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Anomalously large fluctuation diamagnetism around the superconducting critical temperature has been recently
observed in iron selenide (FeSe) [Kasahara et al. (unpublished)]. This indicates that superconducting fluctuations
(SCFs) play a more significant role in FeSe, which supposedly has a two-band structure, than in the familiar
single-band superconductors. Motivated by the data on FeSe, SCF-induced diamagnetism is examined in a
two-band system, on the basis of a phenomenological approach with a Ginzburg-Landau functional. The obtained
results indicate that the SCF-induced diamagnetism may be more enhanced than that in a single-band system
due to the existence of two distinct fluctuation modes. Such enhancement of diamagnetism unique to a two-band
system seems consistent with the large diamagnetism observed in FeSe, though still far from a quantitative
agreement.
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I. INTRODUCTION

Near the superconducting critical temperature Tc, the
thermal fluctuation can elicit electron pairs over a finite range
of space and time even in the normal phase above Tc. Such tran-
sient pairs, referred to as superconducting fluctuations (SCFs),
can induce precursory phenomena of superconductivity. For
example, it suppresses resistivity and enhances diamagnetism.
SCF-induced phenomena have been investigated and observed
for nearly half a century [1–3]. The corresponding fluctuation
effect in Fermi superfluids has also been seen in unitary Fermi
gas systems [4]. The importance of thermal fluctuation is
usually signaled by the width of the so-called critical region,
which is larger in a superconductor with a higher Tc and/or a
shorter coherence length [3]. In this sense, high-temperature
cuprate superconductors [5] have been preferable for
studying SCFs. They have accelerated understanding of
SCFs especially in a high magnetic field, where the Gaussian
approximation neglecting the mode coupling (mutual
interaction between the fluctuations) becomes useful only at
much higher temperatures than in the zero-field case due to
the effective reduction of the dimensionality of the fluctuation
[6]. In high magnetic fields, the resulting features generated
by SCF emerge, such as the crossing of magnetization curves
[7–10] and the scaling law of both thermodynamic quantities
and transport coefficients [6,7,11,12].

To describe SCF theoretically, one often needs to construct
the Ginzburg-Landau (GL) free-energy functional based on a
microscopic (electronic) Hamiltonian. As far as effects of SCF
on electronic quantities are not considered, however, the SCF
effects can be examined by introducing a phenomenological
GL functional [3]. On the other hand, to describe SCF effects
in superconductors with moderately strong SCF under a
nonzero magnetic field, the mode coupling, i.e., the interaction
between SCFs, plays essential roles [6]. This mode coupling
affects the SCF in a couple of different manners. First, the
SCF with higher energy pushes the bare transition point to
a lower temperature through the mode coupling. Further,
the SCF with lower energy interacting through the mode
coupling determines the crossover behavior in the so-called
vortex-liquid regime and even the genuine transition, i.e.,
the vortex-lattice-melting transition. If one focuses on the

vortex-liquid regime and the region at higher temperatures,
a convenient treatment for describing the SCF interaction
is the so-called Hartree [6–9,11,12] or Hartree-Fock (HF)
approximations [10].

Among the superconductors which have been examined
recently, iron selenide (FeSe), which is one of the typical
iron-based superconductors, has been found to show unusually
remarkable fluctuation effects. Although SCF-induced phe-
nomena have also been discussed previously in other iron-
based superconductors [13–15], very recent magnetic-torque
measurement on FeSe indicates the presence of anomalously
large SCF-induced diamagnetism even far above the transition
temperature [16]. In addition, a crossing behavior of magne-
tization curves at different magnetic fields, which is a typical
SCF phenomenon seen repeatedly in 2D-like high-Tc cuprates,
has been observed in this 3D-like superconductor in high
magnetic fields [16]. Since FeSe (as well as similar compounds
[17,18]) is supposed to have very small Fermi surfaces [19,20],
the zero-temperature coherence length is estimated to be
comparable with the averaged interelectron distance. It thus
seems plausible that the thermal fluctuation is important in
FeSe. However, the observed diamagnetism is much larger
than that expected from a conventional single-band theory. On
the other hand, it should be noted that several experiments have
suggested a two-band structure of FeSe [19,20]. Therefore, it
is natural to theoretically examine whether or not a two-band
character can explain the anomalously large SCF-induced
diamagnetism observed in FeSe.

Motivated by the experiment on FeSe mentioned above,
we examine the SCF-induced diamagnetism in a two-band
system in both low and high magnetic fields. Starting
with a GL functional, the non-Gaussian SCF including
the mode-coupling effects will be examined within the HF
approximation. As a result, we find that the SCF-induced
diamagnetism is more enhanced in a two-band system than
in a single-band system. This enhancement is caused by the
character of a two-band system, as discussed in the following
sections.

This paper is organized as follows. In Sec. II, our model and
calculation method are explained. In Sec. III, we explain our
calculation results and consider the two-band character, and
then a comparison between our results and the experimental
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data on FeSe [16] will be done. In Sec. IV, this study is
summarized with conclusions.

II. MODEL AND METHOD

In this section, we give a detailed account of the way of
investigating the SCF-induced diamagnetism. Following the
explanation of our model (Sec. II A), we first discuss the case
of a single-band system (Sec. II B) and then apply our method
to a two-band system (Sec. II C). Note that some quantities
below are represented explicitly in Appendices A 1 and B 1.

A. Model

To examine the character of diamagnetism in a two-band
system with volume V = LxLyLz under an external magnetic
field H , we choose a symmetric two-band GL functional as a
starting point:

F =
∫

V

d3r α

[
ε(s)(|ψ1|2 + |ψ2|2) + η(ψ∗

1 ψ2 + ψ∗
2 ψ1)

+ (ξ�ψ1)†(ξ�ψ1) + (ξ�ψ2)†(ξ�ψ2)

+ β

2α
(|ψ1|4 + |ψ2|4)

]
. (1)

Here ψn(r) (n = 1,2) is a fluctuating order-parameter field
with a band index n, η is an interband coupling, which com-
monly appears in any two-band system, and ε(s) = ln(T/T

(s)
c0 )

is a reduced temperature with the bare, i.e., unrenormalized,
critical temperature in the η = 0 limit T

(s)
c0 . Here, the upper

index (s), implying η = 0, in this mass term is introduced to
avoid any confusion with the corresponding two mass terms
in the two-band case to be discussed later. Further, � =
−i∇ + (2π/φ0)A is the gauge-invariant momentum operator
with the flux quantum φ0 and a vector potential A(r), and
ξ ≡ ξij is a matrix of the GL coherence length when η =
0; ξij = ξabδij (1 − δiz) + ξcδizδjz. Regarding the coherence
lengths, we have not attached the index (s) to them because
it is found that, in contrast to the mass term, a nonvanishing
η does not lead to any change of the coherence lengths in the
symmetric two-band case on which we focus in the present
work (see below). Note that we only have to set ψ2 ≡ 0 if we
consider a single-band case.

In this model, the system is assumed to be a strongly
type-II superconductor (the GL parameter κ � 1). Thus the
contribution of supercurrent to the fourth-order term [21] is
negligible, and the induction is nearly equal to the external
field (B � μ0 H) as long as the effect of diamagnetism is small.
This approximation is appropriate to describing the iron-based
superconductors. In particular, as far as the fluctuation effect
is concerned, taking the type-II limit is safely valid.

For simplicity, we consider the case where the external field
is parallel to the c axis (H ‖ c) by using the Landau gauge
A(r) = (0,Bx,0). When H ‖ ab, we only have to replace ξab

and ξc with
√

ξabξc and ξab, respectively in the final expression
in the H ‖ c case [22].

Our symmetric model might be too simple to capture the
detailed feature of the two-band structure of FeSe [19,20].
Nevertheless, we believe that the main results on the fluctuation
effects of a general asymmetric two-band model will be

captured more clearly by studying the symmetric model with
a smaller number of phenomenological parameters.

B. Single-band case

For completeness, we begin with the case of a single-band
system. A single-band limit (ψ2 ≡ 0) of F [Eq. (1)] leads to a
GL functional describing this system:

F (s) =
∫

V

d3r α

[
ε(s)|ψ |2 + (ξ�ψ)†(ξ�ψ) + β

2α
|ψ |4

]
. (2)

Note that the lower index of the order parameter ψ1 is
omitted here. To evaluate the diamagnetism, we approximately
calculate the fluctuation-induced free-energy density, and then
differentiate it with respect to the external field. Thus we
explain how to estimate the free-energy density as a function of
temperature and magnetic field. We remark that our treatment
of the fluctuation renormalization is, roughly speaking, based
on the HF approximation [10], combined with the fluctuation-
energy-cutoff condition [23].

First, we expand the order-parameter field via the Landau
levels (LLs). Each eigenfunction of LLs is specified by the LL
index N and wave vector (q,k). The order parameter is then
expressed as

ψ(r) =
∑
N,q,k

ϕNq(x)
eiqy√
Ly

eikz

√
Lz

aNqk. (3)

Here, ϕNq(x) is the normalized eigenfunction in the N th LL
with a label q, which measures the LL degeneracy, and aNqk

is a dimensionless fluctuating amplitude for each mode. Next,
we diagonalize the second-order term of F (s) in aNqk as

F (s)
2nd ≡

∫
V

d3r α[ε(s)|ψ |2 + (ξ�ψ)†(ξ�ψ)]

=
∑
N,q,k

α

[
ε(s) + 2h

(
N + 1

2

)
+ ξ 2

c k2

]
|aNqk|2, (4)

where h = 2πξ 2
abμ0H/φ0 is a dimensionless magnetic field.

In the single-band case discussed here, we also define a
dimensionless temperature as t = T/T

(s)
c0 .

First, the Gaussian approximation will be discussed con-
centrating on temperatures far above the zero-field critical
region. In this case, we can neglect the mode-coupling effects
due to the fourth-order term of F (s) (see below). As the
temperature increases away from the critical region, the
contribution of short-wavelength fluctuations, i.e., fluctuations
with a wavelength as well as or shorter than the GL coherence
length, becomes non-negligible. However, a GL functional,
such as our model F or F (s), usually overestimates them [1].
In evaluating not only the free energy but the magnetization,
we need to introduce a certain cutoff that effectively restricts
the short-wavelength fluctuations [24].

Among the cutoff schemes used previously, introducing
an energy cutoff is known to lead to a consistent description
of the behavior of short-wavelength fluctuations far beyond
the critical region in low fields [23]. Following Ref. [23], we
introduce the upper limit of the LL index N and that of the
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wave number k:

Ncut = c − ε(s)

2h
− 1, kcut =

√
c − ε(s)

ξc

, (5)

where c = O(1) is a dimensionless cutoff parameter. In the
present work, these cutoff conditions will be used to discuss
the phenomena in high fields where h � 0.1.

We proceed to the effects of the mode coupling due
to the last term of F (s). In zero field, the mode coupling
affects the SCF behaviors in two ways. First, the mode
coupling pushes the bare transition temperature T

(s)
c0 down to

a lower temperature T (s)
c (0), at which the long-ranged phase

coherence sets in. Second, it induces a critical region around
the genuine transition temperature T (s)

c (0) in which a universal
critical behavior is seen. In a nonzero magnetic field, high-
energy SCF shifts the bare depairing field φ0|ε(s)|/(2πξ 2

ab)
to a renormalized depairing field H

(s)
c2 (T ) lying at a lower

field [25], and no genuine transition occurs at this H
(s)
c2 (T ).

Consistently, the onset of the phase coherence is pushed down
to zero temperature [26,27], and the genuine superconducting
transition becomes the first-order vortex-lattice-melting transi-
tion occurring below H

(s)
c2 . The non-Gaussian-SCF-dominated

region between H
(s)
c2 and the melting-transition line is often

called the vortex-liquid regime, which, broadly speaking,
corresponds to the critical region in zero field. Hereafter, the
mode-coupling effects will be examined by focusing on the
diamagnetism below and above H

(s)
c2 . In the following, we refer

to H
(s)
c2 (T ) as T (s)

c (H ) when it is expressed as a temperature
dependent on H .

To investigate the diamagnetic SCF behaviors, we treat
the mode-coupling effects by using a variational method
equivalent to the HF approximation. Compared with the
familiar Gaussian approximation [1], this method enables us
to consistently treat a wider temperature and field range in
the vortex-liquid region at least at a qualitative level. This
variational method will be sketched in the following. Details of
this method are explained in Appendix A. Using a variational
parameter μ, we divide the GL functional into two parts:
F (s) = F (s)

0 + F (s)
1 , where

F (s)
0 =

∑
N,q,k

α

[
μ + 2h

(
N + 1

2

)
+ ξ 2

c k2

]
|aNqk|2. (6)

Here μ can be interpreted as a renormalized one of ε(s). Then
we obtain a trial free-energy density f

(s)
tri (t,h; μ) that is always

larger than the exact free-energy density f (s)
ex (t,h) as follows:

f (s)
ex = −(T/V ) ln Tra e−F (s)/T

= −(T/V ) ln Tra e−F (s)
0 /T − (T/V ) ln〈e−F (s)

1 /T 〉0

� f
(s)
0 +

〈
F (s)

1

〉
0

V
≡ f

(s)
tri , (7)

where 〈· · · 〉0 = Tra (· · · ) e−F (s)
0 /T / Tra e−F (s)

0 /T is the canonical
average with respect to F (s)

0 , and Tra(· · · ) corresponds to
integrating all degrees of freedom of the order-parameter fields

with the above cutoff conditions [Eq. (5)]:

Tra(· · · ) =
∫ ∞

−∞

Ncut∏
N=0

kcut∏
k=−kcut

∏
q

dReaNqkdImaNqk(· · · ).

Here the number of possible q is μ0HLxLy/φ0, which is
equal to the degree of degeneracy of each LL. Note also that
f

(s)
0 = −(T/V ) ln Tra e−F (s)

0 /T is the Gaussian contribution of
the renormalized fluctuation to the whole free-energy density,
and that 〈F (s)

1 〉0/V is the residual contribution. The former
[f (s)

0 (t,h; μ)] can be reduced to the following form as described
in Appendix A 1:

f
(s)
0 = T

(s)
c0

2π2ξ 2
abξc

th I1(t,h; ε(s); μ), (8)

where I1(t,h; ε(s); μ) is given in Eq. (A3) in Appendix A 1.
The latter (〈F (s)

1 〉0/V ), on the other hand, can be written with
f

(s)
0 as shown in Appendix A 3. As a consequence, we obtain

f
(s)
tri = f

(s)
0 − (μ − ε(s))

∂f
(s)
0

∂μ
+ β

α2

(
∂f

(s)
0

∂μ

)2

. (9)

We get the optimal free-energy density f
(s)

opt(t,h) by minimizing

f
(s)
tri (t,h; μ) with respect to μ. The optimizing equation

∂f
(s)
tri /∂μ = 0 leads to the equation for μ:

μ = ε(s) + 2β

α2

∂f
(s)
0

∂μ
. (10)

We refer to μ that satisfies this equation as μ(t,h) hereafter.
The magnetization is calculated from M

(s)
dia =

−∂f
(s)
opt/∂(μ0H ) = −(2πξ 2

ab/φ0)∂f (s)
opt/∂h. This formula

is simplified as follows:

M
(s)
dia(t,h) = −2πξ 2

ab

φ0

∂f
(s)
tri (t,h; μ)

∂h

∣∣∣∣
μ=μ(t,h)

= −2πξ 2
ab

φ0

∂f
(s)
0 (t,h; μ)

∂h

∣∣∣∣
μ=μ(t,h)

. (11)

In the first equality, we use the fact that f
(s)
opt(t,h) =

f
(s)
tri [t,h; μ(t,h)] is minimized with respect to μ. In obtaining

the second line, Eqs. (9) and (10) are used. By combining
Eqs. (10) and (11) with the explicit form of f

(s)
0 , we obtain the

magnetization M
(s)
dia as a function of dimensionless temperature

t and magnetic field h. The detailed expression of M
(s)
dia(t,h) is

summarized in Appendix A 1.
Since we have introduced the cutoff parameter c as

indicated in Eq. (5), both the resultant optimizing equation
[Eqs. (10) or (A5)] and magnetization formula [Eqs. (11) or
(A8)] explicitly depend on c. Here, we point out that the present
results are not in conflict with either of the previous works ne-
glecting or including the mode-coupling effect. First, we note
that we can reproduce the Gaussian magnetization formula
[23] equivalent to that provided by Prange in Ref. [29] if we
simply neglect the mode-coupling effect and push the cutoff
c to infinity (see Appendix A 2). Second, in the case where
the mode-coupling effect is important, the reader may wonder
whether the influence of c can be totally absorbed into the
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renormalized zero-field critical temperature T (s)
c (0) as in the

standard approach of the renormalization group [28]. Indeed, if
we replace the mass parameter [ε(s) = ln(T/T

(s)
c0 ) in this study]

with T/T
(s)

c0 − 1 following Ref. [10], we can formally take the
c → ∞ limit and obtain the cutoff-independent optimizing
equation and magnetization formula with not T (s)

c0 but T (s)
c (0) as

the characteristic temperature scale (see Appendix A 2). In our
formulation, however, a finite cutoff is introduced [c = O(1)]
so that we can consistently describe the short-wavelength
fluctuations [23] as mentioned above.

Before ending this section, we stress that our formalism
can treat a broad temperature and field range in the same
framework. First, the cutoff condition [Eq. (5)] enables us
to consistently evaluate short-wavelength fluctuations and to
reproduce magnetization curves which are also reliable in
low fields (h � 1) and outside the zero-field critical region
[23]. Second, near and below H

(s)
c2 in relatively high fields

(h � 0.1), the fluctuation renormalization [Eq. (10)] results
in a characteristic behavior of magnetization (see Sec. III)
commonly seen in the high-Tc cuprates with strong fluctuation
[11,30,31]. Previously, explanation of these properties has
been theoretically tried frequently based on a GL model taking
account only of the lowest-LL (N = 0) modes [7–9] in contrast
to the present model also taking account of the contribution
from high LLs. As is shown in Appendix D, however, it is not
easy, as far as the magnetization is concerned, to justify the
approach focusing only on the lowest-LL fluctuation modes
[32]. Lastly, we briefly comment on a formalism developed in
Ref. [10], where the authors also take account of high LLs and
use a similar method to the variational method used here. They
consider a quasi-two-dimensional system, which is different
from an anisotropic three-dimensional system of our interest.
In addition, though they also introduce a cutoff of the LL index,
their method seems different from ours [Eq. (5)]. The latter
consistently describes the short-wavelength fluctuations even
in low enough fields [23]. In summary, the present variational
method seems qualitatively appropriate both in low and high
fields as well as both close to and above the renormalized
depairing field H

(s)
c2 .

C. Two-band case

In this section, we extend our formalism illustrated in
Sec. II B to a two-band system described by the original
GL functional [Eq. (1)]. The basic idea is the same as that
of the single-band case; our treatment of the fluctuation
renormalization is based on the HF approximation, joined
together with the fluctuation-energy-cutoff condition.

As a preliminary, we mention the effects of the interband
coupling (represented as η in our model) on the fluctuation
properties. The system on which we focus here is symmetric
with respect to the exchange between the two bands. The
bare critical temperature T

(s)
c0 is thus common to both bands

as long as the two bands are independent, i.e., η = 0. If
η = 0, however, this degeneracy is resolved by the mixing of
fluctuations in each band and consequently, a finite interband
coupling creates two distinct modes: One mode with lower
excitation energy has a higher bare critical temperature Tc0,
and the other higher energy mode has a lower bare critical

temperature T c0. We refer to the former as the low-energy
mode (LEM) and the latter as the high-energy mode (HEM). In
the following, we consider the general case where η = 0. Just
like in the single-band case, we refer to the genuine transition
temperature in zero field as Tc(0) and to the temperature
corresponding to Hc2(T ) as Tc(H ).

To specifically see how the LEM and HEM appear, we
diagonalize the second-order term of F . First, we expand the
order-parameter fields via the LLs as in the single-band case:

ψn(r) =
∑
N,q,k

ϕNq(x)
eiqy√
Ly

eikz

√
Lz

anNqk, (12)

where ϕNq(x) is the normalized eigenfunction in the N th LL
with a label q as in the single-band case. This expansion leads
to

F2nd ≡
∫

V

d3r α[ε(s)(|ψ1|2 + |ψ2|2) + η(ψ∗
1 ψ2 + ψ∗

2 ψ1)

+ (ξ�ψ1)†(ξ�ψ1) + (ξ�ψ2)†(ξ�ψ2)]

=
∑
N,q,k

α

{[
ε(s) + 2h

(
N + 1

2

)
+ ξ 2

c k2

]
× (|a1Nqk|2 + |a2Nqk|2)

+ η(a∗
1Nqka2Nqk + a∗

2Nqka1Nqk)

}
. (13)

Here, we introduce a dimensionless magnetic field as h =
2πξ 2

abμ0H/φ0. Note that anNqk represents a dimensionless
fluctuating amplitude of the nth band. Then, we now only
have to diagonalize Eq. (13) in terms of a 2 × 2 matrix MNk

in the band-index space with N , q, and k fixed; (MNk)nm =
[ε(s) + 2h(N + 1/2) + ξ 2

c k2]δnm + η(1 − δnm). Two normal-
ized eigenvectors of MNk are given by u = 2−1/2(1,−sgn η)T

and u = 2−1/2(1, + sgn η)T, which respectively belong to the
following two eigenvalues:

ENk = ε + 2h
(
N + 1

2

)+ ξ 2
c k2,

(14)
ENk = ε + 2h

(
N + 1

2

)+ ξ 2
c k2,

where new reduced temperatures (ε = ε(s) − |η| and ε =
ε(s) + |η|) are introduced. By expanding the fluctuating am-
plitudes as (

a1Nqk

a2Nqk

)
= u bNqk + u bNqk, (15)

therefore, we finally obtain the diagonalized form of F2nd:

F2nd =
∑
Nqk

α(ENk|bNqk|2 + ENk|bNqk|2). (16)

It follows from Eq. (14) that ENk < ENk , which means that
LEM is described by bNqk , while HEM is done by bNqk .

Equation (14) tells us some characters of the considered
system. First, the bare critical temperatures of the LEM
(Tc0) and HEM (T c0) are determined as ε = 0 and ε = 0,
respectively. In other words,

Tc0 = e|η| T (s)
c0 ,

T c0 = e−|η| T (s)
c0 ,

(17)
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so that ε = ln(T/Tc0) and ε = ln(T/T c0). Second, Eq. (14)
indicates that the GL coherence lengths are not affected by η

[33].
Generally, the reduced temperature of the LEM is less than

that of the HEM (ε < ε). Therefore, except in the exceptional
case with an extremely small η, the HEM in zero field behaves
as an additional noncritical mode even in the critical region
for the LEM (e.g., ε � 0.1 when h = 0). Then, one needs a
method of introducing an energy cutoff which works for not
only the LEM but also the additional HEM. Among possible
ways of introducing a proper cutoff for the short-wavelength-
fluctuation modes, we choose the method consistent with that
in the single-band case. That is, we apply the energy-cutoff
condition in Ref. [23] to the HEM as well as LEM [cf. Eq. (5)]:

Ncut = c − ε

2h
− 1, kcut =

√
c − ε

ξc

,

(18)

N cut = c − ε

2h
− 1, kcut =

√
c − ε

ξc

.

Here (Ncut,kcut) for the LEM and (N cut,kcut) for the HEM
are the upper limits of the LLs and wave number. Note that
c = O(1) is the only dimensionless cutoff parameter we have
introduced.

The mode-coupling effect stemming from the fourth-order
term F4th is similar to that in the single-band case. In the
present two-band case, the interaction between the LEM and
HEM also exists in addition to that within each of LEM and
HEM. It is preferable to treat both LEM and HEM on equal
footing, especially when we investigate fluctuation effects in
the vortex-liquid region below the renormalized depairing
field Hc2 under a finite magnetic field. In fact, if we treat
HEM in the Gaussian approximation in spite of renormalizing
the LEM fluctuation, the resulting magnetization under finite
fields would show an unphysical divergence when ε + h = 0,
i.e., T = e−hT c0 ≈ (1 − h)T c0, due to neglecting the renor-
malization of HEM fluctuation. Fortunately, in the present
symmetric two-band case, we can accomplish the fluctuation
renormalization of both LEM and HEM by straightforwardly
extending the variational method in the HF approximation for
the single-band case as follows.

First, we prepare two variational parameters μ and μ, and
divide the GL functional into two parts: F = F0 + F1, where

F0 =
∑
N,q,k

α

[
μ + 2h

(
N + 1

2

)
+ ξ 2

c k2

]
|bNqk|2

+
∑
N,q,k

α

[
μ + 2h

(
N + 1

2

)
+ ξ 2

c k
2
]
|bNqk|2. (19)

Here the LL index and wave vector of the HEM are written
as N , q, and k so that the upper limits of (N,k) and (N,k) are
respectively (Ncut,kcut) and (N cut,kcut), given in Eq. (18). We
now define a dimensionless temperature t by using the bare
critical temperature Tc0 for LEM as t = T/Tc0. Then a trial
free-energy density ftri(t,h; μ,μ) that is always higher than

the exact free-energy density fex(t,h) is defined as

fex = −(T/V ) ln Trb,b e−F/T

= −(T/V ) ln Trb,b e−F0/T − (T/V ) ln〈e−F1/T 〉0

� f0 + 〈F1〉0

V
≡ ftri, (20)

where 〈· · · 〉0 = Trb,b (· · · ) e−F0/T / Trb,b e−F0/T is the canon-
ical average with respect to F0. Note also that f0 =
−(T/V ) ln Trb,b e−F0/T is the Gaussian contribution de-
fined through Eq. (19) for the total free-energy density,
and that 〈F1〉0/V is the residual contribution. The former
[f0(t,h; μ,μ)] is rewritten in the following form as shown
in Appendix B 1:

f0 = Tc0

2π2ξ 2
abξc

th [I1(t,h; ε; μ) + I1(t,h; ε; μ)], (21)

where I1(t,h; ε; μ) is given in Eq. (A3). The latter (〈F1〉0/V )
can be written by using f0 as described in Appendix B 3. As a
consequence, we obtain

ftri = f0 − (μ − ε)
∂f0

∂μ
− (μ − ε)

∂f0

∂μ

+ β

2α2

(
∂f0

∂μ
+ ∂f0

∂μ

)2

. (22)

We can get the optimal free-energy density fopt(t,h) by mini-
mizing ftri(t,h; μ,μ) with respect to μ and μ. The optimizing
equations ∂ftri/∂μ = ∂ftri/∂μ = 0 lead to the equations for μ

and μ:

μ = ε + β

α2

(
∂f0

∂μ
+ ∂f0

∂μ

)
,

(23)

μ = ε + β

α2

(
∂f0

∂μ
+ ∂f0

∂μ

)
.

We refer to μ and μ that satisfy these equations as μ(t,h) and
μ(t,h) hereafter.

The magnetization is calculated from Mdia(t,h) =
−(2πξ 2

ab/φ0)∂fopt(t,h)/∂h. This formula is simplified as
follows:

Mdia(t,h) = −2πξ 2
ab

φ0

∂ftri(t,h; μ,μ)

∂h

∣∣∣∣
μ=μ(t,h),μ=μ(t,h)

= −2πξ 2
ab

φ0

∂f0(t,h; μ,μ)

∂h

∣∣∣∣
μ=μ(t,h),μ=μ(t,h)

.(24)

In the first line, we use the fact that fopt(t,h) = ftri[t,h; μ(t,h),
μ(t,h)] is minimized with respect to μ and μ. In the second
line, Eqs. (22) and (23) are used. By combining Eqs. (23) and
(24) with the explicit form of f0, we obtain the magnetization
as a function of dimensionless temperature t and magnetic
field h. The detailed expression of Mdia(t,h) is summarized
in Appendix B 1. Note that, just as in the single-band case,
we can formally push the cutoff c to infinity in the optimizing
equations (23) and magnetization formula (24) by favoring
not Tc0 (and T c0) but the renormalized zero-field critical
temperature Tc(0) as the characteristic temperature scale (see
Appendix B 2).
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III. RESULTS AND DISCUSSION

In this section, the calculated magnetization (Mdia) in a
two-band system is presented and compared with that in
a single-band system. We find that the fluctuation-induced
diamagnetism can be enhanced further in the two-band case
than in the single-band case, due to the presence of fluctuations
of HEM (see Sec. II C about the HEM).

First, some parameters used in evaluating the magnetization
are explained, and we will perform comparison between the
single-band and two-band cases (Sec. III A). Next, we show the
magnetization curve as a function of temperature (Sec. III B)
and magnetic field (Sec. III C). Then, it is suggested that the
scaling law of magnetization, which is known to appear in a
single-band system where fluctuations are strong, can break
down in a two-band system (Sec. III D). Lastly, after men-
tioning the interband-coupling dependence of magnetization
in the two-band case (Sec. III E), we compare our results in the
two-band case with the experimental magnetization observed
in FeSe (Sec. III F).

A. Important parameters

Material parameters need to be fixed in calculating the
magnetization in a single-band system. The parameter c in
Eq. (5) means the high-energy cutoff, restricting the short-
wavelength fluctuations. We ascertain that the change of c

within O(1) does not qualitatively affect the following results.
The fluctuation strength γ (s) ∝ β is defined by Eq. (A7),

γ (s) = 1

2π2

β

α2

T
(s)

c0

ξ 2
abξc

= 1

2π2

1

�C(s) ξ 2
abξc

,

which is nothing but the square root of the Ginzburg number
in the 3D case (see Appendix A 1). Here �C(s) is the zero-field
specific-heat jump at a mean-field level.

We move to the case of a two-band system. In this case, we
fix the interband coupling η in Eq. (1) as well as the cutoff c in
Eq. (18), and the fluctuation interaction γ (see Appendix B 1)
corresponding to γ SB mentioned above and defined by Eq. (B4)
is

γ = 1

4π2

β

α2

Tc0

ξ 2
abξc

= 1

2π2

1

�CLEM ξ 2
abξc

.

Here �CLEM is the zero-field specific-heat jump at a mean-
field level in the two-band case with a finite interband coupling
(η = 0).

In comparing the magnetization in the single-band and
two-band case, we assume that the cutoff (c), the bare critical
temperature (T (s)

c0 or Tc0), the GL coherence lengths (both
ξab and ξc), and the specific-heat jump (�C(s) or �CLEM)
take the same values in both cases. Referring to the recent
experimental data of FeSe [20,34], which indicate values of
the GL coherence length and specific-heat jump, we obtain the
fluctuation interaction strength as γ exp ≈ 0.001–0.01. In the
following, the parameters are thus set as c = 0.6, γ (s) = γ =
0.001, and η = 0.05 unless other choice is explicitly given.
Under these values of the fluctuation strength, the reduction
of the zero-field transition temperature due to the high-energy
fluctuations is quite small. Regarding η, this choice results
in the relation that T c0 = e−2|η| Tc0 � 0.90Tc0, where Tc0 and
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FIG. 1. Temperature (t = T/Tc0) dependence of magnetization
(Mdia) with varying magnetic fields (h = 2πξ 2

abμ0H/φ0) in the
two-band case. Mdia is divided by Tc0/(πφ0ξc) so that it becomes
dimensionless. The temperature Tc(H ), which corresponds to Hc2(T )
for each h, is also shown with the colored filled circle. Parameters are
fixed as c = 0.6, γ = 0.001, and η = 0.05.

T c0 are, respectively, the bare critical temperatures of LEM
and HEM. We comment on the limiting cases on the η value
in Sec. III E.

B. Temperature dependence of magnetization

Figure 1 shows the magnetization expressed as a function
of temperature (t = T/Tc0) over a broad temperature range
in the two-band case, where h = 2πξ 2

abμ0H/φ0. In this
figure, a colored filled circle represents the temperature Tc(H )
corresponding to Hc2(T ) explained in Sec. II and defined in
Appendix C for each magnetization curve shown with the same
color. See Appendix C regarding the manner of determining
the value of Tc(H ). Especially in high fields (h � 0.1), Mdia

around Tc(H ) is smooth in contrast to the familiar nonanalytic
behavior resulting from the mean-field approximation (see,
for example, Ref. [2]) completely neglecting the fluctuation.
As mentioned in Sec. II B, the mode-coupling effect, i.e., the
interaction between fluctuations, produces such smoothing.
We find that, when seen over such broad field and temperature
ranges as in Fig. 1, the magnetization in the two-band case
is hardly distinguishable from that in the single-band case,
implying that a two-band character is not reflected in the
“rough behavior” of diamagnetism.

In contrast to the “rough behavior” of the magnetization
mentioned in the previous paragraph, the fluctuation contribu-
tion to this quantity is affected significantly. Figure 2 shows the
magnetization curve at a low field (h = 0.001). It suggests that
|Mdia| is larger in the two-band case, drawn as a thick line, than
in the single-band case (thin line). This result implies that a
two-band character seems to appear in the fluctuation-induced
diamagnetism.

In high fields, as well as in low fields, a two-band character
emerges in the fluctuation-induced behavior. Figure 3 shows
the magnetization curves in high fields (h = 0.1, 0.15, and
0.2). As a reference, Tc(H ) for each h is also shown in terms
of the colored filled circle as in Fig. 1. We see from Fig. 3 that
the fluctuation-induced diamagnetism in the two-band case
(thick lines) is enhanced further in the two-band case than in
the single-band case (thin lines). In addition, it is suggested that
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FIG. 2. Temperature dependence of magnetization at a low field
(h = 0.001) in the two-band case (with a thick line), compared with
the single-band case (with a thin line). Parameters (c, γ , and η) are
fixed and symbols are used in the same way as in Fig. 1.

the magnetization curves approximately cross at a certain tem-
perature (the so-called crossing or intersection point [7–10])
with one another not only in the single-band case but also
in the two-band case. In the two-band case, the crossing
point seems to shift to lower temperature compared with the
single-band case. Further, our calculation indicates that the
crossing behavior is also visible in the 3D case. Previously,
the presence of a crossing point of the magnetization curves
in high-Tc cuprates has been argued based on the nearly 2D
model and by focusing only on the lowest-LL fluctuation
modes [7]. However, it has been noted [32] that the use of
the lowest-LL approximation is theoretically insufficient for
the magnetization data in high-Tc cuprates in the tesla range
of the applied field. Our numerical results support the validity
of the previous argument [32] (see also Appendix D).

Next, let us comment on the reason why a two-band
character appears not in the rough behavior (Fig. 1) but in
the fluctuation-induced behavior (Figs. 2 and 3). First, the
rough behavior is determined primarily by excitation modes
with lower energy. In a two-band system, there are two distinct
modes, i.e., LEM and HEM (see Sec. II C). The LEM, which
has lower energy than that in the HEM, thus produces the
rough behavior. On the other hand, the excitation energy of
LEM [ENk in Eq. (14)] takes the same form as that in the
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FIG. 3. Temperature dependence of magnetization at high fields
(h = 0.1, 0.15, 0.2) in the two-band case (with thick lines), compared
with the single-band case (with thin lines). Tc(H ) for each h is also
shown with the colored filled circle. Parameters (c, γ , and η) are fixed
and symbols are used in the same way as in Fig. 1.
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FIG. 4. Magnetic-field dependence of magnetization at different
temperatures (t = T/Tc0 = 1, 1.2, 1.5) in the two-band case (thick
lines) and in the single-band case (thin lines). Parameters (c, γ , and
η) are fixed and other symbols are used in the same way as in Fig. 1.

single-band case [33] [Eq. (4)]. Therefore, the rough behavior
of diamagnetism in the two-band case becomes essentially the
same as that in the single-band case.

By contrast, excitation modes with higher energy can
contribute to the fluctuation-induced behavior. In a two-band
system, fluctuations of the HEM thus enhance the total
diamagnetism in addition to those of the LEM. Since the
excitation energy of the LEM [ENk in Eq. (14)] is the same
as that of the single-band case [33] [Eq. (4)], the fluctuation-
induced diamagnetism is enhanced further in the two-band
case than in the single-band case.

C. Magnetic-field dependence of magnetization

To further investigate a two-band character, the magnetic-
field dependence of magnetization is shown in Fig. 4 with
varying temperatures as t = T/Tc0 = 1, 1.2, and 1.5. As in
Figs. 2 and 3, thick and thin lines represent the magnetization
curves in the two-band and single-band cases, respectively. We
see from Fig. 4 that the difference in magnetization between
the two-band and single-band cases becomes larger in higher
magnetic fields, especially when T � Tc0 (t � 1). This feature
is explained as follows.

When h → 0 and the temperature is above Tc0 and outside
the critical region, the diamagnetic susceptibility is known
to show a divergent behavior as a function of temperature.
For example, in a single-band three-dimensional system, the
magnetization M

(s)
dia behaves [35] as

M
(s)
dia(t,h)

h
� − T

(s)
c0

12φ0ξc

t√
t − 1

. (25)

This divergence is due to the low-energy (long-wavelength)
fluctuations. In the present two-band case, long-wavelength
fluctuations in LEM play a role in producing such divergence,
and thus LEM becomes much more significant than HEM
when t � 1 and h → 0. Therefore, when t � 1 and h → 0,
the fluctuation-induced diamagnetism is dominated by LEM,
which behaves in the same manner as the single-band case
within our model [33]. On the other hand, when t � 1 and
h gets higher, fluctuations of HEM tend to more substan-
tially contribute to the diamagnetism. As a consequence,
diamagnetism in the two-band case becomes more enhanced
in higher fields, compared with the single-band case.
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FIG. 5. Scaling plot of magnetization in the single-band case
at high fields (h = 0.1, 0.15, 0.2). A dimensionless magnetization
m

(s)
dia = M

(s)
dia/[Tc0/(πφ0ξc)] is introduced. Parameters (c and γ ) are

fixed and other symbols are used in the same way as in Fig. 1.

D. Breakdown of scaling law

In a single-band system with strong fluctuations, it is
known that characteristic scaling laws of the thermodynamic
quantities and transport coefficients appear in high fields
[6,7,11,12], due to the restriction of the fluctuation modes
to the lowest LL. As for the fluctuation-induced diamagnetism
of our interest in this study, the magnetization M

(s)
dia in a

single-band system is scaled as [11]

M
(s)
dia(t,h)

(th/
√

γ (s))2/3
∝ −S

[
t − tc(h)

(γ (s) th)2/3

]
. (26)

Here S(x) is a certain scaling function, and t (s)
c (h) =

T (s)
c (H )/T

(s)
c0 . The region in the field versus temperature phase

diagram where this lowest-LL scaling behavior should be
visible has been discussed in the single-band case in Ref. [25]
in detail.

In our two-band case, fluctuations of HEM as well as LEM
can contribute to the diamagnetism (see Secs. III B and III C).
Thus the scaling law [Eq. (26)] may be broken by fluctuations
of HEM. In fact, by comparing Fig. 5 (a scaling plot for the
single-band case) and Fig. 6 (a scaling plot for the two-band
case), we clearly see that a breakdown of the scaling law occurs
in the two-band case.
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FIG. 6. Scaling plot of magnetization in the two-band case at high
fields (h = 0.1, 0.15, 0.2). A dimensionless magnetization mdia =
Mdia/[Tc0/(πφ0ξc)] is introduced. Parameters (c, γ , and η) are fixed
and symbols are used in the same way as in Fig. 1.

E. Interband-coupling dependence of magnetization

Here, we briefly explain the interband-coupling (η) depen-
dence of the magnetization. First, when η � 1 with a fixed
Tc0, fluctuations of HEM are completely suppressed, and the
property of a two-band system is determined by LEM. Since
the present two-band case with no contribution of HEM is
equivalent to the single-band case as mentioned in Secs. III B
and III C, the resulting magnetization in the two-band case
coincides with that in the single-band case. Because a finite
cutoff c was introduced practically in the present approach,
effects of the HEM fluctuations disappear when η exceeds a
certain value. Next, the case where η → 0 with a fixed Tc0 will
be commented on. In this case, the two bands are completely
separated and behave independently. Above the critical region
[36], therefore, we obtain twice the magnetization of that in
the single-band case. Lastly, in the intermediate range of η

values, such as our choice (η = 0.05) in the previous sections,
we obtain the magnetization not less than one time and not
more than twice that in the single-band case.

F. Discussion

In this section, we discuss the relation between our
magnetization results in a two-band system and the large
diamagnetism observed recently in FeSe [16].

Since, in Ref. [16], the measured diamagnetic susceptibility
(χ exp

dia = M
exp
dia /H ) is plotted as a function of temperature, we

compare χ
exp
dia with the corresponding quantity calculated in

both single-band and two-band cases (χ (s)
dia = M

(s)
dia/H and

χdia = Mdia/H , respectively) [37]. As a result, the calculated
susceptibility in the two-band case is closer to the experimental
value than that in the single-band case: |χ exp

dia | > |χdia| > |χ (s)
dia|.

However, |χ exp
dia | is still two or three times larger than |χdia|.

This fact indicates that in order to quantitatively understand
the anomalously large diamagnetism in FeSe, we should take
account of factors other than the simple two-band structure. As
a candidate of such factors, it will be interesting to theoretically
incorporate the argument [16,19] that FeSe is possibly in the
so-called BCS-BEC-crossover regime. We also suggest other
possibilities such as that the interband asymmetry neglected
in our model may be important or that an additional small
electron pocket [38,39] may contribute to SCFs.

IV. SUMMARY AND CONCLUSIONS

The anomalously large diamagnetism observed recently in
FeSe motivates us to study how a two-band character in this
material affects the SCF-induced behavior. We investigate the
SCF-induced diamagnetism in a two-band system on the basis
of a phenomenological approach, starting with a symmetric
two-band GL functional. When we consider SCFs, it is
important that a two-band system has two distinct fluctuation
modes, i.e., the LEM with lower excitation energy and the
HEM with higher excitation energy. As long as asymmetry
between the two bands is small, the fluctuations of the LEM
behave in a similar way to those in a corresponding single-band
system; on the other hand, the HEM is unique to a two-band
system and enhances the SCF-induced diamagnetism. This
enhancement is summarized in the next paragraph as follows.
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First, we ascertain that the “rough behavior” of magne-
tization is similar to that in a single-band system. This is
due to the fact that the rough behavior is attributed largely
to the LEM. Second, in both low and high fields, the
SCF-induced diamagnetism is found to be enhanced further
in a two-band system than in a single-band system. This
additional enhancement of SCF specific to a two-band system
is caused by the fluctuations of the HEM. Furthermore, we
find that, as far as the temperature is near the zero-field
critical temperature, the diamagnetism stemming from the
HEM fluctuations becomes more remarkable in higher fields.
Third, we also focus on the behavior specific to a high-field
region; we examine whether or not the crossing point of
magnetization curves and the scaling behavior [6,11,12] of
the magnetization appear in a two-band system. As a result,
the crossing point moves to lower temperature as compared
with the single-band case, and the scaling behavior seems
to break down. These features are attributed again to the
HEM fluctuations. Lastly, we compare our results with the
magnetization observed in FeSe. The calculated magnetization
in the two-band case is closer to the experimental data than that
in the single-band case; however, quantitative agreement seems
to require a certain mechanism other than the simple two-band
structure, such as the characteristic feature of a system in the
BCS-BEC-crossover regime.
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APPENDIX A: SINGLE-BAND CASE

In the following, we describe some details omitted in the
main text in the single-band case.

1. Explicit form of some quantities

In this Appendix, the explicit form of some quantities
introduced in the main text is provided: the Gaussian contribu-
tion of the renormalized fluctuations [Eq. (8)], the optimizing
equation [Eq. (10)], and the magnetization [Eq. (11)].

The Gaussian contribution of the renormalized fluc-
tuations to the whole free-energy density [f (s)

0 =
−(T/V ) ln Tra e−F (s)

0 /T ] is calculated as follows. First, the
Gaussian integral leads to

f
(s)
0 = −T

V

∑
N,q,k

ln
πT

α
[
μ + 2h(N + 1/2) + ξ 2

c k2
] . (A1)

Next, recalling that each LL is (μ0HLxLy/φ0)-fold
degenerate and that the dimensionless temperature and
magnetic field are respectively defined as t = T/T

(s)
c0 and

h = 2πξ 2
abμ0H/φ0, we obtain

f
(s)
0 = − T

(s)
c0

4π2ξ 2
ab

th

×
∫ kcut

−kcut

dk

Ncut∑
N=0

ln
πT

(s)
c0 t

α
[
μ + 2h(N + 1/2) + ξ 2

c k2
] .

Note that here the summation with respect to k is approximated
to the integral:

∑
k � (Lz/2π )

∫
dk. Lastly, we use the fact

that the Gamma function �(x) satisfies

Ncut∏
N=0

(N + X) = �(Ncut + X + 1)

�(X)
(A2)

with the cutoff condition for N and k [Eq. (5)], leading to

f
(s)
0 = T

(s)
c0

2π2ξ 2
abξc

th I1(t,h; ε(s); μ),

where

I1(t,h; ε(s); μ) =
∫ √

c−ε(s)

0
dk̃

[
c − ε(s)

2h
ln

(
2α

πTc0

h

t

)
+ ln �

(
k̃2 + μ + c − ε(s)

2h
+ 1

2

)
− ln �

(
k̃2 + μ

2h
+ 1

2

)]
. (A3)

Here we introduce a dimensionless wave number k̃ = ξck in
the final expression.

The optimizing equation [Eq. (10)] can be rewritten
explicitly as follows. First, substituting Eq. (A3) for I1 in f

(s)
0

[Eq. (8)] and differentiating f
(s)
0 with respect to μ, we get

∂f
(s)
0

∂μ
= T

(s)
c0

2π2ξ 2
abξc

th
∂I1(t,h; ε(s); μ)

∂μ

= T
(s)

c0

4π2ξ 2
abξc

t

∫ √
c−ε(s)

0
dk̃

[
ψ

(
k̃2+μ + c−ε(s)

2h
+1

2

)
−ψ

(
k̃2 + μ

2h
+ 1

2

)]
. (A4)

Note that we introduce the so-called digamma function defined
as ψ(x) = d ln �(x)/dx. Then, using Eqs. (10) and (A4), we
arrive at the final expression:

μ = ε(s) + γ (s) t I2(t,h; ε(s); μ), (A5)

where

I2(t,h; ε(s); μ) =
∫ √

c−ε(s)

0
dk̃

[
ψ

(
k̃2 + μ + c − ε(s)

2h
+ 1

2

)
−ψ

(
k̃2 + μ

2h
+ 1

2

)]
. (A6)

Here γ (s) is an important parameter that represents the
fluctuation strength, defined by

γ (s) = 1

2π2

β

α2

T
(s)

c0

ξ 2
abξc

= 1

2π2

1

�C(s) ξ 2
abξc

, (A7)

where �C(s) = α2/(βT
(s)

c0 ) is the zero-field specific-heat jump
at a mean-field level.

In this paragraph, the explicit form of the magnetization
[Eq. (11)] will be given. By combining Eqs. (8), (11), and
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(A3) with one another, we obtain

M
(s)
dia(t,h) = −2πξ 2

ab

φ0

T
(s)

c0

2π2ξ 2
abξc

t
∂[hI1(t,h; ε(s); μ)]

∂h

∣∣∣∣
μ=μ(t,h)

= − T
(s)

c0

πφ0ξc

tI3(t,h; ε(s); μ)|μ=μ(t,h), (A8)

where

I3(t,h; ε(s); μ)

=
∫ √

c−ε(s)

0
dk̃

[
c − ε(s)

2h
+ ln �

(
k̃2+μ + c−ε(s)

2h
+ 1

2

)
− k̃2 + μ + c − ε(s)

2h
ψ

(
k̃2 + μ + c − ε(s)

2h
+ 1

2

)
− ln �

(
k̃2 + μ

2h
+ 1

2

)
+ k̃2 + μ

2h
ψ

(
k̃2 + μ

2h
+ 1

2

)]
.

(A9)

2. Cutoff-independent optimizing equation
and magnetization formula

In the following, we show the derivation of the asymptotic
form of the optimizing equation [Eq. (A5)] and magnetization
formula [Eq. (A8)] in the c → ∞ limit. Following Ref. [10],
we replace ε(s) by T/T

(s)
c0 − 1 in this appendix.

In order to obtain the zero-field critical temperature T (s)
c (0)

as a function of the cutoff c, we take the limit h → 0 and
μ = 0 in Eq. (A5). Then, one finds

T (s)
c (0)

T
(s)

c0

− 1 = −γ̃ (s:R)√c − (γ̃ (s:R))2

2
+ O

(
1√
c

)
, (A10)

where

γ̃ (s:R) =
(

π

2
+ ln 2

)
γ (s:R)

=
(

π

2
+ ln 2

)
1

2π2

β

α2

T (s)
c (0)

ξ 2
abξc

(A11)

represents the fluctuation strength just at the renormalized
critical temperature T (s)

c (0).
Using the asymptotic form of the digamma function

[ψ(x) → ln x − (2x)−1 + O(x−2) (x → ∞)] in Eq. (A6), we
can arrive at the asymptotic form of I2 as c → ∞

I2(t,h; ε(s); μ) = −
∫ ∞

0
dk̃ ψ

(
k̃2 + μ

2h
+ 1

2

)
+
(

π

2
+ ln 2

)(√
c + γ̃ (s:R) t (R)

2

)
−π
√

μ + h + O
(

ln c√
c

)
, (A12)

where

ψ(x) = ψ(x) − ln x. (A13)

Here, we define a dimensionless temperature t (R) = T/T (s)
c (0).

Combining Eqs. (A5), (A10), and (A12) altogether, one can
finally obtain the following formula:

μ = t (R) − 1 + γ (s:R)t (R)

[
−
∫ ∞

0
dk̃ ψ

(
k̃2 + μ

2h
+ 1

2

)
−π
√

μ + h + 1

2

(
π

2
+ ln 2

)
γ̃ (s:R)(t (R) − 1)

]
. (A14)

Equation (A14) is entirely independent of the cutoff parameter
c and represented in terms of the renormalized zero-field criti-
cal temperature T (s)

c (0) instead of the bare critical temperature
T

(s)
c0 .

As for the behavior of the magnetization formula [Eq. (A8)]
in the c → ∞ limit, the asymptotic form of the gamma
function [ln �(x) → x ln x − x − (1/2) ln x + (1/2) ln(2π ) +
O(x−1)] will be used in addition to that of the digamma
function mentioned above, and then we obtain

M
(s)
dia = −T (s)

c (0)

πφ0ξc

t (R)
∫ ∞

0
dk̃ ϒ

(
k̃2 + μ

2h
+ 1

2

)
, (A15)

where

ϒ(x) = − ln �(x) + (x − 1
2

)
ψ(x) − x + 1

2 [1 + ln(2π )].
(A16)

Equation (A15), as well as Eq. (A14), is independent of the
cutoff c and represented in terms of T (s)

c (0) instead of T
(s)

c0 .
We only have to neglect the fluctuation interaction [γ (s:R) =

0 in Eq. (A14)] or replace μ with t (R) − 1 in Eq. (A15) in
order to reproduce the Gaussian magnetization formula [23]
equivalent to that obtained in Ref. [29]. Provided t (R) − 1 � h,
in particular, we will arrive at the familiar result:

M
(s)
dia = −C

T

πφ0ξc

√
h ∝ −

√
h, (A17)

where C � 0.406.

3. Trial free-energy density

In this Appendix, we will show how Eq. (9) is derived. We
recall that f

(s)
tri = f

(s)
0 + 〈F (s)

1 〉0/V , and thus it is sufficient to
write down how we treat 〈F (s)

1 〉0. First, F (s)
1 is defined as

F (s)
1 = F (s) − F (s)

0

= −α(μ − ε(s))
∫

V

d3r|ψ(r)|2 + β

2

∫
V

d3r|ψ(r)|4.

With Eq. (3), then, we expand ψ(r) as a linear combination
of aNqk . The property of the Gaussian integral, such as
〈a∗

Nqka
∗
NqkaNqkaNqk〉0 = 2(〈|aNqk|2〉0)2, leads to

〈
F (s)

1

〉
0 = −α(μ − ε(s))

∑
N,q,k

〈|aNqk|2〉0

+β
1

V

⎛⎝∑
N,q,k

〈|aNqk|2〉0

⎞⎠2

. (A18)
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From f
(s)
0 = −(T/V ) ln Tra e−F (s)

0 /T , on the other hand, we see that

∂f
(s)
0

∂μ
= α

V

∑
N,q,k

〈|aNqk|2〉0. (A19)

Combining Eqs. (A18) with (A19), we obtain〈
F (s)

1

〉
0

V
= −(μ − ε(s))

∂f
(s)
0

∂μ
+ β

α2

(
∂f

(s)
0

∂μ

)2

.

From f
(s)
tri = f

(s)
0 + 〈F (s)

1 〉0/V , therefore, we reach the expected equation [Eq. (9)]:

f
(s)
tri = f

(s)
0 − (μ − ε(s))

∂f
(s)
0

∂μ
+ β

α2

(
∂f

(s)
0

∂μ

)2

.

APPENDIX B: TWO-BAND CASE

In the following, we describe some details omitted in the main text in the two-band case. Note that basic ideas are the same
as in the single-band case (Appendix A).

1. Explicit form of some quantities

In this Appendix, the explicit forms of the Gaussian contribution of the renormalized fluctuations [Eq. (21)], the optimizing
equations [Eq. (23)], and the magnetization [Eq. (24)] are provided.

The Gaussian contribution of the renormalized fluctuations to the whole free-energy density [f0 = −(T/V ) ln Trb,b e−F0/T ]
is calculated as follows. First, the Gaussian integral leads to

f0 = −T

V

∑
N,q,k

ln
πT

α
[
μ + 2h(N + 1/2) + ξ 2

c k2
] − T

V

∑
N,q,k

ln
πT

α
[
μ + 2h(N + 1/2) + ξ 2

c k
2] . (B1)

Next, recalling that each LL is (μ0HLxLy/φ0)-fold degenerate and that the dimensionless temperature and magnetic field are
respectively defined as t = T/Tc0, we obtain

f0 = − Tc0

4π2ξ 2
ab

th

⎧⎨⎩
∫ kcut

−kcut

dk

Ncut∑
N=0

ln
πTc0 t

α
[
μ + 2h(N + 1/2) + ξ 2

c k2
] +

∫ kcut

−kcut

dk

N cut∑
N=0

ln
πTc0 t

α
[
μ + 2h(N + 1/2) + ξ 2

c k
2]
⎫⎬⎭,

where Tc0 is the bare critical temperature of the LEM, and h = 2πξ 2
abμ0H/φ0. Note that here the summation with respect to k

is approximated to the integral:
∑

k � (Lz/2π )
∫

dk. Lastly, we use Eq. (A2) with the cutoff condition for (N,k) and (N,k) [see
Eq. (18)]. Finally, we obtain

f0 = Tc0

2π2ξ 2
abξc

th[I1(t,h; ε; μ) + I1(t,h; ε; μ)],

where I1(t,h; ε; μ) is given in Eq. (A3).
The variational equations [Eq. (23)] can be rewritten explicitly as follows. First, we notice that μ and μ are related as

μ = μ − ε + ε. Remembering ε = ε + 2|η| [see just below Eq. (14)], this equation is reduced to

μ = μ + 2|η|. (B2)

Further, substituting Eq. (A3) for I1 in f0 [Eq. (21)] and differentiating f0 with respect to μ, we get

∂f0

∂μ
= Tc0

2π2ξ 2
abξc

th
∂I1(t,h; ε; μ)

∂μ
= Tc0

4π2ξ 2
abξc

t

∫ √
c−ε

0
dk̃

[
ψ

(
k̃2 + μ + c − ε

2h
+ 1

2

)
− ψ

(
k̃2 + μ

2h
+ 1

2

)]
.

Here, as in Appendix A 1, the digamma function ψ(x) = d ln �(x)/dx and a dimensionless wave number k̃ were introduced. In
the same way, the explicit form of ∂f0/∂μ is obtained. Lastly, substituting these explicit equations in Eq. (23), we arrive at the
following expression:

μ = ε + γ t[I2(t,h; ε; μ) + I2(t,h; ε; μ)], (B3)

where I2 is given in Eq. (A6). Here γ is the fluctuation strength, defined by

γ = 1

4π2

β

α2

Tc0

ξ 2
abξc

= 1

2π2

1

�CLEM ξ 2
abξc

, (B4)

where �CLEM = 2α2/(βTc0) is the zero-field specific-heat jump at a mean-field level, determined only by the LEM.
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In this paragraph, we show the explicit form of the magnetization [Eq. (24)]. By combining Eqs. (21), (24), and (A3) with
one another, we obtain

Mdia(t,h) = −2πξ 2
ab

φ0

Tc0

2π2ξ 2
abξc

t
∂[h I1(t,h; ε; μ) + h I1(t,h; ε; μ)]

∂h

∣∣∣∣
μ=μ(t,h),μ=μ(t,h)

= − Tc0

πφ0ξc

t[I3(t,h; ε; μ) + I3(t,h; ε; μ)]|μ=μ(t,h),μ=μ(t,h), (B5)

where I3 is given in Eq. (A9).

2. Cutoff-independent optimizing equations and magnetization formula

As in the single-band case, we show the asymptotic form of the optimizing equations [Eqs. (B2) and (B3)] and magnetization
formula [Eq. (B5)] when the cutoff c goes to infinity. As in Appendix A 2, we adopt ε = T/Tc0 − 1 and ε = ε + 2|η| in this
Appendix.

By setting h → 0 and μ = 0 in Eq. (B3), we obtain the equation for determining the renormalized zero-field critical temperature
Tc(0) as

Tc(0)

Tc0
− 1 = −2γ̃ (R)√c − γ̃ (R)(2 γ̃ (R) − π

√
2|̃η|) + O

(
1√
c

)
, (B6)

where

γ̃ (R) =
(

π

2
+ ln 2

)
γ (R) = (π

2
+ ln 2

) 1

4π2

β

α2

Tc(0)

ξ 2
abξc

,

(B7)

η̃ = (π
2

+ ln 2
)−2

η.

In the above equation, γ̃ (R) is represented in terms of the renormalized zero-field critical temperature Tc(0) and corresponds to
Eq. (A11) in the single-band case.

Since the asymptotic form of I2 is already obtained in Eq. (A12), we can find with the aid of Eq. (B6) that one of the optimizing
equations (B3) takes the following form in the c → ∞ limit:

μ = t (R) − 1 + γ (R)t (R)

{
−
∫ ∞

0
dk̃

[
ψ

(
k̃2 + μ

2h
+ 1

2

)
+ ψ

(
k̃2 + μ

2h
+ 1

2

)]
− π (

√
μ + h +

√
μ + h)

+
(

π

2
+ ln 2

)
[2 γ̃ (R)(t (R) − 1) + π

√
2|̃η|]

}
. (B8)

Here, ψ(x) is defined in Eq. (A13) and t (R) = T/Tc(0) is a dimensionless temperature expressed in terms of the renormalized
critical temperature Tc(0). Notice that Eq. (B8) does not include either the cutoff c or the bare critical temperature Tc0 but is
represented in terms of the renormalized critical temperature Tc(0). Combining Eqs. (B2) and (B8), we now arrive at the final
asymptotic expression of the set of optimizing equations.

Regarding the magnetization formula [Eq. (B5)] in c → ∞ limit, the asymptotic forms of the gamma function �(x) and the
digamma function ψ(x) used in Appendix A 2 immediately lead to the following expression:

Mdia = − Tc(0)

πφ0ξc

t (R)
∫ ∞

0
dk̃

[
ϒ

(
k̃2 + μ

2h
+ 1

2

)
+ ϒ

(
k̃2 + μ

2h
+ 1

2

)]
, (B9)

where ϒ(x) is already defined in Eq. (A16). This formula clearly does not depend on either c or Tc0 but is expressed in terms of
Tc(0).

3. Trial free-energy density

In this Appendix, we show how to derive Eq. (22). We recall that ftri = f0 + 〈F1〉0/V , and thus it is sufficient to write down
how we treat 〈F1〉0. First, F1 is defined as

F1 = F − F0 = −α(μ − ε)
∑
N,q,k

|bNqk|2 − α(μ − ε)
∑
N,q,k

|bNqk|2 + β

2

∫
V

d3r[|ψ1(r)|4 + |ψ2(r)|4].

Remember here that the indices (N,q,k) and (N,q,k) are attached to LEM and HEM, respectively, in order to recognize the
difference in cutoff [Eq. (18)] for each mode. With Eqs. (12) and (15), then, we expand ψ1(r) and ψ2(r) as a linear combination
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of bNqk and bNqk . The property of the Gaussian integral, such as 〈b∗
Nqkb

∗
Nqk bNqk bNqk〉0 = 〈|bNqk|2〉0〈|bNqk|2〉0, leads to

〈F1〉0 = −α(μ − ε)
∑
N,q,k

〈|bNqk|2〉0 − α(μ − ε)
∑
N,q,k

〈|bNqk|2〉0 + β

2

1

V

⎛⎝∑
N,q,k

〈|bNqk|2〉0 +
∑
N,q,k

〈|bNqk|2〉0

⎞⎠2

. (B10)

From f0 = −(T/V ) ln Trb,b e−F0/T and Eq. (19), on the other hand, we see that

∂f0

∂μ
= α

V

∑
N,q,k

〈|bNqk|2〉0,

(B11)
∂f0

∂μ
= α

V

∑
N,q,k

〈|bNqk|2〉0.

Combining Eqs. (B10) and (B11) together, we obtain

〈F1〉0

V
= −(μ − ε)

∂f0

∂μ
− (μ − ε)

∂f0

∂μ
+ β

2α2

(
∂f0

∂μ
+ ∂f0

∂μ

)2

.

From ftri = f0 + 〈F1〉0/V , therefore, we reach the expected equation [Eq. (22)]:

ftri = f0 − (μ − ε)
∂f0

∂μ
− (μ − ε)

∂f0

∂μ
+ β

2α2

(
∂f0

∂μ
+ ∂f0

∂μ

)2

.

APPENDIX C: Hc2 CURVE

In this Appendix, we explain how we determine Tc(H ), which corresponds to the renormalized depairing field Hc2(T ) noted
in Sec. II. The “rough behavior” of magnetization is determined by low-energy excitation modes (see Sec. III B and Fig. 1). In
our two-band case, therefore, the lowest-LL modes (N = 0) in LEM determine the rough behavior. In addition, we suppose that
both of the high-LL (N � 1) modes in LEM and all LL modes in HEM will renormalize, i.e., lower, Tc(H ).

In the variational equation [Eq. (23), or explicitly, (B3)], we can separate the effect of the lowest LL in LEM from other
contributions as follows:

μ + h = (ε + h) + 2γ th
1√

μ + h
arctan

√
c − ε

μ + h
+
{

γ t

∫ √
c−ε

0
dk̃

[
ψ

(
k̃2 + μ + c − ε

2h
+ 1

2

)
− ψ

(
k̃2 + μ

2h
+ 3

2

)]}

+
{

γ t

∫ √
c−ε

0
dk̃

[
ψ

(
k̃2 + μ + c − ε

2h
+ 1

2

)
− ψ

(
k̃2 + μ

2h
+ 1

2

)]}
. (C1)

Here the left-hand side is a renormalized mass term of the lowest LL in LEM. We can simply interpret the right-hand side of this
equation as follows: The first term is the bare mass term of the lowest LL in LEM, which determines the rough value of Tc(H ).
The second term represents the renormalization effect due to the interaction between fluctuations of the lowest LL in LEM, which
generates the smooth behavior of magnetization around Tc(H ) (see Fig. 1). The third term represents the contribution from high
LLs in LEM, which is supposed to renormalize Tc(H ). The last term represents the contribution from all LLs in HEM, which is
also supposed to renormalize Tc(H ).

On the basis of the previous interpretation, we can suppose that the sum of the first, third, and last terms on the right-hand
side of Eq. (C1) becomes zero when T = Tc(H ). Therefore, the equation determining Tc(H ) is given as

0 = (ε + h) +
{

γ t

∫ √
c−ε

0
dk̃

[
ψ

(
k̃2 + μ + c − ε

2h
+ 1

2

)
− ψ

(
k̃2 + μ

2h
+ 3

2

)]}

+
{

γ t

∫ √
c−ε

0
dk̃

[
ψ

(
k̃2 + μ + c − ε

2h
+ 1

2

)
− ψ

(
k̃2 + μ

2h
+ 1

2

)]}
. (C2)

APPENDIX D: CROSSING OF MAGNETIZATION CURVES

We comment on how to capture the temperature Tcross,
at which the crossing of magnetization curves is seen in
a substantial field range within our theoretical approach
treating not only the lowest LL but also the higher LLs. The

relation between Tcross and phenomenological parameters has
been theoretically investigated particularly in two-dimensional
systems. On the other hand, the absence of a basic reason
supporting the crossing behavior in the three-dimensional case
has been pointed out [8,11,40]. Thus, in this Appendix, we
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focus on the following two-dimensional single-band system:

F̃ =
∫

�

d2r α

[
ε|ψ |2 + ξ 2

ab(�ψ)†(�ψ) + β

2α
|ψ |4

]
, (D1)

where � = LxLy means the system area, ψ(r) is expanded as
ψ(r) =∑N,q ϕNq(x)Ly

−1/2 exp(iqy) aNq , ε = ln(T/Tc0) =
ln(t), and the other symbols are defined in a similar way to
Sec. II B.

In Ref. [7], the authors have considered only the lowest-LL
fluctuation modes and found out an explicit relation between
Tcross and the bare transition temperature Tc0. In the following,
however, we point out that their treatment seems invalid
from the point of view of our approach. In our theoretical
formalism, restricting ourselves to the lowest-LL fluctuation
modes corresponds to separating the GL functional F̃ in the
form F̃LLL

0 + F̃1 and then applying the variational method
explained in Sec. II B. Here F̃LLL

0 represents the part of the
lowest-LL fluctuation with renormalized mass μ:

F̃LLL
0 =

∑
q

α(μ + h)|a0q |2, (D2)

where h = 2πξ 2
abμ0H/φ0 is a dimensionless magnetic

field.
In the same way as Sec. II B, we can obtain the magneti-

zation Mdia as a function of dimensionless temperature t and
magnetic field h:

Mdia(t,h) = Tc0

φ0
t

{
ln

[
πTc0t

α(μ + h)

]
− h

μ + h

}∣∣∣∣
μ=μ(t,h)

.

(D3)
μ(t,h) is the solution of the following variational
equation:

μ = ε + γ2D
th

μ + h
. (D4)

Here γ2D = β Tc0/(πα2ξ 2
ab) (which is usually � 1) represents

the strength of the interaction between fluctuations.

In the following, the explicit relation between Tcross

and Tc0 obtained in Ref. [7] is discussed on the basis
of Eqs. (D3) and (D4). Assuming that the first term in
Eq. (D3) is negligible, we may arrive at the following expres-
sion: ∂Mdia(t,h)/∂h ∝ μ(t,h) − h ∂μ(t,h)/∂h. Then we can
rewrite ∂μ(t,h)/∂h as a function of μ(t,h) in terms of Eq. (D4),
leading to ∂Mdia(t,h)/∂h ∝ μ(t,h). The crossing condition
∂Mdia(t,h)/∂h = 0 is therefore equivalent to μ(t,h) = 0.
Lastly, by substituting μ = 0 in Eq. (D4) and approximating
ε = ln(t) � t − 1, we obtain t = (1 + γ2D)−1, or

Tcross = 1

1 + γ2D
Tc0. (D5)

The relation equivalent to this equation has been suggested in
Ref. [7].

Now we should consider the validity of the assumption
that the first term in Eq. (D3) is negligible. When μ ∼ −h,
the first term [∼ ln(μ + h)] indeed becomes much smaller
than the second term [∼(μ + h)−1]. The condition μ ∼ −h

will be achieved in the region where ε + h � t + h − 1 �
0 or T/Tc0 � 1 − h, if γ2D(� 1) is not so large. On the
other hand, the resulting crossing temperature [Eq. (D5)]
satisfies Tcross/Tc0 � 1 − γ2D. When h = 0.1, for example,
Tcross/Tc0 > 1 − h, and therefore the assumption that the first
term in Eq. (D3) is negligible is not justified.

Contrary to the previous discussion, we have tried calculat-
ing the crossing temperature Tcross, treating high LLs as well
as the lowest LL in the same way as in Sec. II B. As a result,
although we cannot analytically find out the field-independent
crossing temperature, we numerically obtain a temperature
which can, as in Fig. 3, be identified with a crossing point at
least in a substantial field range. In conclusion, we argue that
the procedure of arriving at the above expression [Eq. (D5)]
will not be justified in moderately high fields, and that
nevertheless, our approach including not only the lowest-LL
modes but also higher-LL ones can approximately produce a
crossing behavior of the magnetization curves.
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