their sum is the full
flux quantum. From the second term of Eq. (6.4) we see the
fractional vortices are logarithmically confined. Away from the
phase boundary between p + εs and s + εp, these fractional
vortices become linearly confined, but they are expected to
still exist if one presumes that the Coulomb interaction and
FS splitting are weak. This analysis is similar to what is
found in pair-density-wave phases [37,60,61] and in px + ipy

superconductors [62].
A second type of vortices are the conventional full quantum

vortices, described by a simultaneous winding of both φ1 and
φ2 around a defect. The penetrating flux is the conventional
value of �0 = hc/2e. The vortex-vortex interaction, as can be
seen from Eq. (6.4), is screened by A at length scales larger
than the penetration length λ.

In two spatial dimensions, there can be no continuous sym-
metry breaking at finite temperatures due to phase fluctuations.
However, below the two mean-field temperatures, the phases
of the superconducting order parameters can develop quasi-
long-range order via Berezinskii-Kosterlitz-Thouless (BKT)
transitions. In the type-II limit where the screening length λ is
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much smaller than the size of the vortex core ξ , the screening
effect can be neglected, and each one of φ1 and φ2 goes through
a BKT transition. In this case the low temperature phase is a
superconducting one. However, it was found in Ref. [36] that in
the (opposite) type-I limit where λ � ξ , the first term of (6.4)
is completely screened. The second term in Eq. (6.4) then gives
a single BKT transition temperature

TBKT = πρ1ρ2

4(ρ1 + ρ2)
, (6.6)

where we have assumed ρ1,2 are constants in temperature.
Below this temperature the relative phase φ1 − φ2 is quasi-
long-range ordered, while φ1,2 individually remain disordered.
Thus, the system exhibits a nonsuperconducting quasisuper-
fluid behavior [36]. In this case the fractional vortices combine
into full ones, but the latter remain deconfined.

It is well known that the core of vortices can trap localized,
fermionic bound states. For a fractional vortex, at its core
there is a phase winding of only one of the pairing fields,
and the other pairing field remains smooth. Because of the
nontrivial texture of the Fermi surface, one can easily deduce
that the half quantum vortex will localize a single Majorana
zero mode [63,64], which has non-Abelian braiding statistics.
The core of the full quantum vortex traps two zero modes.
Each zero mode originates from one of the Fermi surfaces with
winding number ±1. In the absence of time-reversal symmetry,
the two zero modes can interact each other and get split away
from the zero energy. Thus the full vortex has trivial statistics.

In three spatial dimensions, the U (1) × U (1) symmetry also
supports exotic topological defects. It was found in Ref. [65]
that the U (1) × U (1) model maps onto an O(3) nonlinear σ

model, and hence supports knot solitons [66]. It would be
interesting to see in the current context if the core of the knot
soliton traps exotic zero modes. We leave this to future work.

C. Unconventional Josephson effects

Owing to its unconventional pairing symmetry and nontriv-
ial topology, our system will exhibit unconventional Josephson
effects when tunneling to a conventional s-wave superconduc-
tor. First, on the disordered side of the inversion breaking order,
the system is a p-wave time-reversal invariant topological
superconductor, which has localized Majorana modes at the
junction. It has been found in Ref. [67] that in two and three
spatial dimensions the tunneling to the s-wave superconductor
due to the Majorana modes generates a Josephson current
that has a periodicity of �θ = π , half of the conventional
one. On the other hand, the “regular” Josephson coupling,
i.e., the Josephson effect not mediated by Majorana boundary
modes, can only occur through a two-pair hopping process,
due to the odd parity of the p-wave superconductor. As a
result, the periodicity of this regular Josephson current also
has a periodicity �θ = π , although its amplitude would be
suppressed because the tunneling process is of higher order.
The latter is similar to the recent experimental prediction on
Josephson tunneling between a conventional superconductor
and a pair-density-wave superconductor, which breaks trans-
lational symmetry [37].

On the ordered side of the inversion breaking order,
however, the pairing symmetry is p + εs or s + εp, which

always has an s-wave component. Hence, we expect the
dominant tunneling current will always have a regular period
of �θ = 2π. This is in addition to the possible period-π one
that arises from the tunneling of Majorana bound states if the
SC state is topological.

D. Leggett mode close to the topological phase boundary

The two U (1) fields �1 and �2 are only coupled by a
quadratic term (αC − αS), which is small in the magnitude of
the screened Coulomb interaction strength and the expectation
value of the inversion breaking field φ. This coupling term
locks the relative phase φ1 − φ2 between �1 and �2 in the
ground state at 0 or π . But as long as this coupling is
sufficiently small, namely αC,S � α1,2, there is a low energy
Leggett mode [58] lying inside the superconducting gap and
corresponding to the fluctuations of φ1 − φ2 from its minimum
value. The Leggett mode has been predicted to exist in
superconductors with two SC gaps, e.g., MgB2 [68], however
it has not yet been observed, presumably due to the strong
coupling between the two gaps. However, in our case it would
be interesting to test the existence of a vanishing Leggett gap at
the phase boundary between s + εp and p + εs phases, where
such a coupling is small and tuned to vanish. In other words,
as noted in the previous section, the Leggett mode becomes
the Goldstone boson of the spontaneously broken additional
U (1) symmetry that exists at the phase boundary between the
p + εs and s + εp superconducting phases when below the
(lower) critical temperature T2.

VII. CONCLUSIONS

In this work we have analyzed in detail the pairing
instability in the vicinity of an inversion symmetry breaking
order as a mechanism for odd-parity superconductivity, which
is helpful for the realization of a time-reversal invariant
topological superconductor.

We found that, as a result of an emergent U (1) × U (1)
symmetry, there are two degenerate superconducting channels:
a conventional s-wave channel, and a time-reversal invariant
odd-parity channel (in the simplest case, a p-wave channel).
We showed that the enlarged U (1) × U (1) symmetry emerges
from fermions with opposite helicities that form Cooper pairs
independently of each other. The U (1) × U (1) symmetry
enables an exotic superconducting vortex, namely a fractional
quantum vortex, which binds a single Majorana zero mode
at its core. On the other hand, in a realistic system the
U (1) × U (1) can be lowered to a single U (1) due to coupling
between the fermions with opposite helicities. In particular,
we discussed two scenarios for an interhelicity coupling:
the Coulomb interaction, and Fermi-surface splitting due to
inversion symmetry breaking. The former tends to favor the
p-wave state and the latter favors the s-wave state. Depending
on the interplay between these effects we obtained a phase
diagram for the SC orders, in which the pairing symmetry can
be p, p + εs, or s + εp. Making use of a simple index theorem,
we have identified the p and p + εs states as topological
superconducting states. In addition, we have also discussed
other possible experimental implications, such as a Josephson
tunneling experiment, and the existence of Leggett mode
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corresponding to the fluctuation of the locking angle between
the two U (1) pairing fields.

One issue beyond the scope of this paper, which we leave
as future work, is the pairing problem in the quantum-critical
regime. As mentioned above, in this regime the “normal
state” generally becomes a non-Fermi liquid, and the pairing
problem becomes rather involved [26,28,42–49]. It would be
of theoretical and practical interest to analyze the interplay
between the s-wave and odd-parity pairing channels in the
presence of critical parity fluctuations. Particularly, in the
case where σ represents the actual electron spin, it was found
that the system is close to a Lifshitz multicritical point [34]
by tuning the external spin-orbit coupling. The possible
non-Fermi liquid behavior and low temperature instabilities
around this multicritical point have not been considered before.
Another interesting issue is to analyze the same QCP-mediated
pairing problem when the continuous rotational symmetry
is reduced to point group symmetries [69]. In this case the
U (1) × U (1) symmetry would be broken, but the interplay
between the superconducting orders remains to be seen.
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APPENDIX: ALTERNATIVE DERIVATION OF THE FREE
ENERGY INSIDE THE INVERSION SYMMETRY

BREAKING ORDER

In this Appendix we present another way of obtaining
the free energy of the superconducting orders inside the
inversion symmetry broken phase, namely Eq. (5.3). Instead
of keeping the U (1) × U (1) symmetry explicit by using the
order parameters �1,2, we stick with original parameters �s,p,
which couple to fermions via Eq. (3.1). We show that the result
agrees with Eq. (5.3), although the analysis is significantly
more tedious.

In the ordered state of φ, the Green function is renormalized
to [assuming dk = λ(|k|)k̂]

Ĝ(ωm,k) = [iωm − εk − λ(|k|)φ(k̂ · σ )]−1

= iωm − εk + λ(|k|)φ k̂ · σ

[iωm − εk]2 − λ(|k|)2φ2
. (A1)

To simplify notations we drop the explicitly |k| dependence in
λ(|k|) hereafter.

We first focus our analysis in 2D. In the 3D case we
need to integrate over an additional spherical coordinate ϕ in
the momentum space. However, by rotational invariance this
would not lead to a different result than the 2D case. Denoting
the 2D momentum space by the xy plane, we have in explicit

form

Ĝ(ωm,k) = −1

[iωm − εk]2 − λ2φ2

(
iωm − εk λφe−iθ

λφeiθ iωm − εk

)
,

(A2)

where, we remind, θ is the angle on the FS [see Fig. 1(b)].
One can then use this form of Green function to compute
coefficients of the free energy.

As we said, in the absence of inversion symmetry, more
terms are allowed into the free energy. Most generically the
free energy takes the form

F = ᾱs |�s |2 + ᾱp|�p|2 + αsp(�s�
∗
p + �p�∗

s ) + β̄s |�s |4

+ β̄p|�p|4 + β̄m|�s |2|�p|2 + β̄ ′
m

[
�2

s (�∗
p)2 + �2

p(�∗
s )2

]
+ (βsp|�s |2 + β ′

sp|�p|2)(�s�
∗
p + �p�∗

s ). (A3)

The standard procedure to compute the coefficients of the free
energy is to apply a Hubbard-Stratonovich transformation to
decouple the four-fermion interaction into two parts. The first
part is quadratic in the bosonic order parameter field, whose
coefficient is given by the inverse of the coupling strength in
the corresponding channel. The second part is a Yukawa-type
term between the bosonic field and the fermionic bilinear term.
The fermionic degrees of freedom in the second part can be
integrated out, resulting in quadratic and higher order terms in
the bosonic fields in the free energy.

We focus on the quadratic coefficients first, which has two
parts of contributions. We have

ᾱs = 1

gs

− �̄s, ᾱp = 1

gp

− �̄p, αsp = 1

gsp

− �sp,

(A4)

where we present the diagrams for �̄s , �̄p, and �̄sp in Fig. 5.
We will later determine the value of gs,p,sp by matching with
Eq. (5.3). The polarization operator �̄s in the s-wave channel

Π̄s Π̄p Πsp

β̄s β̄p β̄m

β̄m βsp βsp

FIG. 5. The diagrams for coefficients of the free energy in
Eq. (A3).
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is given by

�̄s =
∑
m,k

Tr[Ĝ(ωm,k)(iσ y)ĜT (−ωm, − k)(iσ y)†]

=
∑
m,k

Tr
[(iωm − εk λφe−iθ

λφeiθ iωm − εk

)( 0 1
−1 0

)(−iωm − εk −λφe−iθ

−λφeiθ −iωm − εk

)T ( 0 1
−1 0

)†]
[(iωm − εk)2 − λ2φ2][(−iωm − εk)2 − λ2φ2]

=
∑
m,k

[
1

(εk + λφ)2 + ω2
m

+ 1

(εk − λφ)2 + ω2
m

]
. (A5)

The last line intuitively mean that the s-wave SC order parameter resides independently on two split FS. We can do the same for
the p-wave polarization operator,

�̄p =
∑
m,k

Tr{Ĝ(ωm,k)[k̂ · (iσσy)]ĜT (−ωm, − k)[k̂ · (iσσy)]†}

=
∑
m,k

Tr
[(

iωm − εk λφe−iθ

λφeiθ iωm − εk

)(−e−iθ 0
0 eiθ

)(−iωm − εk −λφe−iθ

−λφeiθ −iωm − εk

)T (−e−iθ 0
0 eiθ

)†]
[(iωm − εk)2 − λ2φ2][(−iωm − εk)2 − λ2φ2]

=
∑
m,k

[
1

(εk + λφ)2 + ω2
m

+ 1

(εk − λφ)2 + ω2
m

]
, (A6)

where we have used the last line of Eq. (3.7). We note that �s = �p [56]. Just like the s-wave order parameter, the p-wave order
parameter independent resides on two split FS.

Now we move to �sp, which is made nonzero by the explicit breaking of inversion symmetry. A straightforward evaluation
yields

�sp =
∑
m,k

Tr{Ĝ(ωm,k)(iσ y)ĜT (−ωm, − k)[k̂ · (iσσy)]†}

=
∑
m,k

Tr
[(

iωm − εk λφe−iθ

λφeiθ iωm − εk

)( 0 1
−1 0

)(−iωm − εk −λφe−iθ

−λφeiθ −iωm − εk

)T (−e−iθ 0
0 eiθ

)†]
[(iωm − εk)2 − λ2φ2][(−iωm − εk)2 − λ2φ2]

=
∑
m,k

[
1

(εk + λφ)2 + ω2
m

− 1

(εk − λφ)2 + ω2
m

]
. (A7)

We then see that at quadratic order, the free energy is

F = αs |�s |2 + αp|�p|2 + αsp(�s�
∗
p + �∗

s �p) + O(�4)

≡ α1|�1|2 + α2|�2|4 + α12(�1�
∗
2 + �∗

1�2) + O(�4), (A8)

where we have defined in the second line

α1 = 1

2gs

+ 1

2gp

+ 1

2gsp

−
∑
m,k

1

(εk + λφ)2 + ω2
m

,

α2 = 1

2gs

+ 1

2gp

− 1

2gsp

−
∑
m,k

1

(εk − λφ)2 + ω2
m

, (A9)

α12 = 1

2gs

− 1

2gp

.

Comparing with Eq. (5.3) we identify that α12 = αC − αS and that

1

gs

= 1

g1
+ 1

g2
+ (αC − αS),

1

gp

= 1

g1
+ 1

g2
− (αC − αS),

1

gsp

= 1

g1
− 1

g2
. (A10)

Particularly, we see from the first two lines of Eq. (A10) that a positive(negative) value of the coefficient αC − αS favors p(s)-wave
SC order, just like we obtained in the main text.
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Next we consider the quartic coeffiecients in Eq. (A3), and
we show the relevant diagrams in Fig. 5. The procedure is
quite similar to the evaluation of the α’s, only in this case
one need to evaluate the convolution of four Green functions
and four SC vertices. After some lengthy but straightforward
calculation, we find that all β’s can also be expressed in rather
simple forms:

β̄s = β̄p = 1
4 (β1 + β2), β̄m = (β1 + β2),

(A11)
β̄ ′

m = 1
4 (β1 + β2), βsp = β ′

sp = 1
2 (β1 − β2),

where

β1,2 =
∑
m,k

1[
(εk ± λφ)2 + ω2

m

]2 (A12)

are defined the same way as in Eq. (5.4). Plugging these into
Eqs. (A3), together with the results at quadratic order, we find
that the free energy up to quartic order can be expressed as

F = α1|�1|2 + α2|�2|2 + (αC − αS)(�1�
∗
2 + �∗

1�2)

+ β1|�1|4 + β2|�2|4, (A13)

which is identical to Eq. (5.3).
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