
PHYSICAL REVIEW B 93, 134502 (2016)

Granular superconductor in a honeycomb lattice as a realization of bosonic Dirac material
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We examine the low-energy effective theory of phase oscillations in a two-dimensional granular supercon-
ducting sheet where the grains are arranged in a honeycomb lattice structure. Using the example of graphene,
we present evidence for the engineered Dirac nodes in the bosonic excitations: the spectra of the collective
bosonic modes cross at the K and K ′ points in the Brillouin zone and form Dirac nodes. We show how two
different types of collective phase oscillations are obtained and that they are analogous to the Leggett and the
Bogoliubov-Anderson-Gorkov modes in a two-band superconductor. We show that the Dirac node is preserved in
the presence of an intergrain interaction, despite induced changes of the qualitative features of the two collective
modes. Finally, breaking the sublattice symmetry by choosing different on-site potentials for the two sublattices
leads to a gap opening near the Dirac node, in analogy with fermionic Dirac materials. The Dirac node dispersion
of bosonic excitations is thus expanding the discussion of the conventional Dirac cone excitations to the case of
bosons. We call this case as a representative of bosonic Dirac materials (BDM), similar to the case of Fermionic
Dirac materials extensively discussed in the literature.
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I. INTRODUCTION

Over the last decade the honeycomb lattice has drawn
significant attention within the condensed matter community.
In addition to having interesting physical properties, the
class of materials with this lattice structure also offers a
realization of excitations with a relativistic dispersion relation.
In contrast to the conventional dispersion obtained by the
Schrödinger equation, these excitations are described by the
Dirac equation. The most common example is graphene, which
exhibits massless low-energy Dirac fermions near the K point
in the Brillouin zone [1]. Other types of Dirac materials
also exist, e.g., d-wave superconductors and surface states
in topological insulators etc. [2,3]. These materials possess
fermionic quasiparticle excitations, which can be described
with linear Dirac-like energy-momentum dispersion relation
for massless electrons. The crossing point of the bands in these
materials are protected by different symmetries and breaking
one of those symmetries leads to a gap opening near the Dirac
point, e.g., in graphene a gap can be opened near the Dirac
point by breaking the sublattice symmetry [4,5].

From this point of view, we can ask whether similar bosonic
Dirac materials (BDM) exists, in which the effective low-
energy quasiparticles are bosons. This question is motivated by
the fact that the elemental carbon atoms in the graphene lattice
have a bipartite lattice structure. Hence, despite each carbon
atom being identical, the bipartite lattice structure ultimately
leads to the Dirac equation in a tight-binding description of
the carbon atoms in the graphene lattice [1]. The logic for
our analysis of BDM rests on the same observation, namely,
that the single-particle hopping Hamiltonian of particles of
any statistics between the nearest neighbors on a honeycomb
lattice will have to generate Dirac nodes in the single-particle
dispersion. Hence one can envision experimental platforms
that will generate the Dirac point in the excitation spectrum

of bosons. To present the case of BDM and some of the
universal features that are the consequence of Dirac node we
will use the specific example of granular superconductors.
While there are details that are relevant for the specific case
of our model system, we believe there are general statements
that can be equally applied to other materials with bosonic
excitations that will have similar properties. We point right
away the key difference in dealing with bosons in comparison
to fermions namely that interactions may have to be included
for the emergence of nontrivial physics, for example, a free
2D boson condensate in the ground state. Here, we discuss
the potential to utilize Cooper pairs as effective bosons that
occupy superconducting grains, to generate the BDM.

Recently, we have seen the tremendous growth in our ability
to manipulate the matter at the nano to mesoscale that allows
us now to build structures with the desired properties like
honeycomb lattices in materials and optical metamaterials.
Here we mention some of the relevant work on artificial
Dirac materials. Tarruell et al. studied the emergence and
manipulation of Dirac nodes with cold atomic gases in a
tunable honeycomb lattice [6]. In another important work
authors have designed honeycomb lattice by individually
moving carbon monoxide molecules with STM tip on a
copper surface [7]. A detailed review [8] discussed the recent
progress on fabrication of artificial honeycomb lattices by
different techniques like nanopatterning of two-dimensional
gases, STM guided molecule-by-molecule assembly or optical
lattice. The work by Hammar et al. [9] is directly related to
the experimental paper by Manoharan group [7] and gives
a proposal for artificial fabrication of lattice structures with
tunable defects.

Recently, Weick et al. studied the collective plasmon modes
in a honeycomb lattice, which showed Dirac-like massless
bosonic excitations similar to Dirac fermions in graphene
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FIG. 1. (Left) Lattice structure of superconducting grains (viz.,
Nb) built out of two triangular lattices with lattice vectors τ 1 and
τ 2. The unit cell (red and blue dots) is composed of grains from two
sublattices with nearest-neighbor vectors δi ,i = 1, 2, 3. Adjacent
grains interact by Josephson coupling (J ). Individual grains have an
on-site charging energy (U ). Right: the corresponding Brillouin zone
is shown, where b1 and b2 are the reciprocal lattice vectors, whereas
K and K ′ are the Dirac points.

[10]. Reference [11] studies numerically the nonlinear Bloch
bands in Bose-Einstein condensates (BEC) loaded in an optical
honeycomb lattice in the superfluid regime and discusses
about band crossing between two of them. Reference [12]
studies the Z2 spin liquid states in a honeycomb lattice in
mean-field theory and points out the resulting Dirac nodes
in the dispersion. There is a growing interest in the study
of photonic crystals and the electromagnetic waves around
the sharp corners of the honeycomb lattice. Khanikaev et al.
showed an example of Dirac-like dispersion in photonic
topological insulators (PTI) [13]. Carr et al. studied the
emerging nonlinear Dirac equation for BEC in an optical
honeycomb lattice [14]. Propagation of microwaves in artificial
honeycomb lattices composed of a dielectric resonator and
the resulting graphenelike density of states were discussed in
Ref. [15]. Reference [16] discusses the observation of Dirac
cones in the honeycomb lattice for polaritons. Schneider et al.
discussed the Dirac-type Bloch band in a BEC (Bose-Einstein
condensate) [17]. Reference [18] finds a nonvanishing Berry
curvature in a honeycomb lattice of soft-core bosons and
also talks about the anomalous Hall effect in nonequilibrium.
Saxena et al. discussed the Dirac cones in a photonic crystal
[19]. Dirac-like magnetic excitations were also pointed out for
magnon Dirac materials in Ref. [20]. All the above examples
do prove that we can have artificial materials that exhibit
Dirac-like dispersion for bosons in the solid state context,
in cold atoms and in optical lattices are feasible and within the
experimental reach similar.

To develop the case for BDM, we start with the specific
example of granular superconductors. We will discuss the
physics of the phase fluctuations of a granular superconducting
system where the grains are arranged in a honeycomb
lattice at temperature T � Tc, where Tc is the mean-field
superconducting transition temperature. The grains can be
made of any conventional superconducting material and the
choice depends on the practicality of sample preparations, see
Fig. 2. The typical size (radius) of the grains is of the order of
a few hundred to thousand of nanometers. Within the bipartite

FIG. 2. A schematic of engineered quasi-2D hexagonal lattice
structure of superconducting islands on an insulating substrate. The
cooper pairs (shown in green) hop between the nearest-neighbor
islands.

lattice structure, it is convenient to assign flavor, or, sublattice
indices to the otherwise identical bosons. The two types of
bosons bA = |bA| exp(−iθA) and bB = |bB | exp(−iθB), have
inequivalent phases θA,B on the grains (red dot A and blue
dot B in Fig. 1) in the unit cell of the lattice (we will
assume that the amplitudes are same if all the grains are of
approximately similar size). Nearest-neighbor grains interact
through a Josephson coupling J and have a charging energy U

depending on the size of the grains, see Eq. (1). We show that
the physics of the inequivalent phases of the granular system
is similar to the physics of a two-band superconductor and
that there indeed are two different collective modes similar to
the Leggett and Bogoliubov-Anderson-Gorkov (BAG) mode
[21], also known in the literature as the Anderson-Higgs and
Goldstone modes. We show that these two modes intersect and
form a Dirac node near the K and K ′ points of the Brillouin
zone in the bosonic excitation spectrum.

Interacting bosons in 2D have been the focus of intense
investigation for some time especially the two-dimensional
granular superconducting systems [22]. For temperatures
below Tc, the grains support the existence of Cooper pairs.
Therefore, at T � Tc, we can focus on the physics of the
composite boson problem on a honeycomb lattice. Fisher
et al. have studied this problem and shown in the clean boson
limit that the system exhibits an interesting phase diagram
showing (1) a superfluid phase and (2) a Mott insulating phase
[23]. In the disordered boson picture, there is a Bose glass
phase [24,25]. Recently, Doniach et al. proposed a new phase,
called the Bose metal, in 2D superconducting films [26] in the
presence of disorder. In this work, as we are building the case
for the BDM, we will focus on the superfluid phase of the
clean Bose-Hubbard model for honeycomb lattice.

The outline of this work is as follows. In Sec. II, we
describe the formalism of the effective theory of granular
superconductor. In Table I, we summarize the main results
of our work. In Sec. II A, we show the occurrence of the two
collective modes Leggett and BAG. In Sec. II B, we describe
their low-energy behavior of near K , K ′, and � points and
show the Dirac-like behavior. In Sec. III, we describe the
modification of the behavior of these collective modes by
including the nearest-neighbor interaction between the grains.
In Sec. III A, we describe their low-energy behavior and show
the Dirac cone. In Sec. IV, we discuss the tunability of the
spectra and nodes at Dirac points and the role of disorder.
Finally, we describe the outlook and conclusion of this work
in Sec. V.
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TABLE I. ω1(k) is the Leggett mode frequency and ω2(k) is the BAG mode frequency. This Table contains the
main results of the work. Cons. means a constant here. We use Cons. and Cons′. to differentiate between the two
constants.

Parameter � point K point Gap at K

Free boson ω1(k) ≈ Cons. − |k|2 ω1(k) ≈ Cons. + |k| No
UA = UB = UAB = 0 ω2(k) ≈ |k|2 ω2(k) ≈ Cons. − |k| No
On-site Coulomb ω2

1(k) ≈ Cons. − |k|2 ω1(k) ≈ Cons. + |k| No
UA = UB �= 0 UAB = 0 ω2(k) ≈ |k| ω2(k) ≈ Cons. − |k| No
On-site Coulomb ω2

1(k) ≈ Cons. − |k|2 ω2
1(k) ≈ Cons. + |k|2 Yes

UA �= UB �= 0 UAB = 0 ω2
2(k) ≈ Cons′. + |k|2 ω2

2(k) ≈ Cons′. − |k|2 Yes
Interacting Grains ω2

1(k) ≈ Cons. − |k|2 ω1(k) ≈ Cons. + |k| No
UA = UB �= 0 UAB �= 0 ω2

2(k) ≈ |k|2 ω2(k) ≈ Cons. − |k| No
Interacting Grains ω2

1(k) ≈ Cons. − |k|2 ω2
1(k) ≈ Cons. + |k|2 Yes

UA �= UB �= 0 UAB �= 0 ω2
2(k) ≈ Cons′. + |k|2 ω2

2(k) ≈ Cons′. − |k|2 Yes

II. MICROSCOPIC HAMILTONIAN FOR THE GRANULAR
SUPERCONDUCTOR: ON-SITE INTERACTION

In this section we describe an effective theory for the collec-
tive modes of phase oscillations in a 2D honeycomb lattice of
superconducting grains (Fig. 2). We consider the Cooper pairs
in each grain as charge 2e bosons, which are allowed to hop
between the grains in the lattice. The lattice vectors are given
by, τ 1 = a(3,

√
3)/2 and τ 2 = a(3, − √

3)/2, where the lattice
constant a is of the order of a few to a few hundreds of μm.
The reciprocal lattice vectors are given by b1 = 2π (1,

√
3)/3a

and b2 = 2π (1, − √
3)/3a. Three nearest-neighbor vectors

are denoted by δ1 = a(1,
√

3)/2,δ2 = a(1, − √
3)/2 and δ3 =

a(−1,0), see Fig. 1. It is important to note that the grains are
deposited on a substrate to form the quasi 2D lattice system.

A Bose-Hubbard model can be written for this system
by defining Cooper pair creation (annihilation) operators
b
†α
i = c

†α
Ri↑c

†α
Ri↓ (bα

i = cα
Ri↓cα

Ri↑) in each grain, where α = A,B

assigns to which sublattice the grain belongs. Here, also, Ri

denotes the spatial coordinate of the electrons in the ith grain
and is defined within a single granular size. Considering all
the physics discussed in the introduction, we write down the
Bose-Hubbard model in honeycomb lattice as

H = −
∑
〈ij〉

tij b
†A
i bB

j + H.c. + U
∑
i,α

(
nα

i − n0
)2

. (1)

In Eq. (1), tij is the boson (Cooper pair) hopping amplitude
and U is the on-site (Coulomb) charging energy for the bosons.
The notation 〈ij 〉 refers to the nearest-neighbor hopping, n0 is
the neutralizing background density, which is a large number
such that long-range Coulomb interactions can be avoided. We
map the Bose-Hubbard model approximately to a quantum
rotor model in the superfluid phase, by redefining the Bose
operators into a charge-density representation according to

b
†A
i =

√
nA

i exp(iθA
i ) and bA

i = exp(−iθA
i )

√
nA

i . The operator

exp(iθA
i ) denotes the Cooper pair creation operator whereas θA

i

is the conjugate variable to the Cooper pair number operator
nA

i , which can be proved from the commutation relations of
[bi,b

†
j ] = δij . As we are interested in the effective theory of

the phase fluctuations in the superfluid phase, we drop the
amplitude fluctuation in the Bose operators and replace them
by large value n0 in Eq. (1).

We examine the effective theory of phase fluctuations [27]
from the following quantum rotor model, see Appendix A,
Eq. (A1),

HQR = −2J
∑
〈ij〉

cos
(
θA
i − θB

j

) + U
∑
iα

(
nα

i − n0
)2

. (2)

In Eq. (2), the Josephson coupling J ∼ n0t , where the
nearest-neighbor hopping is assumed to be uniform, tij = t ,
for all neighbors. By shifting ni → ni + n0, we can rewrite
the Hamiltonian as (we are actually looking at the number
fluctuations from the background charge density n0)

HQR = −2J
∑
〈ij〉

cos
(
θA
i − θB

j

) + U
∑
iα

(
nα

i

)2
. (3)

For U/J 
 1, hopping is suppressed and the system is
in the Mott insulating phase [24]. The physics under focus
in this work is given in the opposite limit, J/U 
 1, where
the system is in the super-fluid phase and we shall study the
phase fluctuations due to the competing charging energy and
the Josephson coupling. For small on-site charging energy U ,
we can write the inequivalent phases as θA

i = θA0
i + δθA

i and
θB
j = θB0

j + δθB
j . In the absence of the on-site potential U ,

all the grains should have the same phase θA0
j = θB0

j , i.e., the
grains should be phase coherent. The Hamiltonian is then given
by

HQR = −2J
∑
〈ij〉

cos
(
δθA

i − δθB
j

) + U
∑
iα

(
nα

i

)2
. (4)

In this work, we will use the Hamiltonian approach. For
completeness, we also mention the effective Lagrangian of
phase fluctuations can be formulated as a path integral in the
diagonal basis θα

i . The associated action can, then, be written
as S = ∫

dτL, where the Lagrangian is given by [27]

L = −J
∑
〈ij〉

cos
(
θA
i − θB

j

) + 1

4U

∑
iα

(
∂τ θ

α
i

)2
. (5)

The model Hamiltonian in Eq. (4) is, finally, quadratized
by expanding the cosine terms to second order, which is valid
for J/U 
 1, as the phase fluctuations δθα

i are assumed to be
small. We obtain

H′ = J
∑
〈ij〉

[(
δθA

i − δθB
j

)]2 + U
∑
iα

(
nα

i

)2
, (6)
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where we have discarded the constant contribution. We switch
to reciprocal space by defining the Fourier transforms of the
phase and number operator as δθα

i = ∑
k θα

k exp[ik · Ri] and
nα

i = ∑
k nα

k exp[ik · Ri], giving

H′ =
∑
kα

[
J
(
3θα

k θα
−k − γkθ

A
k θB

−k − γ−kθ
A
−kθ

B
k

) + Unα
knα

−k

]
,

(7a)

γk =
∑

i=1,2,3

eik·δi = 2 cos(
√

3kya/2)eikxa/2 + e−ikxa. (7b)

We should note in Eq. (7b) that γ ∗
k = γ−k. The Hamiltonian

in Eq. (7a) models two coupled phase oscillations, for which
the equation of motion for the two normal modes is

φ̈
(1,2)
k = −JU (3 ± |γk|)φ(1,2)

k , (8)

where φ
(1)
k and φ

(2)
k are the normal modes of the coupled

oscillation in Eq. (7a) with φ
(1)
k = (γ ∗

k θA
k /|γk|−θB

k )√
2

and φ
(2)
k =

(γkθB
k /|γk|+θA

k )√
2

. The low-energy form of the spectra of these two
modes can be found in Sec. II B [see Eqs. (13) and (14)],
which suggest that φ

(1)
k and φ

(2)
k are massive and massless

modes, respectively. By comparing our result with the phase
oscillations in two-band superconductors, we identify φ

(1)
k and

φ
(2)
k as the Leggett mode and Bogoliubov-Anderson-Gorkov

(BAG) mode [28,29].

A. Leggett mode and BAG mode

Here, we discuss the physical properties of the Leggett and
BAG mode in more details. The frequencies of these modes
can be obtained from Eq. (8) as

ω1,2(k) =
√

JU (3 ± |γk|), (9)

which are plotted in Fig. 3.
The out of phase, massive, mode φ

(1)
k with frequency

ω1(k), is identified as the Leggett mode, as indicated in the
previous section, while the in-phase mode, massless, mode
φ

(2)
k with associated frequency ω2(k), is associated with the

BAG acoustic mode. The existence of two different collective
modes is a manifestation of the bipartite lattice structure. A
schematic for these modes is shown in Fig. 4, where panel
(a) explains graphically the in phase φ

(2)
k mode and panel (b)

FIG. 3. (a) Energy spectra of the bosonic excitations ω1(k) and
ω2(k) [see Eq. (9)] (in units of

√
JU ), with J ≈ 0.01 eV. and U ≈

0.001 eV [see Sec. IV]. Two modes ω1(k) and ω2(k) cross each other at
K = 2π (1,

√
3/3)/3a and K′ = 2π (1, − √

3/3)/3a in the Brillouin
zone and forms a Dirac cone which is shown in green circle. (b) Zoom
in of the encircled region in (a).

FIG. 4. Solid arrows (red and blue) correspond to two inequiv-
alent degenerate phases in the limit U ∼ 0. (a) Dotted arrows show
the collective in-phase (BAG) mode with parallel orientation with
finite but small U . (b) Dotted arrows show the collective out of phase
(Leggett) mode with antiparallel orientation.

explains the out of phase φ
(1)
k mode. The special feature of

the two modes is that they cross each other at the K and K ′
points, constituting Dirac nodes, see Fig. 5. The corresponding
low-energy bosonic excitations following the Leggett and BAG
dispersion relations are the main result of this work. We find
that it is thus feasible to use an artificial material, made out of
superconducting grains, to obtain the bosonic Dirac crossing
point for honeycomb lattice. At this point, we should also
mention that although we discussed a particular realization for
the Dirac physics of bosons, we claim in general that any other
bosonic entity subjected to any bipartite lattice, will exhibit
same type of physics.

An important issue is finding out the chiral/helical structure
of these collective modes. In most of the conventional Dirac
materials the fermionic quasiparticles are chiral. For example,
in graphene the massless fermions near the K (K ′) point are
chiral. A relevant quantity to classify the eigenfunctions of
the Dirac Hamiltonian (near K point in the Brillouin zone)
is the helicity operator. It is defined as the projection of the
momentum along the (pseudo)spin direction. The quantum-
mechanical form of the operator is

ĥ = 1

2
σ · k

|k| . (10)

FIG. 5. The spectra for bosonic collective modes (in units of√
JU ) ω1(k) (Leggett, top band) and ω2(k) (BAG, down band) as

traversed from high-symmetry points � to M to K to �. The spectra
touch each other at K and K ′ points in the Brillouin zone and form
Dirac cones.
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TABLE II. γk near K and � point.

Function � point K point

γk (3 − 3
4 a2|k|2) 3a

2 (kx + iky)ei 5π
6

|γk| (3 − 3
4 a2|k|2) 3a

2 |k|

We will use this definition of the helicity operator to
characterize the eigenfunctions of our BDM Hamiltonian. The
modes are shown in Fig. 3. The helicity of the model is found
in the low-energy regime near the Dirac nodes, shown in Fig. 5.
This can be seen easily if we write the free bosonic Hamiltonian
in terms of phase variables and diagonalize the phase part,

H = J
∑
kα

(
3θα

k θα
−k − θA

k θB
−kγk − θA

−kθ
B
k γ−k + Unα

knα
−k

)

=
∑

k

[
ε1(k)φ(1)

k φ
(1)
−k+ε2(k)φ(2)

k φ
(2)
−k+U

(
nA

k nA
−k+nB

k nB
−k

)]
.

Here, φ
(1)
k and φ

(2)
k are linear combinations of the original

θ variables and ε1,2(k) = J (3 ± |γ (k)|). In order to find
the linear combination, we get the unitary matrix for the
θ part and consequently write the linear combination as

φ
(1)
k = (γ ∗

k θA
k /|γk|−θB

k )√
2

and φ
(2)
k = (γkθB

k /|γk|+θA
k )√

2
. By introducing

new operators η
(1)†
k and η

(2)†
k (which are linear combinations

of θ
(α)
k and nα

k), we can rewrite the Hamiltonian in Eq. (7a) as
two independent harmonic oscillators according to

H =
∑

k

(
ω1(k)η(1)†

k η
(1)
k + ω2(k)η(2)†

k η
(2)
k

)
. (11)

This is possible since φk are linear combinations of θk and since
[θA

k ,nA
−k] = −i. Using the expansions of ω1,2(k) discussed in

the next section, Eqs. (15) and (16), we write the Hamiltonian
near the Dirac point as [30]

Heff =ω0σ0 + v′σ · k, (12)

where ω0 = √
3JU,v′ = a

√
3JU/4, and σ0 is the 2 × 2

identity matrix. Using the chirality/helicity operator ĥ de-
fined in Eq. (10), we see that [ĥ,Heff] = 0. Therefore the
eigenfunctions of the Hamiltonian H in Eq. (12) are also the
eigenfunctions of the helicity operator. Hence we claim that
the collective modes are chiral [2].

B. Low-energy behavior of the excitations

In this section, we investigate the low-energy theory of the
bosonic excitations near the � and K points in the Brillouin
zone. It is important to distinguish the Leggett mode from
BAG mode by looking at the forms of the spectra near the �

point. The acoustic mode in Eq. (13) is identified as the BAG
mode [i.e., ω2(k) is the BAG mode] and the Leggett mode is
ω1(k) [by examining Eq. (14)] [28].

1. BAG mode near � point

For k = q where |q| � 1/a, we have, see Table II,

ω2
2(q) � 3JU

4
a2|q|2 + O(q4). (13)

The linear low-energy dispersion relation suggests that the
BAG mode is acoustic and that this mode has a group velocity
around � point with vg ∼ a

√
3JU/2. vg is defined as the norm

of |∇ω(k)|.

2. Leggett mode near � point

The dispersion relation of the Leggett mode near the �

point is massive and with negative curvature. For k = q where
|q| � 1/a, we have, see Table II,

ω2
1(q) � JU

(
6 − 3a2

4
|q|2

)
+ O(q4), (14)

suggesting that the Leggett mode is an optical mode. It is clear
from the dispersion relation [Eq. (14)] that this mode has a
negative curvature near the � point and located at high energy
compared to the BAG mode.

3. BAG mode near K and K ′ points

In contrast to the Leggett mode low-energy spectrum, the
BAG mode gives the following linear dispersion near k =
K + q where |q| � 1/a, as, see Table II,

ω2(q) �
√

3JU

(
1 − a|q|

4

)
+ O(q2). (15)

The group velocity of this mode is vg ∼ a
√

3JU/4, which
also exhibits an energy-shifted Dirac point compared to the
graphene dispersion [1,2].

4. Leggett mode near K and K ′ points

The dispersion relation of the Leggett mode near the Dirac
point K = 2π (1,

√
3/3)/3a in Brilloiun zone for k = K + q

where |q| � 1/a, see Table II, is given by

ω1(q) �
√

3JU

(
1 + a|q|

4

)
+ O(q2). (16)

The Dirac point is shifted in energy by a term proportional to√
JU and the group velocity vg ∼ a

√
3JU/4. We notice that

the charging energy shifts the position of the Dirac point in
energy space. Note that the energy shift is same for BAG and
Leggett modes and thus their spectra touch at the K and K ′
points, forming the Dirac cone. We also note that both BAG
and Leggett modes have the same group velocity only differing
in sign.

5. Gap opening at K and K ′ points

For different on-site energies UA �= UB , we obtain the
following dispersion relation for the BAG and Leggett modes
near the Dirac point K:

ω2
1(q) � 3JUA + 3JUAUB

2(UA − UB)
a2|q|2 + O(q2), (17a)

ω2
2(q) � 3JUB − 3JUAUB

2(UA − UB)
a2|q|2 + O(q2). (17b)

The gap develops at the Dirac point since (i) UA �= UB and
(ii) the modes are shifted in energy by

√
3JUA and

√
3JUB ,

respectively [see Fig. 6 and Eqs. (15) and (16)].
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FIG. 6. (a) The linear dispersion relation near for same on-site
energy UA = UB . (b) Different on-site energy UA �= UB leads to
opening of gap (�) near the K point in the Brillouin zone for the
bosonic modes.

In graphene [1], the spectrum near the Dirac point is linear
and a gap can be opened by breaking the sublattice symmetry.
Analogously, in the bosonic Dirac spectrum a gap is opened
whenever the on-site charging energy for the two sublattices
UA and UB are distinct. The tunability of the bosonic spectrum
due to the gap opening allows using these materials for
thermal, optical, and transport applications. This feature is also
applicable for other realizations of bosonic Dirac materials by
breaking the sublattice symmetry [2,3].

For completeness, we also present the evolution of bosonic
modes as one changes U in Fig. 7(a). The dispersion relation
for the lowest band near the � point is shown in Fig. 7(b).
For U = 0, the lowest band is quadratic near the � point.
As one turns on the interaction U , the BAG mode becomes
linear or acoustic. In our approximate solution where we
focus on phase fluctuations only, we observe the initial linear
slope, as fully expected for weakly interacting Bose gas. We
recall that the dispersion relation for weakly interacting Bose
gas [31] has a leading order dispersion, linear in momentum
with a coefficient depending on the interaction strength and
a subleading term, cubic in momentum, whose coefficient
is independent of the interaction strength. The apparent
discontinuity between U = 0 and finite U behavior of BAG
mode is a manifestation of O(2) expansion in momentum k

of dispersion relation for the particular phase approximation
in our model which is very similar to the approximation in
Bogoliubov perturbation theory.

III. MICROSCOPIC HAMILTONIAN FOR THE
GRANULAR SUPERCONDUCTOR: INTER-GRAIN

INTERACTION

In the previous section, we discussed Dirac-like bosonic
collective oscillations for phase fluctuations of the 2D su-
perconducting grains with on-site charging energy U . Here,
we shall take into account the intergranular interactions.
Practically, the grains are assumed to be large and contain
a large number of charged Cooper pairs. Therefore one would
expect an intergrain long-range Coulomb interaction. As we
shall see in Appendix B, the inclusion of the Coulomb

FIG. 7. An illustration of the evolution of the bands (Leggett and
BAG) as one changes U from 0 to a finite value. (a) The evolution of
the collectives modes (ω(k) in unit of

√
JU ) as we turn on the onsite

potential interaction U . Without any interaction the lowest band near
� point is quadratic and becomes linear as U changes from 0. Dirac
point moves up in energy as one increases U ; (b) The zoom in of the
region encircled in green, in Fig.7(a) near �.

interaction qualitatively changes the properties of the two
collective modes. The acoustic BAG mode becomes gapped
as can be seen by comparing the low-energy expansion of the
dispersion relation in Eq. (13) (without intergrain Coulomb
interaction) and Eq. (B6) in Appendix B (with intergrain
Coulomb interaction) and also comparing Figs. 5 and 10.
The Leggett mode remains qualitatively the same but the
parameters are changed, which can be seen by comparing
Eq. (14) (without intergrain interaction) and Eq. (22) (with
intergrain interaction) and also comparing the Figs. 5 and
10. The model is analytically intractable if we consider
the complete long-range Coulomb interaction

∑
ijαβ U ′

ij n
α
i n

β

j ,
where ij summation extends over the whole lattice sites (α,β

summation extends over the sublattice indices). Therefore,
in this section, we will consider nearest-neighbor local
interaction U ′ and will find out its effect on the behavior of the
collective modes. The extended quantum rotor model for the
intergrain interaction in the system is

H = −2J
∑
〈ij〉

[
cos

(
θA
i −θB

j

)]+U
∑
iα

(
nα

i

)2+U ′ ∑
〈ij〉αβ

nα
i n

β

j .

(18)
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FIG. 8. (a) Energy spectra of the bosonic excitations ω1(k) and
ω2(k) [see Eq. (20), in units of

√
JU ], with J ≈ 0.01 eV, U/J ∼ 0.1,

and U ′ ∼ 8 × 10−4 eV (Sec. IV). Two modes ω1(k) and ω2(k) cross
each other at K = 2π (1,

√
3/3)/3a and K′ = 2π (1, − √

3/3)/3a

points in the Brillouin zone and forms a Dirac cone which is shown
in white circle. (b) Zoom in of the encircled region in (a).

As discussed in the beginning of this section, we give
an approximate description of the effect of the long-range
Coulomb interaction U ′

ij in Appendix B. Assuming that both U

and U ′ are smaller than J , we linearize the above Hamiltonian
in Eq. (18) by expanding the cosine term to quadratic order,
such that this model becomes analytically solvable. Fourier
transforming the phase and number variables, we obtain the
effective Hamiltonian of the phase fluctuations as

H = H′ + U ′

2

∑
kα

(
γkn

A
k nB

−k + γ−kn
A
−kn

B
k

)
, (19)

where H′ is the same as in Eq. (7a). Inclusion of this local
interaction between the grains in the model leads to a few
qualitative changes in the behavior of the two collective modes
(we call them modified Leggett and modified BAG), which
can be seen by carefully examining the Eqs. (13)–(16) and
(21)–(24). It is important to see that the modified BAG mode
is still an acoustic mode [see Eq. (21)].

We find that the two collective phase modes in this case
also cross each other at the Dirac points K,K′ (Figs. 8 and 9)
and, as discussed in the previous Sec. II A, these modes are
chiral following the same argument. The frequencies of these
two modes are calculated from the Hamiltonian (19) and we

FIG. 9. The spectra for bosonic collective modes (in units of√
JU ) ω1(k) (modified Leggett, top band) and ω2(k) (modified BAG,

down band) as traversed from high-symmetry points � to M to K to
�. The interaction U ′ is finite. The modes ω1(k) and ω2(k) cross each
other at K and K ′ points in the Brillouin zone and form Dirac cones.

obtain

ω2
1,2(k) = J

(
3U ∓ 3U ′

2
|γk| ± U |γk| − U ′

2
|γk|2

)
. (20)

For U ′ = 0 the frequencies ω1,2(k) reduce to those of Eq. (9).
The mode crossing is shown explicitly in Fig. 6 in the presence
of neighboring grain interaction U ′. The crossing of two bands
along the high-symmetry points in the Brillouin zone is shown
in Fig. 9. In the next section, we focus on the dispersion
relations of these two modes near the Dirac point and extract
the Dirac physics.

A. Low-energy behavior of the excitations

In this section, we describe the low-energy behavior of
the modified bosonic excitations near � and K points in the
presence of the nearest-neighbor interaction U ′. Therefore we
do not see any considerable quantitative changes except some
renormalization of the parameters. In Appendix B, we give
an intuitive argument for the modification of the behavior of
the acoustic BAG mode near � point. We actually identify the
modes by looking at their forms near the � point.

1. Modified BAG mode near � point

The dispersion relation of the previously discussed BAG
mode near � point in Brilloiun zone, for k = q where |q| �
1/a, see Table II and Eq. (20), is given by

ω2
2(q) � 3JU

4

(
1 + 3U ′

U

)
a2|q|2 + O(|q|4). (21)

We see that when there is no interaction the frequency matches
Eq. (13). We also see a change in the group velocity vg ∼
a
√

3JU (1 + 3U ′/U )/2 compared to the BAG mode without
the interaction U ′.

2. Modified Leggett mode near � point

The dispersion relation of the modified Leggett mode near
the � point, for k = q where |q| � 1/a, see Table II and
Eq. (20), is given by

ω2
1(q) �6JU − 9JU ′ − 3JU

4

(
1 − 9U ′

2U

)
a2|q|2 + O(|q|4),

(22)

like the Leggett mode in the previous section, this mode is have
a negative curvature and located at high energy compared to
modified BAG mode. For U ′ = 0, the dispersion reduces to the
Leggett mode frequency in Eq. (14). While the intergranular
interaction renormalizes the parameters in the Leggett mode,
the qualitative properties remain essentially unaffected [see
Eq. (14)].

3. Modified BAG mode near K and K ′ points

The dispersion relations of the previously discussed BAG
modes near the point K in the Brillouin zone for k = K + q
where |q| � 1/a, see Table II and Eq. (20), is given by

ω2(q) �
√

3JU

[
1 −

(
1

4
− 3U ′

8U

)
a|q|

]
+ O(q2). (23)
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We see that the modified BAG mode energy is shifted exactly
in the same manner as in Eq. (15). The group velocity is given
by vg ∼ a

√
3JU (1 − 3U ′/2U )/4.

4. Modified Leggett mode near K and K ′ points

The dispersion relations of the Leggett mode near the point
K in the Brillouin zone for k = K + q where |q| � 1/a, see
Table II and Eq. (20), is given by

ω1(q) �
√

3JU

[
1 +

(
1

4
− 3U ′

8U

)
a|q|

]
+ O(q2). (24)

The modified Leggett mode is also shifted in energy by a term
depending on the charging energy. It is important to note that
the energies of both the modified BAG and modified Leggett
modes are shifted by the same amount and hence they touch
each other at K and K ′ points in the Brillouin zone. This mode
has a group velocity of vg ∼ a

√
3JU (1 − 3U ′/2U )/4. We see

that the modified BAG and Leggett modes have the same group
velocity vg only differing in sign, as in Sec. II.

IV. PARAMETER CHOICE FOR THE GRANULAR MODEL
AND ROLE OF DISORDER

We described the Dirac nodes in the context of bosonic
excitations. We now turn to the range of parameters that can
be tuned in the class of granular superconductors. We typically
assumed J = 0.01 eV and U/J = 1/10. For these parameters,
we will get the typical velocity of boson modes near K and K ′
to be (for U ′ = 0)

vg ∼ 5 meV a, (25)

where a is unit cell size, which we expect to be on the range of
microns. By tuning the intergrain distance and also the granular
size we can have some range of choice of the parameter for
J,U , and U ′. This facilitates changes in the group velocity
of the modes near the Dirac points. Moreover, the gap can be
opened at the Dirac points K and K ′ when the on-site charging
energies in the A and B sublattices are chosen differently as
UA �= UB , see Fig. 6. If we assume UA ∼ 3 meV and UB ∼
1 meV, the gap magnitude will be on the order of (for J ∼ 0.01
eV)

� ∼
√

3JUA −
√

3JUB ∼ 4 meV, (26)

which would make it easily observable in spectroscopies.
Optical absorption, local tunneling probes and transport will
be sensitive to the gap opening at the Dirac nodes and can
thus provide experimental evidence for the Dirac nature of the
bosonic modes.

We should also mention the effects of lattice disorder.
As we are analyzing the artificial lattice that can not be
prepared perfectly, we point out that lattice disorder will lead
to on-site potential variations and intergrain coupling energy
fluctuations. All these effects will lead to the modification of
the bosonic spectrum. One can separate the effect of disorder
in two categories. On one hand, the on-site disorder will lead
to localized bosonic excitations, as would be the case for
the fermionic analog [2], where local perturbations of the
on-site potential will induce local single boson resonances.
On the other hand, the intergrain potential energy variations

will induce changes in the gaps at K and K ′ points and smear
them. Both of these effects are important and would need to
be addressed in detail. The analysis of the role of disorder is a
subject of a separate investigation and is deferred for a separate
publication.

V. DISCUSSION AND CONCLUSION

We presented the case for bosonic excitations on the
honeycomb lattice that lead to the Dirac node in bosonic
dispersion. To carry out specific calculations and illustrate
the formation of the Dirac node, we used the specific example
of superconducting grains forming honeycomb lattice. In this
work, we have proposed to use granular 2D superconductors
as a platform to realize bosonic Dirac materials (BDM). While
the calculations are specific to the case of Josephson network,
we argue that there are universal statements one can make.
We would like to point out that a universal statement about
having a Dirac cone in such two-dimensional materials can be
made with the help of Von Neumann-Wigner theorem [32].
To this end, we have solved the real particle Bose-Hubbard
model in a 2D film of superconducting grains, arranged in a
honeycomb lattice. We find that in the superfluid phase we have
a two-component superfluid with collective phase oscillations
that exhibit Dirac points in the spectrum. In contrast to
graphene [1] and other known Dirac materials [2,3], these
Dirac modes are bosonic excitations. These modes represent
the Bogoliubov-Anderson-Gorkov (BAG) mode and Leggett
modes that touch at the K and K ′ points of the Brillouin zone.
We also find that the bosonic modes are chiral in similarity
with the conventional fermionic Dirac materials. The proposed
realization of the BDM also opens up a route to design
multicomponent superconducting materials using the bipartite
nature of honeycomb lattices. The two-sublattice structure
of the granular superconductor supports a two-component
superconducting state, where we focused only on its phase
dynamics here.

Another interesting observation is that different local
interactions UA and UB opens the gap in the Dirac spectrum
and thus allows one to control the bosonic excitation spectrum.
Extra advantage in the case of artificial SC grains is the
tunability of the grain sizes and spacings that will lead to
tunable spectra and hence make the determination of the Dirac
nature of the spectra easier to accomplish. To access the Dirac
point and probe, the properties at the energies on that scale one
would need to perform inelastic scattering measurements like
inelastic neutron and sound scattering among other probes.

We left outside of this work important questions that would
be needed to be addressed in a due course. The role of
phase fluctuations and vortex excitations, BCS-BEC crossover
[33], BKT transition, and effects of the charge ordering
at commensurate fillings would be interesting directions to
pursue. As we already indicated, another important topic
would be to investigate the role of disorder. We plan to address
these questions in subsequent work.
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APPENDIX A: THE QUANTUM ROTOR MODEL FROM
THE BOSE-HUBBARD MODEL

In this Appendix, we show the steps to get to the quantum
rotor model from the Bose-Hubbard model. The important
point is neglecting the amplitude fluctuations and assuming
that nα

i ∼ n0. For clarification we use this approximation in
Eq. (1),

H1 = −
∑
〈ij〉

tij b
†A
i bB

j + H.c.

= −
∑
〈ij〉

(
tij

√
nA

i nB
j ei(θA

i −θB
j ) +

√
nA

i nB
j ei(θB

j −θA
i ))

� 2
∑
〈ij〉

tij
√

n0n0
[

cos
(
θA
i − θB

j

)]

� 2
∑
〈ij

n0t
[

cos
(
θA
i − θB

j

)]
. (A1)

APPENDIX B: COULOMB INTERACTION
AND PLASMA MODE

In this Appendix, we show that including long-range
Coulomb interaction, the BAG mode explained in Secs. II and
III in Eqs. (13) and (21) as an acoustic mode, becomes a gapped
plasma mode near � point. The grains in the honeycomb lattice
have finite charge due to the large number of Cooper pairs.
Hence, practically, we should include the long-range Coulomb
interaction between them. Considering all the approximations
discussed in Sec. II, the Hamiltonian in Eq. (6) should be
modified by adding a term like

∑
ijαβ U ′

ij n
α
i n

β

j . Here, the sum
on i,j extends over the sites and α,β extends over the sublattice
indices A,B. U ′

ij is the bare Coulomb interaction between the
grains. In order to progress further and see its effect on the
collective modes, we need to incorporate some approximations
when taking the Fourier transform of the Hamiltonian:

H′ =
∑
kα

[
J
(
3θα

k θα
−k − γkθ

A
k θB

−k − γ−kθ
A
−kθ

B
k

) + Unα
knα

−k

+V ′
kn

A
k nB

−k + V ′
kn

A
−kn

B
k + U ′

kn
A
−kn

A
k + U ′

kn
B
−kn

B
k

]
.

(B1)

In the above equation, U ′
k and V ′

k are bare Coulomb inter-
actions. In low momentum, i.e., long-wavelength limit, we
should expect no difference in the interaction between same
sublattice and different sublattices.

Therefore, in the Hamiltonian (B1), we approximate the
factors coming from a summation over neighboring vectors
in the interaction terms and take them to be U ′

k and V ′
k for

two sublattices. We expect this to be a good approximation
to describe the modes near the � point. We write down the
Hamiltonian in matrix notation for simplicity. We define the

FIG. 10. The spectra for bosonic collective modes (in units of√
JU ) ω1(k) (Leggett, top band) and ω2(k) (plasma, down band) as

traversed from high-symmetry points � to M to K to � including
the long-range Coulomb interaction U ′

ij . The plasma mode gap is
∼ (C1 − C2) near the � point.

spinor notation ηk and �k for the following matrices:

ηk = (
nA

k nB
k

)T
, �k = (

θA
k θB

k

)T
. (B2)

In terms of this matrix notation, the Hamiltonian becomes
(γ R

k and γ I
k denotes the real and imaginary parts of γk and I

denotes the identity matrix and τ are the Pauli matrices)

H = ηk
T ((U + U ′

k)I + V ′
kτ1)η−k

+�k
T
(
3J I + Jγ R

k τ1 + Jγ I
k τ2

)
�−k. (B3)

We find the equations of motion for the spinors from the
Hamiltonian in Eq. (B3), couple them and write down the
equation for the modes as

�̈k = −J ((U + U ′
k)I + V ′

kτ1)
(
3J I + Jγ R

k τ1 + Jγ I
k τ2

)
�k.

(B4)
We will be solving this equation near the � point and neglect
the γ I

k near the � point. Now, we do an unitary transformation
U = e i π

4 τ2 to change the basis of Pauli matrices. After
performing the transformation, we find

�̈k = −J ((U + U ′
k)I + V ′

kτ3)
(
3J I + Jγ R

k τ3
)
�k. (B5)

We take the form of the bare Coulomb interaction U ′
k ∼ C1

|k|2
and V ′

k ∼ C2
|k|2 we get the plasma mode frequency (C1 and C2

are constants and we crudely assume C1 > C2):

ω2
2(k) ∼ J

(
3 − γ R

k

)
(U + U ′

k − V ′
k),

ω2
2(k) ∼ J

(
3

2
|k|2

)(
U + C1 − C2

|k|2
)

,

ω2
2(k) ∼ (C1 − C2) + JU

3

2
|k|2. (B6)

Therefore we see that Coulomb interaction in our model (B1)
gives a plasma mode in similarity with the plasma mode in
a two-band superconductor [28]. When C1 = C2, this mode
becomes acoustic as explained in the main text [Eqs. (13) and
(21)]. Including the interaction as explained in the beginning
of this Appendix, we expect a qualitative change of the spectra
as traversed along the high-symmetry points in the Brillouin
zone in Fig. 10.
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