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We report on a “source-sink” algorithm which allows one to calculate time-resolved physical quantities from
a general nanoelectronic quantum system (described by an arbitrary time-dependent quadratic Hamiltonian)
connected to infinite electrodes. Although mathematically equivalent to the nonequilibrium Green’s function
formalism, the approach is based on the scattering wave functions of the system. It amounts to solving a set of
generalized Schrödinger equations that include an additional “source” term (coming from the time-dependent
perturbation) and an absorbing “sink” term (the electrodes). The algorithm execution time scales linearly with
both system size and simulation time, allowing one to simulate large systems (currently around 106 degrees of
freedom) and/or large times (currently around 105 times the smallest time scale of the system). As an application
we calculate the current-voltage characteristics of a Josephson junction for both short and long junctions, and
recover the multiple Andreev reflection physics. We also discuss two intrinsically time-dependent situations: the
relaxation time of a Josephson junction after a quench of the voltage bias, and the propagation of voltage pulses
through a Josephson junction. In the case of a ballistic, long Josephson junction, we predict that a fast voltage
pulse creates an oscillatory current whose frequency is controlled by the Thouless energy of the normal part. A
similar effect is found for short junctions; a voltage pulse produces an oscillating current which, in the absence
of electromagnetic environment, does not relax.
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I. INTRODUCTION

As quantum nanoelectronics experiments get faster (in
the GHz range and above) it becomes possible to study
the time-dependent dynamics of devices in their quantum
regimes, i.e., at frequencies higher than the system temperature
(1 K corresponds roughly to 20 GHz). Recent achievements
include coherent single electron sources with a well-defined
release time [1] or energy [2], pulse propagation along
quantum Hall edge states [3–5], and terahertz measurements
in carbon nanotubes [6]. While the mathematical framework
for describing quantum transport in the time domain has
been around since the 1990’s [7,8], a direct integration of
the corresponding nonequilibrium Green’s functions (NEGFs)
is rather cumbersome, even for noninteracting systems—the
focus of this paper—and can only be solved either in restricted
contexts [9–11], or with the help of numerics that scale
polynomially with the number of degrees of freedom/required
simulation time [12–16]. A large effort was made by the
community to come up with more efficient algorithms within
the NEGF or equivalent wave function formalism [17–20].
In particular, the approach of Ref. [21] (to which the present
paper is a sequel) was recently used in a variety of situations,
including electronic interferometers [22,23], quantum Hall
effect [24], normal-superconducting junctions [25], Floquet
topological insulators [26], and the calculation of the quantum
noise of voltage pulses [27].

The best algorithm introduced in Ref. [21] (nicknamed
WF-C) has a computational execution time that scales linearly
with the system size N , but as the square of the total simulation
time. While for ballistic systems this t2

max limitation was not
too stringent, in situations with large separations of time
scales (such as the Josephson junctions studied below), it
makes numerical calculations computationally prohibitive. In
this paper, we present an extension of the previous approach

that reduces the computational complexity down to O(Ntmax).
This is achieved with the addition of non-Hermitian terms,
referred to as “sink” terms, in the Hamiltonian, in addition
to the “source” terms introduced in the WF-C method of
Ref. [21]. This technique remains mathematically equivalent
to the NEGF formalism.

This article is organized as follows. Section II introduces
a general class of models and the time-dependent scattering
states of the system. In Sec. III we briefly recall how a
simple change of variables leads to the introduction of an
additional source term in the Schrödinger equation, which
greatly facilitates the numerical treatment. In Sec. IV we
develop the new part of the algorithm and show how the
introduction of sink terms solves previous difficulties at long
times. Finally, Sec. V discusses applications to the physics
of out of equilibrium Josephson junctions. After recovering
well-known effects [multiple Andreev reflection (MAR) in
both short and long junctions, ac Josephson effect, relaxation
of Andreev bound states], we study the propagation of fast
voltage pulses through Josephson junctions.

II. MODEL

We consider a general class of models describing a quantum
device of finite extent attached to semi-infinite electrodes. The
full system is described by a general quadratic Hamiltonian of
the form

Ĥ(t) =
∑
ij

Hij (t)ĉ†i ĉj , (1)

where ĉ
†
i (ĉj ) are the fermionic creation (annihilation) opera-

tors of a one-particle state on site i (j ). A “site” i typically
labels position as well as other degrees of freedom such as
spin, orbital angular momentum, or electron/hole (as in the
superconducting application below). The Hij (t) are the matrix
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FIG. 1. Sketch of a typical system considered. It consists of
a central scattering region 0̄ attached to semi-infinite leads 1̄, 2̄,
and 3̄. Some of the on-site potentials are time dependent (for
instance, the bold green sites correspond to the sites underneath a
pulsed electrostatic gate) as well as some of the intersite hoppings
(for instance, the blue connections correspond to a time-dependent
magnetic field sent through the central hole).

elements of the Hamiltonian matrix H(t). The system consists
of a time-dependent central region 0̄ connected to several leads
1̄,2̄, . . ., as depicted in Fig. 1. We keep the Hamiltonian of
the central region fully general but restrict the leads to be
semi-infinite, time independent, and invariant by translation
(i.e., they have a quasi-one-dimensional periodic structure).
Each lead remains in its thermal equilibrium at all times. We
further suppose that the time-dependent perturbations are only
switched on at positive times, so that H(t < 0) = H0. Note that
if one has a uniform time-varying potential in one or more of
the leads, then a gauge transformation can always be performed
such that the time dependence is brought into the interface
between the lead and the central region, which can then be
included in the definition of the central region. Typically the
time-dependent part of the Hamiltonian is restricted to rather
small regions, as illustrated in Fig. 1.

Before the time-dependent perturbations are switched on,
the system is characterized by its scattering wave functions
�st

αE that are labeled by their energy E and incoming channel
α,

H0�
st
αE = E�st

αE. (2)

The scattering states �st
αE are standard objects of mesoscopic

physics and can be obtained directly by wave matching the
incoming and outgoing modes at the lead-system boundary.
For complicated geometries these can be obtained numerically
by using, e.g., the KWANT package [28]. A physical observable
Â = ∑

ij Aij ĉ
†
i ĉj (e.g., electronic density or local currents)

can be directly obtained from the knowledge of these wave
functions by simply filling up the one-body scattering states
according to Fermi statistics, using

〈Â〉 =
∑

α

∫
dE

2π
fα(E)�st †

αEA�st
αE, (3)

where fα(E) is the Fermi function of the electrode associated
with channel α. The celebrated Landauer formula for the
conductance is a special case of Eq. (3).

The generalization of Eq. (3) to the time-dependent problem
is rather straightforward: One first obtains the scattering states
and lets them evolve according to the Schrödinger equation

i∂t�αE(t) = H(t)�αE(t), (4)

with the initial condition �αE(t = 0) = �st
αE . The observables

follow from Eq. (3) where the �st
αE are replaced by �αE(t):

〈Â(t)〉 =
∑

α

∫
dE

2π
fα(E)�†

αE(t)A�αE(t). (5)

The fact that such a scheme is equivalent to the NEGF
formalism, or to the scattering approach, was derived in
Ref. [21]. In particular, the central objects of the NEGF
formalism, the so-called lesser (<), greater (>), and retarded
(R) Green’s functions, have simple expressions in terms of the
time-dependent scattering states,

G<
ij (t,t ′) ≡ i〈ĉ†j (t ′)ĉi(t)〉

=
∑

α

∫
dE

2π
ifα(E)�αE(t,i)�∗

αE(t ′,j ), (6)

G>
ij (t,t ′) ≡ −i〈ĉi(t)ĉ

†
j (t ′)〉

=
∑

α

∫
dE

2π
i[fα(E) − 1]�αE(t,i)�∗

αE(t ′,j ), (7)

GR
ij (t,t ′) ≡ −iθ (t − t ′)〈ĉ†j (t ′)ĉi(t) + ĉi(t)ĉ

†
j (t ′)〉

= −iθ (t − t ′)
∑

α

∫
dE

2π
�αE(t,i)�∗

αE(t ′,j ). (8)

Note that in the presence of bound states (such as the Andreev
states in the Josephson junctions described below) the above
integral needs to be replaced by an integral over the continuum
plus a sum over the bound states, as explained in Ref. [29].

III. THE SOURCE

In its original form, Eq. (4) is not very useful for numerics
because the wave function spreads over the entire infinite
system. A first simple, yet crucial, step consists of introducing
the deviation �̄αE(t) from the stationary solution:

�αE(t) = e−iEt
[
�st

αE + �̄αE(t)
]
. (9)

�̄αE(t) satisfies

i∂t �̄αE(t) = [H(t) − E]�̄αE(t) + SαE(t), (10)

with

SαE(t) = [H(t) − H0]�st
αE (11)

and

�̄αE(t = 0) = 0. (12)

The new “source” term SαE(t) can be computed from the
knowledge of the stationary scattering states and is localized
at the place where the time-dependent perturbation takes place
[where H(t) �= H0, typically the colored regions of Fig. 1].
Equation (10) is already much better than Eq. (4) for numerics
because the initial condition corresponds to a wave function
that vanishes everywhere. One can therefore truncate Eq. (10)
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and keep a finite system around the central time-dependent
region where the source term lies. In practice, one adds N

layers of each electrode. Note that in order for this procedure
to be correct, the stationary scattering states are calculated
for the infinite system and the truncation is only performed
afterwards. For the truncation to be valid, the size of this
finite region must be larger than N > v tmax/2, where v is
the maximum group velocity at which the wave function can
propagate and tmax the duration of the simulation. Hence, for
large values of tmax, the total computational time to integrate
Eq. (4) scales as v t2

max. This algorithm corresponds to the
WF-C algorithm of Ref. [21]. In Sec. IV we will see that we
can go beyond the WF-C method by introducing a complex
absorbing potential in the region of added electrode. This will
allow us to obtain the promised linear scaling.

The keen reader will notice that we have actually removed
a factor e−iEt from the definition of �̄αE(t) compared to the
WF-C method of Ref. [21]. This change, while small, leads
to an improved stability of the numerical integration: The
equation of motion for �̄αE(t) does not have an (potentially
fast) oscillating factor e−iEt in the source term. This means that
the numerical integration scheme used for solving Eq. (10) is
now limited by the intrinsic time scales of the problem, and
not the “artificial” time scale �/E introduced by a bad choice
of gauge.

IV. THE SINK

The t2
max scaling of the algorithm comes from the fact that

for long simulation times, one needs to introduce a large part
of the leads (∝tmax) in order to avoid spurious reflections
at the boundaries where the leads have been truncated. To
proceed, one needs to take advantage of the special structure
of the leads: They are not only time independent, but also
invariant by translation. Hence, whatever enters into the lead
will propagate towards infinity and never come back to the
central region. Mathematically, the form of �̄αE(t) in the leads
is a superposition of outgoing plane waves [21]

�̄αE(t) =
∑
α′

∫
dE′

2π
Sα′α(E′,E)e−iE′t+k′nξα′(E′), (13)

where E′ and k′ are related by the dispersion relation of
the lead, n indexes the different unit cells in the lead, ξα′

the transverse wave function of the corresponding mode, and
Sα′α(E′,E) is the time-dependent part of the inelastic scattering
matrix. The crucial point of Eq. (13) is that it only contains
outgoing modes, as the incoming one has been subtracted when
removing the stationary scattering state. Therefore, once the
wave function starts to reach the leads, it propagates toward
infinity and never comes back to the central system.

A natural idea that comes to mind is to replace the finite
fraction of the electrodes by some sort of (non-Hermitian)
term in the Hamiltonian that “absorbs” the wave function that
enters the leads. This has been studied in the literature in the
context of various partial differential equations [30–38], and is
usually known as a complex absorbing potential. The difficulty
lies in the fact that this absorbing term must not give rise to
reflections. At a given energy, a perfectly absorbing boundary
condition does exist, it corresponds to adding the self-energy

1
0

2

3

Σ
n

FIG. 2. Sketch of the truncated approximation to the system
shown in Fig. 1, including the absorbing layers. The (red) color of
the sites indicates the intensity of the complex absorbing potential.
The curve next to lead 2’s absorbing layer shows a typical shape of
the complex absorbing potential �.

of the lead at the boundary (which is a nonlocal complex
absorbing potential; see the WF-D method of Ref. [21]).
However, the outgoing waves of Eq. (13) span a finite energy
window so that some energies would get reflected back to the
central region. One solution to obtain a perfectly absorbing
boundary condition is to use a boundary condition that is
nonlocal in time [30], as in the WF-B method of Ref. [21];
this leads to algorithms that scale as t2

max.
We choose instead to design an imaginary potential that

varies spatially. We show that for any desired accuracy, we
can design an imaginary potential that spreads over a finite
width of N electrode unit cells—where N depends only on
the required accuracy, not on tmax. In practice, this algorithm
is much more effective than WF-C when tmax becomes larger
than the ballistic time of flight through the system. The idea
behind the algorithm is fairly straightforward: Suppose that a
plane wave with a dispersion relation E(k) propagates inside
one electrode. If one adds an imaginary potential −i� to the
Schrödinger equation, this plane wave becomes evanescent,
which eventually leads to the absorption of the wave. On the
other hand, any abrupt variation of the potential (or in this case
of imaginary potential) leads to unwanted reflection back to
the central part of the system. Hence, the algorithm consists of
adiabatically switching on the imaginary potential �(n) inside
a finite fraction of the electrode (see Fig. 2 for a sketch). This
equation of motion contains both the previous source term and
the additional sink in the electrodes,

i∂t �̄αE(t) = [H(t) − E − i�]�̄αE(t) + SαE(t), (14)

where the matrix � is diagonal and vanishes in the central
region while it reads

� = �(n)1cell (15)

in the absorbing layer placed at the beginning of the electrodes.
The index n labels the unit cells of the leads and 1cell is the
identity matrix defined over a unit cell. What remains to be
done is to specify the function �(n) so that it is large enough
to absorb all waves entering into the lead while being smooth
enough not to produce spurious reflections. The error induced
by the boundary conditions must not exceed a tolerance δ. Our
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aim is to minimize the number N of layers that must be added
in the simulation to absorb the outgoing waves without the
error exceeding δ.

A. Analytical calculation of the spurious reflection

Before we can design a suitable imaginary potential, we
must understand how the spurious reflection back to the central
part depends on the shape of �(n). We will start from a
continuum model in order to develop an analytical solution
for this simple case. The rationale, other than its tractability,
is the fact that spurious reflections happen when �(n) varies
on a spatial scale that is short compared to the wavelength
of the solution, hence it is dominated by small momentum
k where the tight-binding dispersion relation reduces to its
continuum limit. We will show that there is an extremely good
agreement between the analytical results derived in this section
and numerical calculations of the discretized model.

Let us consider the stationary one-dimensional (1D)
Schrödinger equation,

− �
2

2m∗
∂2ψ(x)

∂x2
− i

L
�

( x

L

)
ψ(x) = Eψ(x), (16)

where m∗ is the electron effective mass and we have introduced
a length scale L, which controls how fast �(x) varies. For
negative x, we set �(x � 0) = 0 so that the wave function is
in a superposition of plane waves,

ψ(x) = eikx + r�e−ikx, (17)

where we define E = �
2k2/2m∗. Our goal is to calculate

the spurious reflection probability R� = |r�|2 induced by
the presence of the imaginary potential. We first rescale the
equation by E and define x̄ = kx, �̄(u) = (k/E)�(u), and
ψ(x) = ψ̄(x̄) to obtain the dimensionless equation[

∂2
x̄ + i

kL
�̄

(
x̄

kL

)
+ 1

]
ψ̄(x̄) = 0, (18)

with

ψ̄(x̄) = eix̄ + r�e−ix̄ (19)

for x̄ < 0. It is apparent from Eq. (18) that the spurious
reflection is controlled by the dimensionless parameter kL.
Since we want this spurious reflection to be small, we will
work in the limit of large kL 	 1 and expand r� in powers of
1/kL. The zeroth-order contribution is simply the extension
of the WKB limit to imaginary potential; the wave function
takes the form of an evanescent wave,

ψ̄(x̄) ≈ eS̄(x̄), (20)

with S̄(x̄) satisfying

[S̄ ′(x̄)]2 + 1 + i
1

kL
�̄

(
x̄

kL

)
= 0, (21)

where the primes denote derivatives. We expand S̄(x̄) to first
order in 1/kL, and apply the boundary condition Eq. (19) at
x̄ = 0, as well as ψ̄(kL) = 0 (perfect reflection at the end of
the simulation domain at x = L) to obtain the zeroth-order
contribution to r� ,

r0
� = e2ikLe−Ak/E, (22)

where

A =
∫ L

0

1

L
�

( x

L

)
dx (23)

is independent of kL. Physically speaking, the wave function
is exponentially attenuated up to the hard wall at x = L where
it is fully reflected and then again exponentially attenuated
until x = 0.

The contribution r0
� takes into account the finite absorption

due to the imaginary potential, but not the spurious reflections
due to wave-vector mismatch. It it therefore necessary to go
beyond the adiabatic WKB approximation and calculate its
1/kL deviation r1

� . We can ignore the hard wall at x = L as
it will play no role in what follows. Generalizing the WKB
approximation we choose the following ansatz for x̄ > 0:

ψ̄(x̄) = φ̄(x̄)eS̄(x̄). (24)

S̄(x̄) contains the fast oscillating and decaying parts, while
φ̄(x̄) contains the remaining (slow) parts. Plugging the ansatz
Eq. (24) into Eq. (18), our Schrödinger equation becomes{

φ̄′′(x̄) +
[

2i − 1

kL
�̄

(
x̄

kL

)
+ 2O

(
1

(kL)2

)]
φ̄′(x̄)

+
[ −1

2(kL)2
�̄′

(
x̄

kL

)
+ O

(
1

(kL)3

)]
φ̄(x̄)

}
eS̄(x̄) = 0,

(25)

with

S̄(x̄) = ix̄ − 1

2

∫ x̄/kL

0
�̄(u)du + O

(
1

kL

)
. (26)

We write φ̄(x̄) as φ̄(x̄) = φ̄0(x̄) + (1/kL)φ̄1(x̄) and notice
that, in the limit (1/kL) → 0, Eq. (25) admits a solution
φ̄(x̄) = φ̄0(x̄) = A + Be−2ix̄ . In this limit there should be no
backscattering from the imaginary potential, so B = 0 and
φ̄0(x̄) = 1, to match the boundary conditions Eq. (19). The
derivatives of φ̄0(x̄) hence vanish and we arrive at

φ̄ ′′
1(x̄) + 2

[
i − 1

2kL
�̄(x̄/kL)

]
φ̄′

1(x̄) = 1

2kL
�̄′(x̄/kL)

(27)

up to terms of order O([1/kL]2). Equation (27) can be solved
by the variation of constant method,

φ̄′
1(x̄) = C̄(x̄) exp

[
−2ix̄ +

∫ x̄/kL

0
�̄(u)du

]
, (28)

with

C̄ ′(x̄) = 1

2kL
�̄′(x̄/kL) exp

[
2ix̄ −

∫ x̄/kL

0
�̄(u)du

]
. (29)

Applying the continuity condition on ψ̄(x̄) and ψ̄ ′(x̄) at
x̄ = 0 we obtain the first-order contribution to the reflection
amplitude,

r1
� = −1

2ikL
C̄(0), (30)
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which we can write explicitly, using Eq. (29) and the condition
C̄(∞) = 0, as

r1
� = 1

4ikL

∫ ∞

0
�̄′(u) exp

[
2ikLu −

∫ u

0
�̄(v)dv

]
du. (31)

One can understand r1
� as the Fourier transform at (large)

frequency (kL) of the gradient of the imaginary potential
weighted by the absorption that has already taken place.
Putting together Eqs. (22) and (31), we finally obtain

r� = e2ikLe−Ak/E + 1

4iEL

∫ ∞

0
�′(u)

× exp

[
2ikLu − k

E

∫ u

0
�(v)dv

]
du. (32)

Equation (32) is the main result of this section. Now that we
understand how the spurious reflection depends on the shape
of �(x), we need to design the imaginary potential so as to
minimize Eq. (32) (for a given L). More precisely, for a given
required precision ε, we wish to enforce R� < ε irrespective
of the value of the energy E. Such a stringent condition is not,
strictly speaking, feasible as R� → 1 when E → 0 (all the
variations of the imaginary potential become “abrupt” when
the electronic wavelength becomes infinite), but we will see
that the associated error can be kept under control.

For a fixed L and A we wish to choose a form for �(x)
that will minimize the reflection at all energies. We leave a
full optimization of this shape for future study and focus on an
algebraic one,

�(u) = (n + 1)Aun, (33)

from which the reflection amplitude calculated from Eq. (32)
reads

r� = e2ikLe−Ak/E + An(n + 1)(n − 1)

2n+2EknLn+1
. (34)

As a consistency check of the approach developed above, we
compare this analytical result for the reflection probability
with direct numerical calculation using the KWANT dc trans-
port package [28]. To do so we discretize the continuous
Schrödinger equation onto a lattice of lattice spacing 1.
Figure 3 shows how R� scales for the case n = 2 and n = 6,
showing an excellent agreement between the direct numerical
simulations and the above analytical result in the limit of
validity of the latter (small reflection). Figure 3(c) shows

that the reflection has a minimum as a function of A which
corresponds to a compromise between the first and last term
of Eq. (34). Once A has been chosen large enough for the first
term of Eq. (34) to be negligible, one can always choose L large
enough to control the second term. We can already anticipate
that the difficulties will come from vanishing energies E → 0
for which the spurious reflection goes toward unity.

B. Numerical precision in the time domain

Now that we understand the dc case, let us consider the
previous one-dimensional model in the time domain and send
a Gaussian voltage pulse through the wire. This problem has
been studied in detailed in Ref. [21], to which we refer for
more details. We compute the current flowing and measure the
error with respect to a reference calculation I ref

E (t),

δ =
∫ tmax

0

∣∣IE(t) − I ref
E (t)

∣∣ dt∫ T

0

∣∣I ref
E (t)

∣∣dt
, (35)

where IE(t) is the time-dependent probability current for a
particle injected at energy E using the above-designed imag-
inary potential to absorb the outgoing waves. The reference
calculation is performed without an imaginary potential, but
with enough added unit cells in the leads such that the solution
does not have time to propagate back into the central region
before the end of the simulation; this corresponds to the WF-C
method of Ref. [21].

Figure 4(a) shows the scaling of the error δ in the
time-dependent calculation with respect to the dc reflection
probability of the absorbing region R� as L is changed. The
current at an energy at the center of the spectrum is calculated.
We see from Fig. 4 that for very short absorbing regions the
error scales proportionally to R� , whereas for longer regions
it scales as

√
R� . This simply reflects the fact that the error

on �̄αE(t) is proportional to
√

R� = r� : Since the current
(hence δ) is quadratic in �αE(t) ≡ e−iEt [�st

αE + �̄αE(t)], the
error has the form δ ∼ 2|�st

αE |√R� + R� . More importantly,
we see that we can control the error of the calculation with
arbitrary precision and for extremely long times (we checked
this last point for much longer times than those shown in the
inset).

More interesting is the behavior of the error δ as a function
of the injection energy E. Indeed, since there are large spurious
reflections when E → 0, we might expect δ to behave badly

FIG. 3. dc reflection probability of a one-dimensional chain in presence of an imaginary potential. The three panels show the scaling with
(a) energy, (b) absorbing region length, and (c) area under the imaginary potential curve. Symbols are the numerical simulation of the discrete
model and dashed lines are the analytic (continuum) result, Eq. (34), with n = 2 (circles) and n = 6 (triangles).
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(a) (b)

FIG. 4. Scaling of the error δ in the time-dependent simulation with respect to (a) the dc reflection probability R� and (b) the particle
injection energy E. A monomial complex absorbing potential (CAP) with n = 6 was used. For (a) simulations were carried out at a single
energy at the center of the band and the length of the absorbing region was varied. Dashed lines show fits to δ ∝ R� (blue) and δ ∝ √

R�

(red). Inset: Deviation of the probability current from equilibrium for different lengths of the absorbing region corresponding to the two points
indicated by arrows in the main figure. The black dashed curve shows the reference calculation.

as one decreases the energy. Figure 4(b) indeed shows that the
error increases as the energy is lowered. However, one finds
that δ saturates at small energy. Furthermore, the saturated
valued decreases with L and can thus be controlled. This
behavior comes from the structure of the wave function as
shown in Eq. (13); even though one injects an electron at a
definite energy inside the system, the energy of the outgoing
wave is ill defined. The contribution to the wave function
coming from spurious reflections takes the form

δ�̄α,E(n,t) =
∑
α′

∫ ∞

0
e−i(k′n+E′t)ξα′(E′)

× r�(E′) Sα′α(E′,E)dE′. (36)

The contribution spreads over an energy window Epulse

which characterizes the inelastic scattering matrix Sα′α(E′,E).
Sα′α(E′,E) typically decays on an energy scale of the order of
Epulse = �/τpulse (see Fig. 10 of Ref. [21] for an example). For
the voltage pulse considered here (which sends one electron
through the system), τpulse is essentially the duration of the
pulse. The consequence is that the reflection r� is averaged
over an energy window of width Epulse, which blurs the E = 0
behavior of r� :

δ ≈ 〈r�(E)〉E<Epulse ≈ r�(Epulse). (37)

We conclude that the error can always be made arbitrarily
small, irrespective of the duration of the simulation. A slight
drawback is that for a given imaginary potential, the precision
of the calculation can depend on the actual physics taking
place inside the central system (which sets Epulse) if one injects
electrons with energies close to the band edges of the leads.

C. A general algorithm

We now discuss how to turn the above results into a practical
scheme to perform numerical calculations in a robust way.
Since we cannot guarantee the error for a given shape of the
imaginary potential (we have seen above that it might depend
on the physics of the central region), we first need to design
an algorithm for an on-fly calculation of an error estimate
(without the reference calculation used above). This can be
done as follows for a small additional computational cost. In

the integration of the Schrödinger equation, one separates the
wave function in the central region ψ̄0̄ and in the leads ψ̄1̄
(let us suppose that there is only one lead for simplicity). The
equations to be integrated take the block form,

i∂t ψ̄0̄ = H0̄0̄(t)ψ̄0̄ + H0̄1̄ψ̄1̄ + S0̄(t), (38)

i∂t ψ̄1̄ = H1̄1̄(�)ψ̄1̄ + H1̄0̄ψ̄0̄, (39)

where S0̄(t) is the source term present in the central region and
the imaginary potential is included in H1̄1̄. One then introduces
a second “copy” of the lead wave function ψ̄ ′̄

1 that uses a
different imaginary potential H1̄1̄(�′). The equations of motion
for this “copy” are

i∂t ψ̄
′̄
1 = H1̄1̄(�′)ψ̄ ′̄

1 + H1̄0̄ψ̄0̄. (40)

One then keeps track of both ψ̄1̄ and ψ̄ ′̄
1 simultaneously,

although only ψ̄1̄ will affect the dynamics of ψ̄0̄. The trick
is to design �′(n) = �(n − M), i.e., to insert M extra lead
layers before the imaginary potential, and to monitor the
difference between ψ̄ ′̄

1 and ψ̄1̄ in the lead cell adjacent to
the central region, δψ̄1̄ = ψ̄1̄ − ψ̄ ′̄

1. Spurious reflections from
the presence of � will arrive at the boundary of the central
region for ψ̄1̄ before ψ̄ ′̄

1, as the latter has M extra lead layers.
This delay in the arrival of the spurious reflections will give
rise to a finite δψ̄1̄. Note that δψ̄1̄ will remain 0 in the case that
there are no spurious reflections. δψ̄1̄ can thus be used as an
error estimate for the wave function in the lead.

In the worst case scenario this scheme will increase the
computational cost by a factor of 2 (when the absorbing
region represents the largest part of the system). It is worth
noting, however, that without an error estimate for the spurious
reflections one would have to check for convergence of results
by performing several simulations with different values of L,
the absorbing region length.

The remaining task is to choose the parameters A and L

for a given shape of the imaginary potential. Ideally, we would
choose L as small as possible so as to minimize the extra
computational effort while requiring that |δψ̄1̄| remain smaller
than a fixed maximum error δmax. Given δmax it is easy to
choose A such that the first term in Eq. (34) is not a limitation.
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By noting that e−Ak/E < e−A/(aB) (B is the lead bandwidth
and a is the discretization step) we see that it is sufficient to
choose A such that e−A/(aB) < δmax for the absorption process
not to be the limiting factor of the precision. Next, one needs
to choose L large enough to enforce |δψ̄1̄| < δmax. In practice,
we found that a few hundred (up to a thousand) lead cells are
almost always sufficient for the physics we have studied so far,
for typical δmax ∼ 10−5.

Let us end with a last point of practical importance. We
have seen that the major contribution to spurious reflection
comes from a narrow region around the band edge of the lead.
The wave functions associated with these energies propagate
extremely slowly into the absorbing region due to the vanishing
velocity at the band edge. Unless one is interested in extremely
long simulation times, we can take advantage of this by placing
a small number of lead layers before the imaginary potential.
The slow-moving waves will induce spurious reflections, but
will take a long time to traverse this buffer layer due to their
small group velocity. Meanwhile, the absorbing region does
not have to be made as long, as it does not have to absorb
waves of vanishingly small energy.

V. VOLTAGE PULSES IN LONG JOSEPHSON JUNCTIONS

We are now in possession of a robust algorithm to
simulate time-dependent open systems. Compared with our
own previous approach, the computing time is now O(Ntmax).
This algorithm allows us to treat cases where very small
energies (hence large times) come into play. We now turn
to a specific application concerning superconducting-normal-
superconducting (SNS) Josephson junctions where the large
separation of scales Eth � �0 � EF (Eth: Thouless energy;
�0: superconducting gap; EF : Fermi energy) makes a linear-
scaling algorithm very welcome. An interesting aspect of
superconductivity is that the problem is intrinsically time
dependent even in dc as soon as there are voltage differences
across the superconductors (as evidenced by the ac Josephson
effect, which transforms a dc voltage into an ac current).
We emphasize that the algorithm is in no way limited to
superconductivity and refer to the Introduction for other
applications (such as quantum Hall effect, graphene, etc.).

In the following, we will focus on three physical effects.
First, we will recover the known physics of Josephson
junctions: the multiple Andreev reflection (MAR) phenomena
and the ac Josephson effect. Second, we will discuss the
relaxation of a SNS junction after an abrupt rise of the applied
potential, showing how MAR comes into play in the relaxation
rate. Third, we will study an interesting phenomenon, the prop-
agation of a voltage pulse through a Josephson junction [39].

A. Minimum microscopic model for a SNS junction

We consider voltage-biased Josephson junctions. In this
setup we have two infinite superconducting reservoirs coupled
by a normal region of length L. We shall treat the problem
using a 1D Bogoliubov–de Gennes Hamiltonian [40],

Ĥ =
∫ ∞

−∞
�̂

†
(x)

(
p2

2m
− μ(x,t) �(x,t)

�(x,t)∗ μ(x,t) − p2

2m

)
�̂(x)dx,

(41)

where p = −i� ∂
∂x

,�̂(x) = (ψ̂↑(x),ψ̂†
↓(x))T , and ψ̂↑(x) is an

operator that annihilates an electron at position x in a spin up
state. �(x,t) is the superconducting order parameter, which
reads

�(x,t) =
⎧⎨
⎩

�0 for x > L,

0 for 0 � x � L,

�0 exp[−2iφ(t)] for x < 0,

(42)

with φ(t) = (e/�)
∫ t

0 Vb(τ )dτ and Vb(t) is the voltage bias
applied to the left superconductor (which is 0 before t = 0).
Likewise, the electrochemical potential μ(x,t) reads

μ(x,t) =
⎧⎨
⎩

EF + Vb(t) for x < 0,

EF + U (x) for 0 � x � L,

EF for x > L,

(43)

where EF is the Fermi energy and U (x) a potential barrier.
We only consider a single spin sector; our model is spin
independent so the two spin sectors give degenerate solutions.

In order to put Eq. (41) into a form where we can
apply the algorithm developed above, we first apply a gauge
transformation

�̂
′
(x) = [�(x) + �(−x) exp[iφ(t)τ z]]�̂(x), (44)

where τ {x,y,z} are Pauli matrices and �(x) is the Heaviside
function. This transformation brings all the time dependence
for x < 0 into a time dependence in the momentum term
at x = 0, the boundary between the left superconductor and
the normal region. In this gauge both superconductors are at
equilibrium. We next discretize onto a lattice with spacing a,
using a central difference approximation for the second spatial
derivative, ∂2�/∂y2 ≈ [�(y + a) + �(y − a) − 2�(y)]/a2,
to obtain a tight-binding model

Ĥtb =
∞∑

i,j=−∞
ĉ†i Hi,j (t)ĉj , (45)

with the matrices Hi,j (t) being nonzero only for diagonal and
nearest-neighbor matrix elements,

Hj,j (t) =
[

�
2

ma2
− EF + Uj

]
τ z + �0(θ0,j + θj,L)τ x, (46)

Hj,j+1(t) = −�
2

2ma2
τ z exp[iφ(t)δj,0τ z], (47)

Hj,j−1(t) = [Hj,j+1(t)]†, (48)

where ĉj ≡ �̂(ja) = (ψ̂↑(ja),ψ̂†
↓(ja))T (and ĉ†j , its Hermi-

tian conjugate) are vectors of creation (annihilation) operators
at site j . δi,j is the Kronecker delta and θi,j is a discrete
Heaviside function, defined as 1 if i > j and 0 otherwise. Ui

is the potential barrier.
This model can be readily solved numerically using the

above-developed technique. In practice, we use a 4(5) order
embedded Runge-Kutta method [41] with an adaptive time step
to solve the time-dependent Schrödinger equation. Although
using a fully explicit, nonunitary integrator will in principle
induce errors in the result, we check the magnitude of such
errors using the continuity equation for the quasiparticle
current/density. In practice, we found that there is a significant
advantage in terms of speed (for a given accuracy) to using such
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methods. For the energy integration we subdivide the energy
interval into subintervals and use a 15(7) point Gauss-Kronrod
embedded scheme [42] on each subinterval. The subintervals
are chosen manually based on previous simulation runs, and
the error in the result is verified to be below a certain threshold
using a standard error estimate for Gauss-Kronrod schemes
[42].

B. Multiple Andreev reflection and ac Josephson effect

Let us now apply our numerical technique and discuss
the physics of a voltage-biased Josephson junction. There
are two very different regimes to discuss: At low voltage
one observes the ac Josephson effect, while at higher voltage
one observes multiple Andreev reflections (MARs). Both
effects are closely related, as the Josephson effect corresponds
to the limit of an infinite number of Andreev reflections, yet
they are usually calculated with different techniques. Indeed,
one of the challenges of such a simulation is that to access
small bias voltages Vb one needs to go to very long times
∝ �/Vb. For this problem the source-sink algorithm thus has
a distinct advantage over previous methods due to its linear
scaling with simulation time.

In this section, we concentrate on a short junction and
add a potential barrier U (x) that allows us to tune the
transmission probability D of the normal part of the junction
from insulating D � 1 to ballistic D = 1. To obtain a current-
voltage characteristic for the junction we perform a separate
simulation for each value of voltage required. For a given
simulation (voltage value) we use the following protocol. At
t = 0 the voltage of the left superconductor is raised smoothly,
Vb(t) = (V0/2)[1 − cos(πt/T )], until t = T , when Vb is held
at a value V0 (we used T = 50 �/�). The system relaxes to a
steady state and we can obtain the current using Eq. (5). The
dc current can then be obtained by taking an average over one
period of the fully time-dependent current after the system has
reached a steady state.

Let us start with the ac Josephson effect. At equilibrium,
the ground state energy E(φ) of the junction depends on the
phase difference φ between the order parameters of the two
superconductors. The corresponding supercurrent is given by

I = (2e/�)∂E/∂φ ∝ cos φ. (49)

When a small bias is applied to the junction, φ increases
linearly in time φ(t) = 2eVbt/� and one observes the ac
Josephson effect at frequency 2eVb/h. This is perhaps the
most striking manifestation of superconductivity; a dc bias
leads to an ac effect. Figure 5 shows a numerical calculation
of the current as a function of time together with the adiabatic
prediction discussed above [the dispersion relation E(φ) was
calculated from the equilibrium junction and differentiated
numerically]. We see a perfect agreement at low bias, indicat-
ing that our technique can reach the adiabatic limit. Upon
increasing the bias, one leaves the adiabatic limit and the
corresponding prediction becomes less accurate.

Indeed, as one increases the bias, a dc component starts
to appear in the current. This is best understood starting
from large bias. For Vb > 2�0/e, the charges can flow
directly from the left “valence” band of the superconductor
to the right “conduction” band (using the semiconductor

0

0

FIG. 5. The ac Josephson effect. The different curves show the
calculated current as a function of time for different bias voltages
across a short junction with a transmission of 0.7. The solid curves
and symbols show the theoretical and numerical results, respectively.
The curves have been vertically offset for clarity.

terminology). As one lowers the bias, this direct process is
no longer possible and at least one Andreev reflection takes
place on the right superconductor. As one further lowers the
bias, more and more Andreev reflections are needed and
one observes kink in the I -V characteristics at values Vb >

2�0/Ne with N = 1,2,3, . . .. The Fourier components of the
MAR current have been previously calculated using a Floquet
approach [43,44], and are routinely observed experimentally
(see, for instance, Ref. [45]). More recently, some results were
obtained with techniques working in the time domain [39,46].
The calculations given below follow a similar line. However,
the favorable scaling of our algorithm allows us, without
resorting to approximations such as the wide band limit, to
reach unprecedented large system sizes and/or simulation
times. Let us start by recovering the MAR physics using a
microscopic model for the junction. Figure 6 compares the
current-voltage characteristics of such a junction calculated in
Ref. [43] with a simulation using the source-sink algorithm for
different values of the transmission (D) of the junction. We
see a very good quantitative agreement with these previous
results.

FIG. 6. dc current-voltage curve showing the analytical results
from Ref. [43] (dashed line) and the source-sink numerical calculation
(points) for different values of the transmission (D) of the insulating
link. Inset: Time series corresponding to the enlarged points in the
main figure, showing a typical averaging window over which the dc
current was calculated. For these simulations we used � = 0.02γ ,
with γ the hopping parameter.
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FIG. 7. Comparison of the current-voltage characteristics for a
short junction (one site in the normal region) and a long junction (120
sites in the normal region). Both the junctions have a transmission of
0.7. For these simulations we used � = 0.02γ , with γ the hopping
parameter.

Using the source-sink algorithm we can go beyond the
limitations of an analytical approach for little extra overhead.
We can, for example, explore the behavior of a long Josephson
junction under voltage bias. Figure 7 compares the current-
voltage characteristics of a long junction with the short
junction studied previously. We clearly see that the long
junction has more subgap features, which can be attributed
to the larger number of Andreev states below the gap. We see
that numerics has an advantage over analytical approaches in
this regard, in that it is relatively cheap to explore new regions
of parameter space or in crossover regions between tractable
limits (e.g., short junction versus long junction).

C. Relaxation of Andreev bound states

An important difference of Josephson junctions with
respect to other nanoelectronics systems is the presence of
(so-called Andreev) bound states. Since Andreev states have
their energies inside the superconducting gap, there is no
continuum band with which they can hybridize so that they
have an infinite lifetime. These states must be added explicitly
in Eq. (5) and the definitions of the Green’s function (see
Sec. IV of Ref. [29] for a discussion). As the Andreev states
carry the Josephson current, their role is particularly important
and they cannot be ignored. This is in contrast to many
nonsuperconducting systems where the bound states do not
contribute to transport.

Andreev states give us another opportunity to study MAR
physics. Suppose that we abruptly raise the voltage bias at t =
0, thereby placing the system in a nonequilibrium state. Just
after the voltage rise, a given wave function can be decomposed
on the eigenbasis of the equilibrium SNS junction,

� =
∑

α

∫
dE cα(E)�st

αE +
∑

n

cn�
st
n , (50)

where cα(E) and cn are, respectively, the projection of the
wave function on the scattering states (�st

αE) and the bound
states (�st

n ). It is important to realize that in the absence of
bias voltage, the bound state part of the wave function will
never relax (within the above model) as the Andreev states
are true bound states with energy En: The second part of the

FIG. 8. Current contribution from the (Andreev) bound states at
different bias voltages. The curves have been offset for clarity. The
inset shows a zoom of the curve for Vb = �/e.

wave function will simply oscillate as
∑

n cne
−iEnt�st

n forever.
However, the presence of the bias voltage allows the energy to
change by eV in between two Andreev reflections so that after
N ≈ �0/(eVb) reflections, one can reach energies outside the
gap and the wave function can relax. Denoting τP = L/vF the
time of flight between two Andreev reflections, we expect the
relaxation time τR of the system to behave as τR ∝ NτF =
L�0/(vF eVb).

Figure 8 shows the contribution of the Andreev bound states
to the current as a function of time for three values of the bias
voltage. We indeed see that the current carried by the bound
states dies away with time in the presence of a finite bias.
Although we did not try to define τR precisely, we clearly see
that dividing Vb by a factor of 10 leads to a tenfold increase in
the relaxation time, establishing the relation τR ∝ 1/Vb, which
originates from the MAR assisted relaxation process.

From a numerical perspective, we note that these simula-
tions are taken to extremely long times, 105 in units of the
inverse hopping parameter, γ (= �

2/2m∗a2), of the model
(we chose � = 0.1γ for the bound state calculations and
� = 0.02γ for the calculations of the MAR I -V curve). This
calculation clearly necessitates the source-sink algorithm; we
used an imaginary absorbing potential of order n = 6 with
1000 lead cells forming the absorbing layer.

D. Propagation of a voltage pulse through a Josephson junction

A natural consequence of the above discussion is that if one
sends a fast voltage pulse through the system (i.e., the final
bias voltage vanishes instead of having a finite value), then the
corresponding bound state contribution will not relax and will
oscillate forever (within the assumptions of our model).

Let us study the corresponding protocol. We consider
a perfectly transparent junction with a finite width, and
apply a Gaussian voltage pulse of duration τP on the left
superconducting contact. The junction has a length L such
that the time of flight is τF = L/vF . We consider a “long”
junction, such that �0τF /� 	 1. We further consider fast
pulses with τF /τP 	 1 (τF /τP ∼ 5 in our case). The case
of slow pulses is trivial as the physics is essentially given
by the adiabatic limit. The physics of fast pulses is simple
yet rather interesting. The pulse generates an electronlike
excitation that propagates through the system until it reaches
the right superconductor. There, it is Andreev reflected as a
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FIG. 9. Current (blue solid line) and voltage (red dashed line,
offset for clarity) at the left superconducting-normal contact as a
function of time. Inset: Propagation of the charge pulse through the
junction at different times (t1, t2, t3, t4) and the corresponding times
indicated on the main plot.

holelike excitation and a Cooper pair is generated in the right
electrode. The excitation now propagates backward towards
the left superconducting electrode where it is Andreev reflected
a second time (and a Cooper pair is absorbed from the
electrode). The excitation then continues its propagation again
to the right. Within the above model, nothing stops this process
and the excitation continues to oscillate back and forth forever.
This is rather appealing: One sends a short voltage pulse and
gets an oscillating current at frequency 1/(2τF ). Beyond the
current model, the relaxation time of the system will be given
by the fluctuations of the voltage due to the electromagnetic
environment and we anticipate a relaxation of the current on a
scale given by the corresponding RC time.

Figure 9 shows a numerical simulation of the propagation of
a voltage pulse as discussed above. Despite the fact that there is
only a single voltage pulse at the start, we see pulses of current
every 2τF . We do not observe any quasiparticle current in the
superconducting lead; this (super)current is purely associated
with the Andreev reflection process described above.

We can go a little bit further and look at the structure of the
bound states that carry the supercurrent. They are given by the
stationary condition [25,47,48],

r2
Ae2iEτF /�eiφ = 1, (51)

where the left-hand superconductor is at a phase bias φ com-
pared to the right-hand one and rA = E/�0 − i

√
1 − (E/�0)2

is the Andreev reflection amplitude for a particle incident on
the superconductor at energy E. The paths contributing to this
amplitude are sketched in Fig. 10(a). A similar expression
exists for the reversed paths where the sign of φ is flipped;
this is sketched in Fig. 10(b). For E < �0 we have rA =
e−i arccos(E/�0), and we can rewrite this condition as

−2 arccos(E/�0) + 2EτF

�
± φ = 2πm, m ∈ Z. (52)

In the long junction limit (�0 	 �/τF ) close to zero energy,
this simplifies to

E = h

2τF

[
m + 1

2
∓ φ

2π

]
, (53)

rA

L
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FIG. 10. Sketches of the two classes of paths that can result in
bound states. The solid lines correspond to an electronlike excitation,
and the dashed line to a holelike one. Andreev reflection at the
normal-superconductor interface converts an electronlike excitation
to a holelike one. Each sketch actually represents a set of paths with
1, 2, 3,...pairs of Andreev reflections.

which corresponds to two sets of equidistant energies separated
by �/(2τF ), one set that has energy increasing with φ, and
the other decreasing with φ. Each of these sets corresponds
to ballistic propagation in the continuum limit τP � τF . The
numerical spectrum, which is shown in Fig. 11, adheres to
the above-derived result except near the degeneracy points.
The degeneracies are lifted due to the finite ratio �0/EF used
in the numerical calculation, which induces a finite normal
reflection at the normal-superconducting interfaces. The two
insets of Fig. 11 show two time-dependent simulations at two
different values of the superconducting phase difference after
the pulse, φ = φ(t = ∞). We see that when the two sets
of bound states are very close in energy the output current
beats with a frequency that is given by the level spacing. For

//

/

0

FIG. 11. A section around E = 0 of the bound state spectrum
after the passage of a pulse as a function of the phase φ picked
up from the pulse. The vertical dashed lines highlight the bound
state energies for two values of φ. The current flowing through the
junction as a function of time is shown in the traces above the main
figure. The spectrum was calculated numerically by diagonalizing the
Hamiltonian of the system projected onto a large, finite region around
the junction
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FIG. 12. Current traces as a function of time for three differ-
ent voltage pulses applied to a short Josephson junction with a
transparency of 0.9. The curves have been offset for clarity. Each
pulse has a full width at half maximum of 0.4 �/�0, and the pulses
are of different heights. This gives a different phase bias φ across
the junction after the pulse has completed. Inset: The bound state
spectrum for the junction as a function of the phase bias; the phases
accumulated by the three pulses are indicated by colored lines.

well-spaced bound states this frequency is so high that it has
no visible effect on the current trace.

The above effect is intriguing, but unfortunately long ballis-
tic Josephson junctions are difficult to realize experimentally
(with the exception perhaps of carbon nanotubes). In diffusive
junctions there will be a distribution of times of flight which
will wash out the above effect. An alternative is to consider the
limit of short junctions, which have been studied extensively
experimentally with atomic contacts (break junctions) [45].
We shall, therefore, now explore the effect of a voltage pulse
applied to a short Josephson junction. We do not expect to
be able to see a train of well-resolved peaks of current, as
in the long junction case, because the time of flight of the
short junction is much shorter than the typical pulse duration.
We do, however, expect to see the effect that gives rise to the
“beating” in Fig. 11, as this is governed only by the energy
difference between the Andreev bound states in the junction.
Figure 12 shows the current passing through a short junction
when voltage pulses of varying heights are applied. We see
an initial transient part followed by an oscillatory part that
continues indefinitely. Initially, all the states up to E = 0 are
filled (Pauli principle). The pulse excites some quasiparticles
into states at E > 0 and also shifts the phase bias across the
junction so that we are at a different place in the phase-energy
plot than we were before the pulse (indicated by dashed lines
in the inset to Fig. 12). Any quasiparticles in continuum states
escape into the leads after some time (∼20�/� in Fig. 12),
however, the contribution in the Andreev bound states cannot
escape. After we have reached a steady state we are essentially
in a superposition of Andreev bound states at energy E and
−E. These two contributions interfere with one another to
give a current that oscillates in time at an angular frequency
2E/�. This effect is most strongly seen for φ = π , as the
Andreev levels have the smallest energy gap here. For φ = 2π

the oscillations die away with time, as the Andreev levels
hybridize with the continuum at this point. By tuning the
energy gap between the Andreev levels after the pulse we are
able to control the frequency of the current. We can tune the

energy gap by placing ourselves at different points in the phase-
energy diagram (by sending in pulses of different heights),
or by tuning the transparency of the junction to modify the
phase-energy diagram itself. The above calculations have been
performed in the absence of an electromagnetic environment.
The closest experimental situation that would correspond
to these calculations is a Josephson junction embedded in
a superconducting ring where the voltage pulse is applied
through a pulse of magnetic field through the ring and
the signal detected through the magnetization generated by
the oscillating circulating current. A simpler configuration
would involve a superconducting quantum interference device
(SQUID) where one of the two junctions is an atomic one and
the other a regular large tunnel junction. In a SQUID setup,
however, the effect of the electromagnetic environment would
have to be properly included.

VI. CONCLUSION

We have developed an algorithm for simulating time-
resolved quantum transport, which we dub “source-sink” due
to the characteristic addition of both “source” and “sink”
terms to the Schrödinger-like equations used. We demonstrated
that the accuracy of the method can be tuned at the cost
of increasing the runtime, and that for a given accuracy
the algorithm scales linearly with the system size and the
maximum time required. We confirmed the accuracy of the
method by comparing our results for a Josephson junction
at finite bias with analytical results from the literature. In its
present form, the algorithm only applies to quadratic (i.e.,
noninteracting) Hamiltonians. The algorithm can be straight-
forwardly extended to deal with interactions at the mean
field level. This would encompass Hartree and time-dependent
density functional theory, but would also allow us to couple to
other degrees of freedom, such as the Landau-Lifshitz-Gilbert
equation in a magnetic system or the circuit electromagnetic
environment for the Josephson junction considered here. The
cost for such an extension is that the different Schrödinger
equations for the different energies would be coupled by the
mean field and therefore cannot be solved independently. This
complicates the (parallel) implementation of the algorithm,
and is the subject of current work. In the same spirit, one could
also include some quantum fluctuations through the addition
of a noise term in the Schrödinger-like equation of our method.
Correlations beyond mean field, however, are beyond the scope
of this approach in its present form.

We then studied the effect of a single voltage pulse on a
(long or short) Josephson junction. We found that a single
voltage pulse results in a periodic resultant supercurrent. The
(rightly) controversial yet appealing concept of time crystal
was recently put forward [49]. In analogy with a regular
crystal where translational spatial symmetry is spontaneously
broken, a time crystal would spontaneously break translational
time symmetry. While the above effect is not a time crystal
(the system in the normal part is not in its ground state), it
might be as close as one can get; the superconducting ring
remains in its ground state, yet a time-dependent current flows
through it.

In contrast to other universal effects associated with Joseph-
son physics, the period is given here by the normal part of the
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device. In the absence of an electromagnetic environment, the
periodic current continues forever. A precise calculation of the
effect of the dissipative electromagnetic environment to damp
the oscillating current is left for future work.
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