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Magnetically induced phonon splitting in ACr2O4 spinels from first principles
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We study the magnetically-induced phonon splitting in cubic ACr2O4 (A = Mg, Zn, Cd) spinels from first
principles and demonstrate that the sign of the splitting, which is experimentally observed to be opposite in
CdCr2O4 compared to ZnCr2O4 and MgCr2O4, is determined solely by the particular magnetic ordering pattern
observed in these compounds. We further show that this interaction between magnetism and phonon frequencies
can be fully described by the previously proposed spin-phonon coupling model [C. J. Fennie and K. M. Rabe,
Phys. Rev. Lett. 96, 205505 (2006)] that includes only the nearest neighbor exchange. Using this model with
materials specific parameters calculated from first principles, we provide additional insights into the physics of
spin-phonon coupling in this intriguing family of compounds.

DOI: 10.1103/PhysRevB.93.134425

I. INTRODUCTION

The interplay of spin and lattice degrees of freedom
can lead to a variety of fundamentally and technologically
interesting phenomena including the spin-Jahn-Teller effect
in frustrated magnets [1,2], magnetocapacitance [3], and the
linear magnetoelectric effect [4,5]. One signature of this
interplay is the influence of magnetic order on the vibrational
spectrum of a material. In many transition metal oxides
the spin correlations shift the phonon frequencies, and lead
to the so-called magnetodielectric effect [6,7]. Furthermore,
if the long-range antiferromagnetic (AFM) order reduces
the crystal symmetry, the onset of antiferromagnetism can
result in a substantial splitting of phonon frequencies that are
degenerate in the paramagnetic (PM) phase, even when the
change in the crystal structure is undetectable [8–12]. This
phonon anisotropy is a nonrelativistic effect which originates
from the changes in hybridization due to spin ordering. In
particular, the phonon splitting can be phenomenologically
explained by a dependence of the exchange interactions on the
atomic positions [13,14].

Chromium spinels ACr2O4 (A = Mg, Zn, Cd) are a
particularly interesting class of frustrated antiferromagnets
that exhibit strong spin-phonon coupling. In the PM phase,
group theory predicts, and experiments confirm, the presence
of four triply degenerate infrared (IR)-active phonon modes.
Below the Néel temperature, however, one of these phonon
modes undergoes a large splitting into a singlet and a doublet
[10,15–17]. This feature and its magnitude was argued to be
a consequence of a dominant role of the nearest-neighbor
(nn) direct Cr-Cr exchange interaction [10]. Fennie and Rabe
[11] developed a general approach to incorporate material
specific information from first principles into spin-phonon
coupling models. They demonstrated that the spin-phonon
coupling model with only nearest-neighbor exchange interac-
tion and parameters derived from first principles provide a full
description of experimentally observed magnetically-induced
phonon splitting in ZnCr2O4 [11]. This model has later been
successfully applied to many other systems as well [18–21].

Magnetically-induced phonon splitting have also been
observed in other Cr-based spinels including MgCr2O4 and
CdCr2O4. Interestingly, the sign of the phonon slipping
observed for MgCr2O4 and ZnCr2O4 (ωsinglet > ωdoublet)
[10,17] is opposite to that observed in CdCr2O4 (ωdoublet >

ωsinglet) [15,16]. In all three of these compounds, the sign of
the nn exchange interaction is the same, however its magnitude
compared to further neighbor exchanges is dramatically differ-
ent. In the Mg and Zn compounds the nn exchange interactions
are two orders of magnitude larger than all other exchange
interactions, while in CdCr2O4 the nn interaction is the same
order as the second neighbor interaction. Based on this fact
Kant et al. [17] concluded that the spin-phonon coupling
model with only nn exchange interaction cannot explain the
magnetically induced phonon anisotropy in ACr2O4 spinels
and instead proposed that the phonon splitting is generally
controlled by a nondominant, next nearest neighbor exchange
interaction.

In this paper we use first principles calculations to study the
magnetically induced phonon anisotropy of the zone-center
polar modes in ACr2O4 (A = Mg, Zn, Cd) spinels. We show
that the different magnetic orderings characteristic for these
spinels lead to different signs of the phonon splitting. In
particular, we explain the opposite sign observed for ZnCr2O4

and MgCr2O4 compared with CdCr2O4 which have distinct
magnetic ground states. We find that the spin-phonon coupling
model of Ref. [11] with only the nn exchange interactions can
very accurately describe ab initio values of phonon frequencies
for all the spinel compounds we considered.

II. METHODS

The first principles calculations were performed using
the density functional theory (DFT) within the rotationally
invariant DFT+U method [22] and the PBEsol approximation
to the exchange-correlation functional [23]. Similarly as in
Ref. [11] we used U = 3 eV and J = 0.9 eV, the parameters
that accurately reproduce photoemission spectra and band gaps
in sulfur Cr spinels [24].
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The Kohn-Sham equations were solved using the projector
augmented wave method [25] as implemented in the VASP code
[26,27] (version 5.2). The valence basis included 3s and 3p

states on Mg, 3d and 4s on Zn, 4d and 5s states on Cd, 5d

and 6s on Hg, 3d and 4s on Cr, and 2s and 2p on O. The
cutoff energies for the plane wave and augmentation charge
were 500 eV and 605 eV, respectively. For the primitive unit
cell of the cubic structure (two formula units) we used 6 ×
6 × 6 �-centered k-point mesh. For larger cells the k-point
mesh was scaled accordingly (e.g., in order to accommodate
the AFM-II order the primitive unit cell was enlarged by a
factor of two along first two lattice directions and the 3 ×
3 × 6 k-point mesh was used). We checked that the calculated
phonon frequencies are converged with respect to the k-point
grid, see the Supplemental Material [28]. For density of states
calculations 12 × 12 × 12 k-point mesh (primitive unit cell of
the cubic structure) was used. The self-consistent calculations
were stopped when energy was converged down to 10−6 eV.
The spin-orbit coupling was neglected in the calculations.

Structural relaxations were performed in the ferromagnetic
(FM) state that preserves the cubic symmetry. The lattice
parameter was manually varied and the energy was fitted
to the parabola. For each value of the lattice parameter the
ionic positions were relaxed until the Hellmann-Feynman
forces were converged to less than 0.005 eV/Å. Phonon
frequencies and eigendisplacements were calculated using
the frozen phonons method using symmetry adapted modes
obtained from the ISOTROPY package [29].

III. CRYSTAL AND MAGNETIC STRUCTURE

At high temperatures ACr2O4 spinels have a cubic
(Fd3̄m) structure where A2+ ions are in tetrahedral oxygen

environment and form the diamond lattice, while Cr3+ ions are
surrounded by octahedral oxygen cages and form a pyrochlore
lattice, see Fig. 1(a). The calculated structural parameters are
shown in the Supplemental Material [28].

The octahedral crystal field splits the Cr3d orbitals into a
lower-lying t2g triplet and a higher-energy eg doublet. Cr3+

FIG. 1. (a) Cubic crystal structure of ACr2O4 spinels consisting
of Cr-centered octahedra and A-centered tetrahedra. (b) Magnetic
exchange couplings up to the third Cr neighbors; note that there
are two nonequivalent types of third neighbors which have distinct
exchange parameters: J3 and J ′

3. Brown, blue and red spheres denote
Cr, A and O atoms, respectively.

FIG. 2. Spin resolved Cr 3d DOS for ZnCr2O4 in the
ferromagnetic state. Majority and minority DOS are plotted on
positive and negative y axis, respectively.

has three outer electrons that fill the majority t2g states which
results in a net Cr spin S = 3/2. These features are illustrated
in Fig. 2 where the spin resolved Cr 3d density of states (DOS)
for ZnCr2O4 is shown.

We found the exchange interaction parameters between
Cr spins by fitting ab initio energies of different collinear
magnetic configurations to the Heisenberg Hamiltonian

H =
∑
ij

Jij Si · Sj (1)

where the summation is over Cr ions, Si is the unit vector
indicating the direction of the spin at Cr site i, and Jij are
the exchange parameters between Cr sites i and j . Positive
(negative) exchange parameter indicate AFM (FM) coupling.
We considered Jij up to the third neighbors [Fig. 1(b)] as
further neighbors are known to have negligible exchange
couplings [30]. Exchange parameters for nn and next nn
are denoted by J1 and J2, respectively. Since there are two
nonequivalent types of third neighbors, we have two distinct
third neighbors exchange parameters: J3 and J ′

3. The calculated
exchange parameters are presented in Table I. Note that we also
included the calculations for the HgCr2O4 compound.

The nn exchange parameter J1 is a dominant interaction
for all compounds. This coupling arises from the competition
between AFM direct exchange and FM 90◦ superexchange
[31]. For A2+ ions with small ionic radii, like Mg2+ or Zn2+,
the direct exchange mechanism dominates resulting in a strong
AFM J1. However, for larger A2+ ions the lattice parameter
and the nn Cr-Cr distance increases [28], which diminishes

TABLE I. The exchange parameters (in meV) and Jλ⊥,‖/ωPM
λ

parameters (in cm−1) calculated for different ACr2O4 spinels. Positive
(negative) exchange parameter indicate AFM (FM) coupling.

A J1 J2 J3 J ′
3 Jλ⊥/ωPM

λ Jλ‖/ωPM
λ

1 2 3 4 1 2 3 4

Mg 3.8 −0.1 0.1 0.2 4.5 2.4 0.4 0.3 −0.1 −0.1 −0.7 −0.7
Zn 3.8 −0.1 0.1 0.2 2.0 5.0 0.8 0.2 −0.0 −0.1 −0.8 −0.7
Cd 0.3 −0.1 0.1 0.2 1.3 3.3 0.7 0.7 −0.0 −0.0 −0.5 −0.2
Hg −0.6 −0.0 0.2 0.1 0.8 3.2 0.9 0.6 −0.0 −0.0 −0.5 −0.1
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FIG. 3. Two collinear magnetic orderings relevant for ACr2O4

spinels. (a) AFM-I order that is similar to the true magnetic ground
state in ZnCr2O4 and MgCr2O4. (b) AFM-II order that approximates
the spin order in CdCr2O4. Brown and red spheres denote Cr and O
atoms, respectively.

the direct exchange contribution. In particular, for CdCr2O4

the AFM J1 is reduced by an order of magnitude while for
HgCr2O4 the superexchange contribution overcomes the direct
exchange resulting in a (small) FM J1.

Exchange couplings beyond nn originate from higher-order
superexchange processes [32] and, in general, are smaller
than J1. However, while for MgCr2O4 and ZnCr2O4 these
interactions are negligible compared to the nn exchange, for
CdCr2O4 and HgCr2O4 compounds the J3 and J ′

3 exchanges
become relevant.

The AFM nn exchange interaction is frustrated on the
pyrochlore lattice since spins forming a tetrahedron cannot be
all antiparallel to each other. The energy due to J1 is minimized
when for all tetrahedra the total spin is zero, i.e. in each
tetrahedron two spins are parallel while the other two point
in the opposite direction. There are, however, many such two-
up-two-down configurations which can be different in different
tetrahedra leading to infinite degeneracy. Consequently, the
magnetic ground state is determined by further exchange
couplings [33], magnetoelastic effects [1,2], or relativistic
interactions [34] leading to complicated, often noncollinear
(as in the case of ZnCr2O4 and CdCr2O4), orderings.

There are two primary collinear magnetic orders that are
relevant for ACr2O4 spinels. These are shown in Fig. 3 and
we denote them as AFM-I and AFM-II. The AFM-I ordering
is similar to the true magnetic ground state in ZnCr2O4

[2] and MgCr2O4 [35] while the AFM-II approximates the
spin order in CdCr2O4 [33]. Both spin orderings satisfy the
two-up-two-down rule in each tetrahedron but they differ in
relative orientations of spins in neighboring tetrahedra. In
particular, for AFM-I the nearest neighbors in the xy plane are
parallel while for AFM-II they are antiparallel. As we will see
below, this difference has a profound effect on the magnetically
induced phonon anisotropy. In the case of HgCr2O4 the
magnetic ground state [36] cannot be approximated by neither
AFM-I nor AFM-II orderings. Nevertheless, we found it
beneficial to calculate the phonons for HgCr2O4 in AFM-I
or AMF-II states since this allows us to assess the effect of
the sign of the nn exchange parameter on the magnetically
induced phonon anisotropy.

CdCr2O4 151, 369, 473, 598

151, 369, 481, 601

141, 343, 471, 593

147, 357, 476, 597

141, 343, 471, 594

ZnCr2O4 189, 379, 499, 599

189, 381, 511, 611

173, 340, 499, 603

183, 361, 506, 607

173, 340, 499, 604

MgCr2O4 261, 424, 477, 612

261, 425, 488, 623

224, 405, 479, 615

245, 415, 484, 619

224, 406, 479, 615

HgCr2O4 108, 357, 476, 575

108, 358, 482, 577

102, 332, 471, 570

105, 346, 477, 574

101, 332, 472, 571

AFM-I FM AFM-II

FIG. 4. Calculated T1u phonon frequencies (in cm−1) of different
ACr2O4 spinels for different magnetic orderings. In the FM state
(middle) there are four optical T1u modes and each one is threefold
degenerate. In the AFM-I (left) and AFM-II (right) states each triplet
splits into a singlet and a doublet. For the AFM-I (AFM-II) ordering
the singlet (doublet) has higher frequency for all compounds and for
all phonon modes.

IV. PHONON FREQUENCIES

We now focus on the influence of magnetic order on the
zone-center polar phonons. In addition to the AFM-I and AFM-
II orderings which are relevant for this class of compounds (see
above), we also considered the FM order since which has the
same cubic symmetry as the PM state.

In the FM state there are four triply degenerate polar phonon
modes, each transforming according to the T1u irreducible
representation of the Oh cubic point group. In order to
compute the corresponding phonon frequencies we considered
symmetry-adapted T1u modes, fn,α . Here n = 1,2,3,4,5 is the
mode number (in addition to four polar modes we need to
include the acoustic mode that also has a T1u symmetry) and
α = x,y,z labels the row of T1u such that fn,α transforms as a
vector along the α axis. The symmetry-adapted modes, f1,α ,
f2,α , and f4,α , involve atomic displacements along α of the
entire A, Cr, and O sublattice, respectively. On the other hand,
atomic displacements associated with f3,α and f5,α take place
in the plane perpendicular to the α axis and involve chromium
and oxygen atoms, respectively (see the Supplemental Material
for more details).

Condensing the symmetry-adapted modes for a given α

and evaluating the Hellman-Feynman forces for the FM state,
we constructed the 5 × 5 dynamical matrix block. Matrix
diagonalization leads then to four nonzero phonon frequencies
corresponding to the four polar phonon modes, see Fig. 4
(middle). As expected, the frequencies are independent of α

leading to threefold degeneracy of each mode.
For the AFM-I and AFM-II orderings the symmetry is

lowered to tetragonal D4h and D4 point groups, respectively,
with the tetragonal direction chosen to be along the z axis. In
both cases the T1u representation becomes reducible resulting
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in a splitting of the triple degenerate polar phonon modes
according to T1u → A2u ⊕ Eu for AFM-I and T1u → A2 ⊕ E

for AFM-II. The one-dimensional A2u and A2 irreducible
representations transform as a vector along the z axis, while
the two-dimensional Eu and E irreducible representations
transform as a vector in the xy plane.

In order to evaluate this splitting we calculated the polar
phonons for the AFM-I and AFM-II orderings by diagonaliz-
ing the three 5 × 5 blocks of the dynamical matrix using the T1u

symmetry-adapted modes, fn,α [37]. Since we are interested
in the splitting generated by the spin pattern alone, similarly as
in Ref. [8] we neglected the magnetically induced tetragonal
distortion of the crystal and performed calculations for the
cubic structure found using FM configuration.

The results are shown in Fig. 4. The phonon frequencies
obtained from the α = x and α = y dynamical matrix blocks
are equal and form Eu or E doublets. On the other hand,
the phonon frequencies obtained from the α = z block are
different and correspond to A2u and A2 singlets. The phonon
splitting is the largest for the second lowest frequency mode
(except for MgCr2O4 where it is the lowest frequency mode
that has the highest splitting). In particular, for ZnCr2O4 in
AFM-I state it becomes as large as 41 cm−1. Interestingly, the
magnitude of the splitting for the AFM-I order is, in general,
about twice as large than it is for the AFM-II state.

The most important feature, however, is that for all
considered compounds and for all the modes the singlet has
a higher energy for the AFM-I state while for the AFM-II
configuration it is the doublet that has a higher energy. This is
in agreement with the experimentally observed sign reversal
of the phonon splitting for ZnCr2O4 and MgCr2O4 compared
with CdCr2O4 [10,15–17] since the former ones have a ground
state similar to AFM-I [2] while the magnetic ordering of the
latter can be approximated by AFM-II [33].

V. SPIN-PHONON COUPLING MODEL

In order to better understand the results of our first principles
calculations we employ the spin-phonon coupling model in
which the T1u block of the force-constant matrix for an
arbitrary magnetic state is given by [11]

C̃nα,n′α′ = CPM
nn′ + 4

∑
j

∂2Jij

∂fnα∂fn′α′
〈Si · Sj 〉 (2)

Here, 〈Si · Sj 〉 is the spin correlation function that is 1 for the
FM ordering and either 1 or −1 for the AFM ordering. CPM

nn′
is the force-constants matrix in the PM phase. Note that the
latter has a Oh cubic symmetry and thus it doesn’t depend on
the T1u row indices α and α′.

The above expression can be further simplified by using
the symmetry of the magnetic state. In particular, the AFM-I
and AFM-II (as well as FM) orderings don’t induce couplings
between different rows of T1u so the force-constant matrix is
diagonal in the row indices: C̃nα,n′α′ = C̃nα,n′αδα,α′ ≡ C̃nn′(α).
Consequently, we only need ∂2Jij /∂fnα∂fn′α . Considering
only the nn exchange interaction, there are only two types of
such derivatives: [11] J ′′

nn′⊥ ≡ ∂2Jij /∂fnα∂fn′α ∀ r̂ij · α̂ = 0
and J ′′

nn′‖ ≡ ∂2Jij /∂fnα∂fn′α ∀ r̂ij · α̂ �= 0, where r̂ij is the
vector linking nn sites i and j and α̂ is the unit vector along

the α axis. Therefore, we can write

C̃nn′ (α) = CPM
nn′ + 4J ′′

nn′⊥
∑
r̂⊥

〈Si · Sj 〉

+ 4J ′′
nn′‖

∑
r̂‖

〈Si · Sj 〉 (3)

where the first summation is over the two nn in the plane
perpendicular to α, and the second summation is over the
other four nn. For the three magnetic orderings considered, we
obtain

C̃FM
nn′ (α = x,y,z) = CPM

nn′ + 8J ′′
nn′⊥ + 16J ′′

nn′‖ (4)

C̃AFM-I
nn′ (α = x,y) = CPM

nn′ − 8J ′′
nn′⊥ (5)

C̃AFM-I
nn′ (α = z) = CPM

nn′ + 8J ′′
nn′⊥ − 16J ′′

nn′‖ (6)

C̃AFM-II
nn′ (α = x,y) = CPM

nn′ − 8J ′′
nn′‖ (7)

C̃AFM-II
nn′ (α = z) = CPM

nn′ − 8J ′′
nn′⊥ (8)

The above equations explicitly demonstrate that in the FM
state we have a threefold degeneracy with respect to α and
that in the AFM-I and AFM-II states these triplets split into a
doublet (α = x,y) and a singlet (α = z).

The parameters CPM
nn′ , J ′′

nn′⊥, and J ′′
nn′‖ were fitted to the

ab initio force-constant matrices evaluated for FM, AFM-I,
and AFM-II orderings. Essentially perfect fitting was obtained
with the misfit lower than 0.03 meV/Å and corresponding
phonon frequencies within 1 cm−1 of first principles values
(see Supplemental Material [28]). This indicates that the
spin-phonon coupling model with only nn exchange coupling
provides an excellent description of the effect of magnetic
order on phonon frequencies in ACr2O4 spinels.

Explicit forms of CPM, J ′′
⊥, and J ′′

‖ force-constant matrices
for different ACr2O4 spinels are shown in the Supplemental
Material [28]. We find that for all compounds J ′′

33⊥ is positive
and significantly larger than any other element of J ′′

⊥ and J ′′
‖

matrices. As discussed in Ref. [11], the anomalously large
value of J ′′

33⊥ originates from the exponential form of the direct
exchange contribution (Jd ) to J1. Indeed, Jd = Ae−aDCr-Cr

where A and a are positive constants and DCr-Cr is the nn
Cr-Cr bond length. The only partner function that significantly
affects DCr-Cr is f3α (with α̂ perpendicular to the bond) [10]
resulting in large J ′′

33⊥. This explanation is consistent with the
fact that the J ′′

33⊥ element is similar for MgCr2O4 and ZnCr2O4

compounds but it decreases with the size of A ion due to
diminished role of the direct exchange mechanism. Note also
that the positive sign of J ′′

33⊥ is the direct consequence of the
exponential dependence of Jd on the atomic displacements
which requires the second derivative to have the same sign
as Jd .

The second largest element among J ′′
⊥ and J ′′

‖ matrices is
J ′′

35⊥ (or J ′′
53⊥). Since f5α corresponds to the displacement of O

sublattice which modifies Cr-O-Cr angle, this shows that the
superexchange mechanism also contributes to the spin-phonon
coupling. However, the superexchange contribution to the
spin-phonon coupling is always significantly smaller than
the direct exchange contribution. This remains true even for
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HgCr2O4 compound where the superexchange interaction is
stronger than the direct exchange coupling. We believe that
this relative ineffectiveness of the superexchange in generating
a spin-phonon coupling is a generic feature and is due to
the fact that this mechanism doesn’t depend so strongly on
atomic displacement as the direct exchange mechanism. This
feature plays also an important role in the success of our
spin-phonon coupling model where we considered only nn
exchange interaction. Indeed, while for for MgCr2O4 and
ZnCr2O4 J1 is at least an order of magnitude larger than other
exchange parameters, in the case of CdCr2O4 and HgCr2O4

compounds the J3 and J ′
3 couplings are not negligible and our

approximation works only because these couplings originates
from superexchange processes and have a weak dependence
on atomic displacements.

Having established and understood the validity of our
spin-phonon coupling we can now use it to provide an
additional insight into magnetically induced phonon splitting.
Since J ′′

nn′⊥ and J ′′
nn′‖ are much smaller than the elements of the

paramagnetic force-constant matrix, the phonon frequencies
can be written as

ω̃λ(α) ≈ ωPM
λ + 2

ωPM
λ

×
(
J ′′

λ⊥
∑
r̂⊥

〈Si · Sj 〉 + J ′′
λ‖

∑
r̂‖

〈Si · Sj 〉
)

(9)

Here, ωPM
λ is the paramagnetic phonon frequency and for

each phonon mode we introduced:J ′′
λ⊥,‖ = u

†
λJ

′′
⊥,‖uλ where uλ

are the paramagnetic dynamical matrix eigenvectors and J ′′
⊥,‖

is the dynamical matrix corresponding to J ′′
nn′⊥,‖ force-constant

matrix. The magnetically-induced phonon splittings for the
two principle AFM orders are then given by

�ωAFM-I
λ ≡ ω̃AFM-I

λ (α = z) − ω̃AFM-I
λ (α = x,y)

≈ 8J ′′
λ⊥/ωPM

λ − 8J ′′
λ‖/ω

PM
λ (10)

�ωAFM-II
λ ≡ ω̃AFM-II

λ (α = z) − ω̃AFM-II
λ (α = x,y)

≈ −4J ′′
λ⊥/ωPM

λ + 4J ′′
λ‖/ω

PM
λ . (11)

The ratio J ′′
λ⊥,‖/ω

PM
λ characterize the strength of the magnetic

contribution to the phonon frequencies. Table I shows these
parameters for different ACr2O4 spinels. We can immediately
observe that the only appreciable ratio are J ′′

λ⊥/ωPM
λ for the

two lowest-frequency modes (λ = 1,2) and both are always
positive. It follows from Eqs. (10) and (11) that the phonon
splitting is the largest for the two lowest-frequency modes and
it is positive (negative) for the AFM-I (AFM-II) orderings.
This feature is a direct consequence of J ′′

33⊥ being positive and
dominant among other elements of J ′′

⊥ and J ′′
‖ since the λ = 1,2

modes have the largest content of the f3α partner function
(see Supplemental Material [28]). Therefore, according to the
discussion above, different signs of the phonon splittings that
we found from first principles for the lowest phonon modes are
ultimately related to the dominant role of the direct exchange
mechanism in generating the spin-phonon coupling.

Interestingly,J ′′
λ⊥/ωPM

λ for λ = 3,4 are also always positive
while J ′′

λ‖/ω
PM
λ for all modes are consistently negative. This

results in the sign of the phonon splitting to be positive
(negative) for the AFM-I (AFM-II) states for the two-highest
phonon modes as well. These features, however, is difficult to
explain microscopically due to small values of the splittings.
In fact, the splitting of the two-highest phonon modes is too
small to be seen in experiments.

According to Eqs. (10) and (11) we can write

�ωAFM-II
λ ≈ − 1

2�ωAFM-I
λ . (12)

Therefore, the phonon splittings for AFM-I and AFM-II orders
are always opposite and the latter is approximately half of the
former. This is a general result which follows directly from
the applicability of the nn spin-phonon coupling model and it
is independent on the signs and sizes of the exchange second
derivatives. Note that the above relation is well satisfied by first
principles data (Fig. 4) which again demonstrates applicability
of the model. Note, however, that this relation doesn’t tell us
for which ordering the phonon splitting is positive. In order
to answer this question more microscopic analysis (as above)
is needed.

VI. CONCLUSIONS

In summary, we investigated the effect of magnetic ordering
on phonon frequencies of ACr2O4 spinels using first principles
electronic structure calculations. We found that our ab initio
results are very well described by the spin-phonon coupling
model with only nn exchange coupling [11]. Both the model
and first principles calculations show that a specific type of spin
ordering has a crucial effect on magnetically induced phonon
splitting. In particular, we found that the different magnetic
states observed in different spinels lead to the opposite signs
of the phonon splittings observed in ZnCr2O4 and MgCr2O4

compounds compared to CdCr2O4. This feature is a result of
an important role played by the direct exchange mechanism in
generating the spin-phonon coupling in these materials.
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