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Finite temperature magnetic properties of small Fe chains and clusters on Pt(111)
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The magnetic properties of Fe chains and clusters on Pt(111) are investigated in the framework of a functional-
integral theory of itinerant magnetism. The considered nanostructures show a ferromagnetic (FM) ground state
with nearly saturated Fe local magnetic moments μ0

Fe � 3.15μB. In addition, small moments μ0
Pt � 0.1–0.3μB

are induced at the Pt substrate, which depend sensitively on the number of Fe atoms in their nearest-neighbor
(NN) shell. The spin-fluctuation (SF) energies �Fl(ξ ) at the different atoms l are calculated as a function of the
local exchange fields ξl , by using a real-space recursive expansion of the local Green’s functions. Results for
the temperature dependence of the average magnetization per atom μN , local magnetic moments μl , and spin
correlation functions γlk are derived. At the Fe atoms the dominant magnetic excitations are fluctuations of the
local-moment orientations. The spin-flip energies �Fl(ξ ) in the deposited Fe clusters are found to be about 50%
smaller than in free-standing clusters of comparable size. This results in flatter SF-energy landscapes and in a
weaker stability of the FM order at T > 0. The effective exchange interactions between the Fe local moments,
which are derived from the electronic calculations, reveal competing FM and antiferromagnetic couplings at
different distances. In contrast to Fe, the main spin excitations at the Pt atoms are fluctuations of the size of the
induced local magnetic moments. The interplay between the different types of spin excitations and their effect
on the temperature-dependent magnetic properties is discussed.

DOI: 10.1103/PhysRevB.93.134414

I. INTRODUCTION

The magnetic behavior of nanostructured transition metals
(TMs) remains the subject of a remarkably intense research
activity from both fundamental and technological perspectives
[1–10]. One of the major driving forces in this field is the
possibility of modifying and controlling the fundamental prop-
erties of magnetic materials—magnetic moments, magnetic
order, magnetic anisotropy, etc.—by systematic manipulation
of their size, composition, structure, and dimensionality. The
well-documented strong sensitivity of the dominant 3d states
on the local environment of the atoms [11–16] offers indeed
a wide variety of opportunities to unravel interesting effects
with important potential applications [1–6].

The temperature dependence of the magnetic properties is
a particularly challenging and important issue in this context.
Temperature plays a fundamental role in the behavior of
correlated itinerant 3d electrons, most obviously concerning
the fluctuations of the spin degrees of freedom and the
magnetic order. But in addition, controlling temperature
effects is crucial in view of almost any technological use
of magnetic materials. Besides the more traditional situation
of thermodynamic equilibrium, increasing attention has been
recently paid to the magnetic response of TM compounds
after localized intense excitation, for example, by means of
ultrashort laser pulses [10]. Consequently, the prospects of
manipulating the spin-polarized electronic density in a space-
and time-resolved way raises considerably the importance
of understanding the nature of the magnetic excitations in
nanostructures.

Simple general trends on the finite temperature behavior
as a function of composition and structure are difficult to
infer a priori. In fact, the valence d electrons, which give
the dominant contribution to TM magnetism, are particularly
sensitive to the local environment of the atoms and to the

variables that define it [e.g., local coordination numbers,
nearest-neighbor (NN) distances, chemical composition of the
NN shells, etc.]. Reliable conclusions concerning the size of
the local magnetic moments, their couplings, and the stability
of magnetic order at finite temperature should be therefore
based on an electronic theory, which takes into account both
itinerant character of the d-electron states and the important
Coulomb interactions responsible for local moment formation.
Simple phenomenological spin Hamiltonians, such as the
Heisenberg, xy, or Ising models, are not expected to be very
predictive, unless they incorporate the electronic effects behind
the effective couplings between the local magnetic degrees of
freedom [17–20].

Previous theoretical studies on free-standing and supported
clusters and nanostructures have already revealed a num-
ber of interesting effects concerning the ground-state and
finite-temperature magnetic properties as a function of size,
structure, and interatomic distances [11,18,19,21–24]. For
instance, Šipr et al. have investigated gas-phase FeN clusters
having N = 9–89 atoms by combining a classical Heisenberg
spin model with the exchange couplings derived from density-
functional calculations [19]. In this way, the temperature scale
TC(N ), at which the average cluster magnetization decreases
significantly, has been identified. Trends as a function of size
have been inferred. In addition, electronic calculations on
the finite temperature properties of Fe and Ni clusters and
ultrathin films have been performed in the framework of a spin-
fluctuation theory of itinerant magnetism [21–24]. Besides
quantifying the temperature-dependent average magnetization
and spin-correlation functions, these works have revealed
important qualitative differences between the spin fluctuation
energies in Fe and Ni nanostructures, which correspond to
different types of dominant magnetic excitations: In Fe the
fluctuations of the direction of the local moments dominate,
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while in Ni the fluctuations of the modulus of the local
moments are crucial.

In view of these investigations it would be very interesting
to clarify to what extent the magnetic order within the
nano-objects and its finite-temperature stability are modified
upon deposition on different metallic surfaces. Moreover, one
would like to know if the nature of the dominant fluctuations
of the local magnetic degrees of freedom changes after
deposition. Cluster-substrate hybridizations are likely to affect
the effective exchange couplings within the clusters. Metallic
surfaces mediate oscillating Ruderman-Kittel-Kasuya-Yosida
(RKKY)–like exchange couplings between magnetic adatoms
even at relatively long distances [25]. This may lead to
competing ferromagnetic (FM) and antiferromagnetic (AF)
couplings, either within the cluster, or between the cluster and
the substrate, which deserve to be analyzed in some detail.
Furthermore, in the case of highly polarizable elements, a
significant spin polarization of the surface atoms is induced
in the immediate environment of the magnetic adatoms. This
has been actually observed in ground-state calculations, for
example, in single-layer FeN , CoN , and NiN clusters having
N = 1–7 atoms on Ir(111), Pt(111), and Au(111), and in Co
clusters on Pd(111) and Pd(110) [11,26]. Inferring simple
trends about the role of these induced moments at finite T

is therefore challenging.
The purpose of this paper is to investigate the finite

temperature properties of TM magnetic nanostructures on
surfaces, by considering small Fe chains, clusters, and a two-
dimensional Fe monolayer (ML) on Pt(111) as particularly
relevant examples. We consider a many-body d-band Hamil-
tonian, which is solved by applying a Hubbard-Stratonovich
transformation in the static approximation. The details of
the theoretical framework are given in Sec. II. A variety of
magnetic properties including atom-resolved spin fluctuation
energies, average magnetic moments per atom, and spin-
correlation functions are discussed in Sec. III. The role of
cluster-substrate hybridizations is quantified by comparison
with the corresponding results for free clusters having the
same structure. Emphasis is given to correlating these results
with the specific local and chemical environment of the atoms.
Effective exchange interactions between the local magnetic
moments are derived by fitting the spin-flip energies predicted
by the electronic theory to a phenomenological Ising model
including both Fe-Fe and Fe-Pt couplings. In this way the
stability of the magnetic order is analyzed from a local
perspective taking into account the substrate contributions.
Finally, we conclude in Sec. IV with a summary of our main
results and an outlook on possible extensions.

II. THEORY

The finite-temperature magnetic properties of Fe nanos-
tructures on Pt(111) are investigated in the framework of the
model Hamiltonian

Ĥ = Ĥ0 + ĤI , (1)

where the first term

Ĥ0 =
∑
l,α,σ

ε0
l n̂lασ +

∑
l �= m

α,β,σ

t
αβ

lm ĉ
†
lασ ĉmβσ (2)

describes the single-particle electronic structure of the valence
d electrons in the tight-binding approximation. As usual, ĉ†lασ ,
ĉlασ , and n̂lασ refer, respectively, to the creation, annihilation,
and number operators of an electron with spin σ at the orbital
α of atom l. The bare d-level energy of atom l is denoted by ε0

l ,
and the hopping integrals between atoms l and m are denoted
by t

αβ

lm . The second term,

ĤI =
∑

l

[
Ul

2
N̂l(N̂l − 1) − Jl Ŝ

2
lz

]
, (3)

takes into account the dominant intra-atomic interactions
among the d electrons, where

N̂l =
∑

α

(n̂lα↑ + n̂lα↓) (4)

is the d-electron number operator at atom l, and

Ŝlz = 1

2

∑
α

(n̂lα↑ − n̂lα↓) (5)

is the z component of the local spin operator. The interaction
parameters Ul and Jl entering Eq. (3) are the average direct
and exchange Coulomb integrals, which are specific to the
Fe and Pt atoms. Details on the derivation of the model
interaction ĤI may be found in Ref. [9]. It should be
however noted that the model given by Eq. (3) does not
respect spin-rotational symmetry, since the exchange terms
of the form Ĥxy = −∑

l,α<β J
αβ

l (Ŝ−
lαŜ+

lβ + Ŝ+
lαŜ−

lβ) have been
dropped [9,27]. This is not expected to be a serious limitation
in the present work, since we are interested in studying
the effects of SFs on broken-symmetry FM ground states.
The perspectives of improving the model will be discussed
in Sec. IV. Finally, with an appropriate redefinition of the
single-particle d levels ε0

l (i.e., ε0
l → ε0

l + Ul/2) one may
write the interaction term as

ĤI =
∑

l

(
Ul

2
N̂2

l − Jl Ŝ
2
lz

)
. (6)

The thus obtained sum of squares of operators is suitable
for applying the Hubbard-Stratonovich transformation and the
resulting functional-integral approach [28–30].

The finite-temperature magnetic properties of clusters on
Pt(111) are derived from the grand canonical partition function

Z = Tr [e−β(Ĥ−μ N̂)], (7)

where β = 1/kB T , μ refers to the chemical potential, and

N̂ =
∑
l, α

(n̂lα↑ + n̂lα↓). (8)

Following Ref. [21] we linearize the quadratic terms in Eq. (6)
by means of a two-field Hubbard-Stratonovich transformation
[31] within the static approximation [27,28]. A charge field ηl

and an exchange field ξl are introduced at each site l, which
represent the local finite-temperature fluctuations of the d-
electron energy levels and exchange splittings, respectively.
Using the notation �ξ = (ξ1, . . . ,ξN ) and �η = (η1, . . . ,ηN ) for
an N -sites system, one obtains [28,31]

Z ∝
∫

e−βF ′(�ξ,�η)d �η d�ξ, (9)

134414-2



FINITE TEMPERATURE MAGNETIC PROPERTIES OF . . . PHYSICAL REVIEW B 93, 134414 (2016)

where the grand canonical potential or free energy associated
to the charge and exchange fields �η and �ξ is given by

F ′(�ξ,�η) = 1

2

∑
l

(
Ul η

2
l + Jl

2
ξ 2
l

)
− 1

β
ln{Tr[e−β(Ĥ ′−μ N̂)]}.

(10)

The effective Hamiltonian

Ĥ ′ =
∑
l,α,σ

ε′
lσ n̂lασ +

∑
l �= m

α,β,σ

t
αβ

lm ĉ
†
lασ ĉmβσ , (11)

describes the dynamics of the d electrons as if they were
independent particles moving in a random alloy with energy
levels ε′

lσ given by

ε′
lσ = ε0

l + Uiηl − σ
J

2
ξl. (12)

The thermodynamic properties of the system are obtained
as a statistical average over all possible distributions of the
energy levels ε′

lσ throughout the cluster and its environment.
The present static approximation is exact in the atomic limit
(tαβ

lm = 0, ∀l �= m) where no charge fluctuations are present,
and in the noninteracting limit (Ul = Jl = 0).

In the low-temperature limit, the dominant field configura-
tions correspond to the saddle point in F ′. From Eqs. (10)–(12)
one obtains

∂F ′(�ξ,�η)

∂ξl

= Jl

2
(ξl − 2〈Ŝlz〉′) (13)

and

∂F ′(�ξ,�η)

∂ηl

= Ul(ηl + i〈N̂l〉′), (14)

where

〈N̂l〉′ =
∑
α,σ

∫ +∞

−∞
ρlασ (ε) f (ε) dε (15)

and

2〈Ŝl〉′ =
∑
α,σ

σ

∫ +∞

−∞
ρlασ (ε) f (ε) dε. (16)

Here, 〈. . . 〉′ indicates average with respect to the single-
particle Hamiltonian H ′, which depends on �ξ and �η, f (ε)
is the Fermi function, and ρlασ (ε) is the local density of states
(DOS) at the orbital lασ [21]. In Eq. (16) σ = 1 (σ = −1)
corresponds to spin up (down). Notice that by setting Eqs. (13)
and (14) equal to zero one recovers the usual self-consistent
mean-field equations for ηl and ξl at T = 0 [13]. The present
formulation is therefore a natural finite-temperature extension
of a widely used ground-state mean-field approach [13–16,26].

Since we are mainly interested in the magnetic properties,
and since Jl � Ul , we neglect the thermal fluctuations of
the charge fields ηl by setting them equal to the saddle-point
values ηl = −iνl = −i〈N̂l〉′. This amounts to a self-consistent
determination of the charge distribution for each exchange-
field configuration �ξ . Since the average local occupations νl

are implicit functions of �ξ , one may write

Z ∝
∫

e−βF ′(�ξ ) d�ξ, (17)

where

F ′(�ξ ) = −1

2

∑
l

(
Ul ν

2
l − Jl

2
ξ 2
l

)
− 1

β
ln{Tr[e−β(Ĥ ′−μ N̂)]}

(18)

represents the free energy associated to the exchange-field
configuration �ξ , describing the relevant fluctuations of the
spin degrees of freedom. Notice that F ′(�ξ ) in Eqs. (17)
and (18) is actually a shorthand for F ′(�ξ,�η(�ξ )), where �η
refers to the saddle-point value of �η for the exchange-field
configuration �ξ . The integrand in Eq. (17) is proportional to
the joint probability-density distribution P (�ξ ) of the exchange
variable �ξ .

The thermodynamic properties are obtained by averaging
over all possible �ξ with exp{−βF (�ξ )} as weighting factor. For
example, the local magnetization at atom l is given by

ml(T ) = 1

Z

∫
e(β/2)

∑
l (Ul ν

2
l −(Jl/2) ξ 2

l ) Tr
[
2Ŝz

l e−β(Ĥ ′−μN̂)
]
d�ξ

= 1

Z

∫
2〈Slz〉′ e−βF ′(�ξ ) d�ξ, (19)

where 〈Slz〉′ is the average spin moment corresponding to the
effective single-particle Hamiltonian Ĥ ′, which depends on
the fluctuating �ξ . Integrating Eq. (19) by parts, by taking into
account Eq. (13) and the saddle-point condition on νl , one
obtains

ml(T ) =
∫

ξ Pl(ξ ) dξ, (20)

where we have introduced the probability

Pl(ξ ) = 1

Z
e−βF ′

l (ξ )

= 1

Z

∫
e−βF ′(ξ1,...,ξl−1,ξ,ξl+1,...,ξN )

∏
m�=l

dξm (21)

that the exchange field at atom l takes the value ξ . Notice, that
the temperature-dependent local free energy F ′

l (ξ ) is obtained
by averaging over all possible values of ξm for m �= l. Equation
(20) shows that the temperature-dependent local magnetization
is equal to the average of the local exchange field. This justifies
the intuitive association between the fluctuations of the local
moment 2〈Ŝlz〉 at atom l and those of the exchange field ξl .

In the case of finite clusters no preferred or remanent
direction of the magnetization is imposed by the substrate.
Therefore, a restriction

∑
l ξl � 0 must be enforced in Eq. (20)

in order to avoid trivially vanishing results for ml(T ) due to
time-inversion symmetry [23]. In this case we compute the z

component of the local spin magnetization at atom l from

ml(T ) = 1

Z

∫
sgn

(
N∑

l=1

ξl

)
ξl e

−βF ′(�ξ ) d�ξ, (22)
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where the summation runs over the atoms l of the FeN cluster.
The total cluster magnetization per atom is given by

mN (T ) = 1

N

N∑
l=1

ml(T ). (23)

A first insight on the stability of the magnetic order within
the deposited nanostructures is given by the low-temperature
limit of F ′

l (ξ ). In this case, the integration in Eq. (21) can be
simplified by setting ξm equal to the corresponding ground-
state value ξ 0

m = μ0
m for m �= l. In this context, it is useful to

introduce the local SF energy

�F ′
l (ξ ) = F ′

l (ξ ) − F ′
l

(
ξ 0
l

)
, (24)

where ξ 0
l = μ0

l is the local moment of atom l at T = 0.
�F ′

l (ξ ) represents the energy involved in an exchange-field
(XF) fluctuation at atom l above the ground-state configuration
�ξ 0. Since �F ′

l (ξ ) determines the probability of the fluctuation
�ξl = ξl − ξ 0

l under the constraint ξm = ξ 0
m for all m �= l, it

allows us to infer the stability of the ground-state magnetic
order at low T .

In order to quantify the short-range order between the local
magnetic moments we consider the spin correlation functions

γlk = 4〈Ŝlz Ŝkz〉 = − 2

βJ
δlk + 1

Z

∫
ξl ξk e−βF ′(�ξ ) d�ξ, (25)

where the indices l and k refer to the different Fe or Pt atoms.
Positive (negative) values of γlk indicate FM (AF) correlations.
The last equality is obtained by successive partial integrations,
using Eq. (13) and the saddle-point condition on νl . For l = k,
Eq. (25) gives the local magnetic moment

μl = 2
√〈

Ŝ2
lz

〉 = √
γll . (26)

As in the case of ml , γlk and μl are given by a statistical average
over the probability density distribution P (�ξ ). In addition,
Eq. (25) allows us to derive complementary information on
the average cluster magnetization per atom by calculating

μN (T ) = 2

N

√〈
Ŝ2

z

〉
, (27)

where

4
〈
Ŝ2

z

〉 =
∑
lk

γlk = −2N

βJ
+ 1

Z

∫
ξ 2 e−βF ′(�ξ ) d�ξ, (28)

and ξ 2 = (
∑

l ξl)2. Equation (28) shows that there are two
main reasons for the decrease of μN (T ) with increasing T . On
the one side, one should analyze how the temperature induced
electronic excitations affect the stability of the local magnetic
moments μl = √

γll . And, on the other side, one should follow
the stability of the magnetic order within the nanostructure as
given by γlk for l �= k.

III. RESULTS

In this section we present and discuss results for Fe chains,
clusters, and a monolayer deposited on Pt(111). Epitaxial
growth is assumed, so that the NN distance between the Fe
adatoms corresponds to Pt [dNN(Pt) = 2.77 Å]. The parameters
used for the calculations are the following. The Fe d-band

filling nd = 6.8 is derived from spd-band calculations [32].
For Fe the average direct Coulomb integral UFe = 6.0 eV and
the exchange integral JFe = 0.7 eV yield the experimental
bulk magnetization at T = 0. In the case of Pt, UPt = 5.9 eV
is taken from atomic calculations and the exchange integral
JPt = 0.7 eV is obtained from local spin-density calculations
[33,34].

A. Fe chains on Pt(111)

In the following we consider finite one-dimensional (1D)
FeN chains on Pt(111) including the 1D limit. For the sake
of comparison, results are also given for the free-standing
Fe7 chain having the same NN distance as the deposited
ones. Despite a significant hybridization between the deposited
chains and the substrate, we observe that the ground-state local
magnetic moments μ0

l at the Fe atoms are very similar to those
found in free-standing chains. For free Fe chains having N =
2–9 atoms and Pt-bulk NN distances we find μ0

l � 3.2μB,
while in the case of deposited chains we obtain a somewhat
smaller μ0

l � 3.15μB. These small differences can be ascribed
to the cluster-substrate hybridizations, which broaden the
discrete cluster density of states, and to the small exchange
splittings at the Pt atoms near the chain, which tend to reduce
the spin polarization at the Fe atoms. We have verified that
these trends remain qualitatively unchanged when sp electrons
and spd hybridizations are explicitly taken into account.
Moreover, the ground-state moments are weakly affected
by reasonable changes in the interatomic distances within
the Fe chains. If the NN distances dNN within free-standing
Fe chains are allowed to relax, an important contraction is
obtained. For example, density-functional calculations based
on a generalized gradient approximation to exchange and
correlation yield dNN = 2.25–2.27 Å [35–37]. However, the
corresponding ground-state moments μ0

l � 3.1μB do not
change significantly. This is the consequence of the extremely
low dimensionality of the 1D chains, which tends to stabilize
saturated local moments.

Small magnetic moments are induced at the Pt atoms in
the immediate vicinity of the Fe chains. In the case of a
single adatom we find μ0

Pt = 0.2μB at the NN Pt atoms.
Moreover, an interesting environment dependence of μPt is
observed as the chain length grows. Pt atoms having two NN
Fe atoms show μ0

Pt = 0.3μB while Pt atoms having only one
NN Fe atom show a smaller μ0

Pt = 0.16–0.2μB. This magnetic
proximity effect concerns not only the Pt-Fe bonds but also
the Pt-Pt bonds, since Pt atoms having Pt neighbors with
significant local magnetic moments develop larger μ0

Pt than
those having only very weakly polarized Pt neighbors. It would
be interesting to experimentally determine the Pt contributions
to the magnetization of these nanostructures.

The low-temperature limit of the local SF energies �F ′
l (ξ )

shown in Fig. 1 provides us with an important insight on
the stability of the FM order in linear Fe chains on Pt(111).
�F ′

l (ξ ) shows a double-well shape as a function of ξ , with two
local minima at ξ = μ0

l and ξ � −μ0
l , where μ0

l refers to the
ground-state Fe moment. This behavior is characteristic of Fe,
where the changes in the exchange energy �EX = −Jμ2

l /4
associated to the SFs dominate over the changes in the kinetic
or band energy �EK . This also explains the strong stability of
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N = 3

N = 7
N = 5

N = ∞

eF )111(tP/N

ξ [μB]

ΔF
'  

 [e
V

]
 l

FIG. 1. Low-temperature limit of the local spin-fluctuation en-
ergy �F ′

l (ξ ) as a function of the exchange field (XF) ξ at the central
atom of FeN linear chains deposited on Pt(111). All other XFs remain
fixed to their corresponding ground-state values [see Eq. (24)]. The
dashed curve shows �F ′

l (ξ ) at the central atom of a free-standing Fe7

linear chain.

the local Fe moments at finite T . Notice that �EX does not
change upon reversing the local XF from ξl � μ0

l to ξl = −μ0
l .

In contrast, a reduction of ξl implies an important increase
of �EX, of the order J (μ0

l )2/4 � 1.74 eV for ξl � 0. The
difference between the purely exchange energy �EX and the
actual spin-fluctuation energy �F ′

l (ξ ), shown in Fig. 1, reflects
the kinetic- or band-energy contribution �EK of the itinerant d
electrons. In fact, only in the atomic limit (vanishing hoppings)
one has �F ′

l (ξ ) = J (|ξ | − μ0
l )2/4, which corresponds to two

degenerate local minima at ξ = ±μ0. In 1D systems, the low
local coordination number tends to reduce the band energy and
its fluctuations, while μ0

l and �EX, being local properties, are
much less affected. We conclude that the dominant magnetic
excitations in Fe chains on Pt(111) are fluctuations of the
orientations of the local moments, keeping their size nearly
constant. Qualitatively, the same behavior is found in the free-
standing case [21], as illustrated by the results for linear Fe7

shown in Fig. 1. The situation is, however, different when the
local ground-state moments are small. As we shall see, at the
Pt atoms near the deposited cluster, the fluctuations of the size
of the local moments dominate over the spin flips.

Taking into account the diversity of experimental routes
to magnetic nanostructures (e.g., free-cluster beams, cluster-
beam deposition, diffusion-controlled aggregation, etc.) [12] it
is most interesting to quantify the effects of the environment on
the spin-fluctuation energies. Despite qualitative similarities,
the quantitative differences between �F ′

l in free-standing
and deposited Fe chains are significant. One observes that
upon deposition the spin-flip energies �F ′

l (−ξ 0) are reduced
by about 50%. This implies that reversing a local magnetic
moment in the deposited chain involves a much smaller
increase of the band energy �EK than in the free-standing
geometry. In addition, the energy barrier �F ′

l (ξ = 0) between
the minima is reduced by about 30%. Consequently, deposition
leads to flatter energy landscapes, as compared to the free-
standing case, which weakens the stability of FM order at finite

0 1 2 3

N = 3
N = 5
N = 7
N = ∞

m

N

J 0
m
   

 [m
eV

]

FIG. 2. Effective exchange coupling constants J0m in FeN chains
on Pt(111) between the central atom l = 0 and its mth NN. For
comparison, results are also given for the free-standing Fe7 chain
(dashed line). The lines connecting the points are a guide to the eye.

temperatures. We conclude that the hybridizations between the
magnetic clusters and the nonmagnetic or weakly magnetic Pt
substrate have a stronger effect on the magnetic excitations
than on the ground-state spin-polarized density distribution.

It is interesting to note that the spin-flip energy �F ′
l (−ξ 0)

shown in Fig. 1 oscillates as a function of chain length,
approaching closely the infinite length limit already for N �
7–10 atoms. An analogous behavior has been observed in the
case of free-standing chains and clusters [23]. This suggests
the possible presence of competing FM and AF couplings
between the Fe local moments at different distances within
the chain. In order to examine this problem in more detail,
we have determined the effective exchange coupling constants
J0m between the central atom of the chain and its mth NN in the
framework of a classical Ising model. All possible orientations
of the local XFs ξl within the chain are considered, by keeping
their absolute values equal to the corresponding ground-state
moments μ0

l . In Fig. 2 results are given for J0m between the
local moment at the central atom, l = 0, and its mth NN
in FeN chains on Pt(111). As expected, the NN exchange
couplings J01 are positive and largest. In contrast, the second
NN couplings J02 are significantly smaller and negative. For
larger distances J0m oscillates as a function of m showing
rapidly decreasing absolute values. Although free-standing
chains show a qualitatively comparable dependence of J0m as a
function of m, the quantitative differences are most significant.
In particular, the NN coupling constants are about two times
larger in the free-standing chains than in the deposited
ones. Similar oscillations of the effective exchange coupling
constants have been obtained in first-principles calculations on
infinite TM chains [36–39].

B. Fe clusters on Pt(111)

In this section we investigate the properties of deposited
Fe clusters, whose structures and local environments are
illustrated in Fig. 3. The corresponding SF energies �F ′

l (ξ )
of FeN and of the infinite 2D ML deposited on Pt(111) are
shown in Figs. 4 and 5. For the sake of comparison, results are
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FIG. 3. Illustration of the considered FeN clusters on Pt(111).
Dark (light) spheres indicate Fe (Pt) atoms. The numbers label the
different sites l.

also given for free-standing clusters having the same structure
and bond lengths. Concerning the ground state, one obtains
FM order with nearly saturated local magnetic moments
μ0

l � 3.1–3.2μB at the Fe atoms. Small induced local magnetic
moments μ0

Pt � 0.13–0.32μB are found at the Pt atoms in the
vicinity of FeN . As in the finite chains, �F ′

l (ξ ) at the Fe
atoms shows two local minima at ξ = μ0

l and ξ � −μ0
l . This

confirms the expected dominant role of spin-flip excitations
at the Fe atoms, in qualitative agreement with the results for
free-standing Fe clusters and ML reported in Refs. [21,22].
Nevertheless, deposition changes the SF energy landscapes
quantitatively. Comparison with free clusters having the same
Pt bulk NN distances shows that the spin-flip energy �F ′

l (−ξ 0)
is actually reduced by about 50% upon deposition on Pt(111).
In the case of the hexagonal Fe7, �F ′

l (−ξ 0) at the central and
outer atoms are reduced to only 30% of the free-cluster value.
In other clusters, or in the 2D ML, the effects of hybridization
with the substrate are less strong, though still significant (see
Figs. 4 and 5). As in linear FeN , deposition on Pt(111) renders
the SF energy landscapes flatter, thus weakening the stability
of FM order at finite temperatures.

In contrast to the Fe atoms, the Pt atoms near the Fe
cluster or at the interface with the Fe ML show only one
local minimum in �F ′

l (ξ ). In the low-temperature limit this is
located at the small induced ground-state magnetic moment
μ0

l . �F ′
l (ξ ) takes here a paraboliclike form with a slight

asymmetry favoring XF fluctuations towards smaller exchange
splittings (i.e., ξ < μ0

Pt). Thus, μPt(T ) decreases with in-
creasing T . Clearly, the fluctuations of the size of the local
magnetic moments are dominant here. Notice that the precise
position of the minimum in �F ′

l (ξ ) depends on the local
chemical environment of the Pt atoms, since it follows the
environment dependence of the ground-state moments μ0

l . For

Fe(1)

Fe(4)

Pt(5)
Pt(6)

Fe(1)

(c) Fe4 / Pt(111)

Fe(1)

Fe(3)

Fe(3)

Fe(1)
Pt(5)
Pt(12)

(b) Fe4 / Pt(111)

Fe(1)

Fe(1)

Pt(4)

Pt(6)

(a) Fe3 / Pt(111)

ξ   [μB]

ΔF
'  

 [e
V

]
 l

ΔF
'  

 [e
V

]
 l

ΔF
'  

 [e
V

]
 l

FIG. 4. Local SF energy �F ′
l (ξ ) = F ′

l (ξ ) − F ′
l (ξ 0) at the differ-

ent Fe and Pt atoms l of FeN clusters deposited on Pt(111): (a) triangle,
(b) rhombus, and (c) tetrahedron. The cluster structures together with
the atom labels are illustrated in Fig. 3. The dashed curves correspond
to free-standing FeN clusters having the same structure and bond
lengths as the deposited ones.

example, in the triangular Fe3 on Pt(111) we find μ0
4 = 0.33μB

at the Pt atom l = 4, which has three NN Fe atoms. This is
twice as large as the local moment μ0

6 = 0.16μB found at the
l = 6 Pt atom, which has only one NN Fe atom (see Fig. 3).

An interesting environment dependence is also observed
in the tetrahedral Fe4. While μ0

l at the Fe-Pt interface is
reduced to μ0

1 = 3.11μB, the topmost Fe atom l = 4 shows
μ0

4 = 3.196μB, which is very close to the free-standing
value μ0

4 = 3.197μB. This is consistent with the low local
coordination of this atom and the weaker influence of the
more distant Pt surface. However, the changes in the spin-flip
energy �F ′

l (−ξ 0) upon deposition are much more significant.
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FIG. 5. Local SF energy �F ′
l (ξ ) at the different Fe and Pt atoms

l of (a) a hexagonal Fe7 cluster and (b) the Fe (ML) deposited on
Pt(111) (see Fig. 3). Results for the corresponding free-standing
configurations are shown by the dashed curves.

Indeed, as shown in Fig. 4, �F ′
l (−ξ 0) is reduced upon

deposition by approximately 50% at all Fe atoms. This can
be understood by recalling that in TMs the magnetic degrees
of freedom and their couplings originate from delocalized
itinerant-electron states. Therefore, the magnetic excitations
and the resulting finite-temperature properties depend on the
local environment at a broader distance range. At least in
this case, cluster-substrate hybridizations affect the couplings
between the local moments, and the stability of the magnetic
order, much more strongly than the low-temperature local
moments. Thus, the consequences of cluster deposition are
more significant at finite temperatures.

C. Temperature dependence

In the following we consider small FeN clusters deposited
on Pt(111) with N = 3 and 4 atoms. In order to obtain
the equilibrium properties at finite T , we average over all
possible XF configurations �ξ taking into account that the
probability P (�ξ ) for the field configuration �ξ is proportional
to exp{−βF ′(�ξ )} [see Eqs. (20), (21), and (25)]. In order to
illustrate the coupling between spin fluctuations at different
atoms, we show in Fig. 6 results for F ′(�ξ ) in linear Fe3 on
Pt(111) as a function of the XFs ξ1 and ξ2 at the central
atom and at an edge atom. For simplicity, all other XFs are
kept fixed to the corresponding ground-state values ξ 0

l . One

ξ1 [μB]

ξ 2
[μ

B
]

ΔF
'  

[e
V

]

ξ1 [μB]

ξ 2
[μ B

]

1.9

(a)

(b)

FIG. 6. Spin-fluctuation energy landscape of linear Fe3 deposited
on Pt(111). In (a) �F ′(ξ1, ξ2) = F ′(ξ1, ξ2, ξ

0
3 ) − F ′(ξ 0

1 , ξ 0
2 , ξ 0

3 ) is
given as a function of the XFs ξ1 and ξ2 at the central atom and
at an edge atom [see Fig. 3(e)]. In (b) the corresponding contour plot
is shown. The XFs at the other edge Fe atom (l = 3) and at the Pt
substrate are kept equal to their ground-state values.

may first notice the four local minima located approximately
at (ξ1,ξ2) = (±ξ 0

1 , ± ξ 0
2 ). The transition states connecting

them correspond to a vanishing XF, keeping the other one
close to ±μ0

l . As expected, the paramagnetic configuration
having �ξ = 0 yields the maximum in the energy landscape.
Qualitatively, the overall shape of the energy landscape can be
understood by recalling the dominant role played by exchange
energy �EX in the case of strong local magnetic moments.

In Fig. 7 results are given for the temperature dependence
of the average magnetic moment per atom μN of the triangular
Fe3, linear Fe3, and rhombohedral Fe4 deposited on Pt(111).
Starting from the nearly saturated ground-state value, μN

decreases with increasing T in a qualitatively similar way
as in free clusters [23]. Thus, the stability of FM order within
the clusters, which has already been observed in the gas phase,
is preserved upon deposition. Concerning the dependence on
size and structure, one finds that μN (T ) is always larger in
the triangle than in the rhombus, which in turn has a larger
μN (T ) than in the linear trimer. This trend can be qualitatively
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μ N
  [

μ B
]

_

N

T  [K]

Rhombus
Chain
Triangle

FIG. 7. Temperature dependence of the average magnetic mo-
ment per atom μN , given by Eq. (27), for the triangular Fe3 (triangles),
linear Fe3 (circles), and rhombohedral Fe4 (squares) on Pt(111) (see
Fig. 3). The XFs ξ at the Pt atoms are either fixed to the ground-state
values (open symbols) or computed self-consistently (full symbols)
for each XF configuration of the Fe cluster.

understood by comparing the local environments of the atoms
in the different clusters, taking into account the competing
effective exchange couplings Jlm between the local moments.
Let us recall that J01 between NNs was found to be strongly
FM, while J02 between second NNs is weakly AF. The strong
decrease of μN (T ) in linear Fe3, as compared to the triangle,
can be regarded as the consequence of replacing a strong FM
first-NN coupling by a weaker AF second-NN coupling. In the
case of the rhombus, the decrease of μN with increasing T is
triggered by the lowest coordinated atoms [l = 3 and l = 4 in
Fig. 3(b)]. Although these atoms have the same number of first
NNs as in the triangle, the additional AF second-NN coupling
lowers the local SF energy, thereby reducing the stability of
FM order. This interpretation is consistent with results for the
spin-correlation functions γlm to be discussed below.

A qualitative measure of the stability of ferromagnetism
in small clusters is provided by the inflection point in
μN (T ), which can be interpreted as a precursor of the
thermodynamic phase-transition temperature or cluster Curie
temperature TC(N ). For the deposited Fe3 chain we find
TC(N ) � 750 K, for the rhombus TC(N ) � 1400 K, and
for the triangle TC(N ) � 2200 K. In the high-temperature
limit, where kBT is much larger than the effective exchange
couplings J0m ∼ 103 K but still smaller than the d-band
exchange splitting �EX ∼ 104 K, we observe that μN (T )
tends approximately to μN (T = 0)/

√
N . This corresponds to

the average of N randomly oriented local magnetic moments
having approximately the same length as the ground-state local
moments [40]. In the case of the linear trimer μ3(T = 2500 K)
is in fact not very far from μ3(T = 0)/

√
3 � 1.8μB.

Comparing our results for μN (T ) of FeN on Pt(111)
with those of free clusters having the same structures and
NN distances, one concludes that the hybridization with the
substrate reduces significantly the stability of FM order at
finite temperatures. For example, in linear Fe3 we find a
decrease of about 50% in TC(N ) upon deposition on Pt(111).
This is consistent with the previously discussed reduction

T  [K]

N

Rhombus
Chain
Triangle

m
N
  [

μ B
]

_
FIG. 8. Temperature dependence of the average magnetization

per atom mN , given by Eq. (23), for triangular Fe3 (triangles), linear
Fe3 (circles), and rhombohedral Fe4 (squares) on Pt(111). The XFs
at the Pt atoms are either fixed to the ground-state values (open
symbols) or calculated self-consistently for each XF configuration of
the Fe cluster (full symbols).

of the local SF energies �F ′
l (ξ ). Similar trends should be

observed in experiment when the clusters are deposited on
a surface or embedded in a nonmagnetic matrix. Notice,
however, that the present comparison does not take into
account the consequences of structural relaxations in the free-
standing clusters, which are known to modify the temperature
dependence of μN [23]. Indeed, small Fe clusters have in
general shorter equilibrium bond lengths than the Pt bulk
NN distance corresponding to epitaxial growth on Pt(111).
Such contractions result in an increase of the effective d-band
width of free-standing clusters and a reduction of TC(N ).
Thus, the effects of hybridization with the nonmagnetic or
weakly magnetic substrate may be partially compensated by
the changes in bond length and structure occurring in the Fe
clusters upon deposition.

An alternative approach to computing the average cluster
magnetization is to perform first the thermal average of the lo-
cal magnetizations ml(T ) independently, according to Eq. (20),
and to derive the cluster magnetization mN (T ) by averaging
ml(T ) according to Eq. (23). Results for mN (T ) are shown
in Fig. 8 for some representative FeN clusters on Pt(111).
Comparison with the results for μN (T ) presented in Fig. 7
shows that both approaches give comparable dependencies on
temperature, size, and structure. This is in agreement with
previous results for free-standing clusters [23].

In order to assess the effects of the Pt-moment fluctuations
on the temperature-dependent magnetic properties, we have
performed calculations of μN under two extremely opposite
assumptions. First, we assume that the exchange splittings at
all Pt atoms in the substrate remain equal to their ground-state
values μ0

Pt. Such a frozen moment or non-self-consistent
(NSC) approach will certainly tend to overestimate μN and the
stability of FM order within the deposited clusters. Second, we
assume that the local XFs at the Pt atoms next to the Fe clusters
follow adiabatically the fluctuating Fe moments, so that the
energy is minimal for each XF configuration of the latter.
Clearly, the adiabatic or self-consistent (SC) approximation
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FIG. 9. Temperature dependence of the local magnetic moments
μl = √

γll at different atoms l of FeN clusters deposited on Pt(111):
(a) triangle and chain, and (b) rhombus. The XFs at the Pt atoms
are calculated self-consistently (SC) for each XF configuration of the
Fe cluster. Assuming fixed ground-state exchange splittings ξ 0

l at the
substrate atoms yields almost the same results.

gives a lower bound for the SF energies and should therefore
underestimate μN (T ). Nevertheless, we expect the adiabatic
approximation to be physically more relevant, since the local
Pt moments are actually induced by the proximity with FeN .
In Figs. 7 and 8 the two approaches are compared. One
concludes that the details of the SFs at the Pt substrate have
little influence on the temperature dependence of μN and mN .
The largest effects are found in the linear trimer which, being
the most weakly coordinated Fe structure, is more susceptible
to the environment. The Fe and Pt contributions to the average
magnetization of the nanostructure could be investigated
experimentally by means of element-specific x-ray magnetic
circular dichroism measurements.

The behavior of μN can be analyzed from a local perspec-
tive. To this aim we show in Figs. 9 and 10 the local magnetic
moments μl = √

γll and the pair-correlation functions γlk

as a function of T . In all cases μl remains remarkably
stable at finite temperatures. In fact, only a small decrease
in μl , of about 5%, is observed in the considered temperature
range. This is of course understandable, since the stability of
the local magnetic moments is controlled by the exchange
energy �EX = −Jμ 2

l /4, which is an order of magnitude
larger than any reasonable temperature. In the framework of
the present functional integral formalism, we can interpret
this behavior in terms of the SF energy landscape �F ′(�ξ ).

γ lk
  [

μ B
2 ] 12, triangle

12, chain
23, chain

γ lk
  [

μ B
2 ]

T  [K]

12

13

34

FIG. 10. Temperature dependence of the pair correlation func-
tions γlk between different atoms l and k of FeN clusters deposited on
Pt(111): (a) triangle and chain, and (b) rhombus. The cluster structures
and atom labeling are shown in the inset of Fig. 9. As in Fig. 9 the
results are obtained by treating the XFs at the Pt substrate atoms
self-consistently. The NSC approach yields very similar results.

In Fe systems �F ′
l (ξ ) shows indeed two deep minima at

ξ � ±μ0
l . As a result local-moment flips, keeping the absolute

value of μl approximately constant, are much more probable
than reducing the size of the local magnetic moments [i.e.,
�F ′

l (ξ =0) � �F ′
l (−ξ 0)]. One may also point out that μl

tends to be more stable at the atoms having a smaller local
coordination number (see Fig. 9). This is consistent with
the localized character of the magnetic excitations at low
coordinated sites.

In contrast to μl , the pair-correlation functions γlk (l �= k)
shown in Fig. 10 decrease faster with temperature when
the local coordination number is smaller. In particular in
linear Fe3 we have competing FM and AF effective exchange
interactions, which tend to weaken the FM order within
the chain. The rapid decrease of γ23 reflects the resulting
rising probability for an antiparallel alignment between local
magnetic moments at the edges of the chain. The disorder of
the magnetic moments at the edge atoms precludes the local
moment at the central atom from having a parallel alignment
with both of them. This contributes to a decrease of γ12 = γ13

with increasing T .
The results for γlk in the rhombohedral Fe4 can be

interpreted in an analogous way. In this case the atoms labeled
3 and 4 are also second NNs. As γ23 in linear Fe3, γ34 in
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the rhombus approaches zero as the temperature increases.
In other words, the probabilities for parallel and antiparallel
alignment are nearly the same for T > 2000 K . In contrast,
the triangle, which has only NN couplings, shows a stronger
stability of the correlation functions. It is probably the absence
of competing second NN coupling what renders FM order so
stable in triangular Fe3.

IV. CONCLUSION

Iron clusters, linear chains, and a ML deposited on Pt(111)
have been investigated in the framework of a functional-
integral theory of itinerant magnetism. The consequences of
depositing magnetic nano-objects on a highly polarizable non-
magnetic substrate have been quantified by comparison with
the corresponding results for free-standing configurations.
Finite-size effects have been discussed, including in particular
the differences with the infinite 1D Fe chain and the 2D ML
on Pt(111). The considered Fe nanostructures are found to
have a FM ground state with nearly saturated local magnetic
moments μ0

l . In the case of the Fe atoms the magnetic moments
μ0

l are somewhat smaller than in free clusters having the same
structure and interatomic distances. This can be ascribed to
the hybridizations between the cluster electronic states and
the broad substrate bands, and to the nonmagnetic character
of the bare substrate. At the same time, small local magnetic
moments μ0

Pt are induced at the Pt atoms in the immediate
environment of the Fe cluster. The size of μ0

Pt � 0.1–0.3μB

depends strongly on the local environment of the Pt atoms: the
larger the number of Fe atoms in the NN shell the stronger the
induced μ0

Pt.
An important insight on the energy involved in the thermal

magnetic excitations and their characteristics has been inferred
from the calculated SF energies �F ′

l (ξ ) at the different Fe
and Pt atoms of the nanostructures. At the Fe atoms �F ′

l (ξ )
shows two local minima located approximately at ξ = ±μ0

l .
This implies that in Fe the dominant magnetic excitations are
flips of the orientation of the local moments keeping their
size approximately constant. These trends are in qualitative
agreement with previous studies on free-standing chains and
clusters [21–23]. However, deposition has a significant impact
on the actual spin-flip energies �F ′

l (−μ0
l ) and on the barrier

energy �F ′
l (ξ =0) separating the minima. In fact, �F ′

l (−μ0
l )

is typically reduced by 50%, while �F ′
l (ξ =0) is reduced

by about 30%. This leads to significantly flatter SF energy
landscapes and, accordingly, to a weaker stability of FM order
at finite temperatures. In addition, we have found evidence
for competing effective exchange coupling constants Jlm

between the local Fe moments at different distances within
the chains: strong FM couplings J01 between NNs and weaker
AF couplings J02 between second NNs.

The dominant magnetic excitations at the Pt atoms near
the cluster have a very different nature. In this case the small
induced local moments do not flip significantly; they basically
fluctuate in size. The SF energies �F ′

l (ξ ) at the Pt atoms show a
single minimum at ξ 0

l = μ0
l with a slight asymmetry that favors

fluctuations of ξ towards values smaller that ξ 0
l . This results

in a decrease of the local Pt magnetizations as T increases. It
is interesting to observe that such fluctuations of the size of
the local moments are characteristic of itinerant ferromagnets

with small local moments, such as bulk Ni [21]. They cannot
be described in the framework of the phenomenological
Heisenberg models that are usually assumed in the context
of DFT-based calculations [19,20]. Nevertheless, our results
also indicate that the fluctuations of the Pt moments, though
present, have little influence on the temperature dependence
of the magnetic properties of the deposited Fe clusters.

Finally, we have discussed the temperature dependence
of the average magnetization per atom μN , local magnetic
moments μl , and spin-correlation function γlk of small FeN

clusters on Pt(111). Some qualitative resemblances and impor-
tant quantitative differences with respect to gas-phase clusters
have been identified. An analysis from a local perspective
shows that the local magnetic moments μl are hardly reduced,
by only about 5%, as the temperature increases (T � 2500 K).
In contrast, the correlation functions γlk decrease remarkably
fast with increasing T , particularly between second NNs. The
decrease of the second NN spin correlations, and the associated
spin fluctuations, trigger the decrease of γlk between first NNs
and thus the complete magnetic disorder within the clusters.

The present work extends previous self-consistent tight-
binding studies on the ground-state properties of deposited
clusters and wires [15,26,41] to finite temperatures. Moreover,
it expands the scope of temperature-dependent investigations
of the magnetism of small clusters by incorporating substrate
effects [21,23]. The results provide a clear insight on the
changes in the finite-temperature magnetic behavior, which
follow from cluster deposition on highly polarizable sub-
strates. This corresponds to the situation found in many ex-
periments on transition-metal clusters on surfaces, which aim
to characterize the local magnetic moments, their couplings,
and the stability of the magnetization direction by controlling
the size, composition, and local atomic environment [1–6,12].
In addition, a number of interesting perspectives of theoret-
ical improvements and extensions are opened. One central
aspect concerns the spin-rotational invariance of the model
Hamiltonian and its possible consequences on the ground-
state and finite-temperature behavior. Taking into account the
competing FM and AF exchange interactions found in this
work, one would like to investigate whether this may lead to
more complex noncollinear magnetic order in deposited wires,
and to what extent they may affect the nature of the dominant
spin excitations. In fact, competing magnetic interactions and
spiral spin-density-wave instabilities have been observed in
the ground state of infinite TM chains [36–39]. Moreover,
it would be important to quantify the role of transversal
spin fluctuations on the temperature-dependent properties of
deposited clusters, chains, and thin films. The comparison
between collinear and noncollinear calculations on bulk Fe
has recently shown that transversal spin fluctuations become
increasingly important with increasing temperature [9]. Taking
them into account yields a decrease of about 35% of the
Curie temperature predicted for bulk Fe, which amounts to
TC = 1250 K and is thus quite close to the experimental value
T

expt
C = 1043 K. Therefore, the calculations reported in this

paper are expected to underestimate the magnetic entropy of
the deposited nanostructures and overestimate the stability of
the magnetic order at finite T . In this context it should be
recalled that the available rotational-invariant spin-fluctuation
theories of itinerant magnetism in the static approximation fail
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in the atomic limit, while the collinear approach considered
here is exact [42]. Further theoretical developments in this
direction seem worthwhile.

Finally, we would like to comment on the possible role of
other contributions to the intra-atomic Coulomb interaction.
The basic assumptions behind the derivation of the model
Hamiltonian are to focus on the Coulomb interaction among
the d electrons within each atom, to neglect the matrix elements
which involve more than two different orbitals, and to respect
the rotational invariance of the intra-atomic Hamiltonian,
which in particular implies the conservation of the orbital
angular momentum in electronic collisions [9]. For simplicity,
the direct and exchange Coulomb integrals Uαβ and Jαβ are
replaced by the element specific average values Ul and Jl .
The orbital dependence of Coulomb integrals, but also more
involved contributions to the intra-atomic Coulomb interaction
[43,44], have been shown to be important for a detailed

description of crystal-field splittings, magnetic anisotropy, and
orbital magnetism in the ground state [41,44]. This should also
hold at finite T , maybe to an even larger extent. However, we
do not expect that such a more detailed description of the
intra-atomic interactions would have a significant effect on the
spin moments and their order, since these contributions involve
a much smaller energy scale than the dominant exchange and
band energies.
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[35] M. Zelený, M. Šob, and J. Hafner, Phys. Rev. B 79, 134421
(2009).

[36] M. Tanveer, P. Ruı́z-Dı́az, and G. M. Pastor, Phys. Rev. B 87,
075426 (2013).

[37] J. C. Tung and G. Y. Guo, Phys. Rev. B 83, 144403 (2011).

[38] M. Saubanère, M. Tanveer, P. Ruı́z-Dı́az, and G. M. Pastor, Phys.
Status Solidi B 247, 2610 (2010).

[39] F. Schubert, Y. Mokrousov, P. Ferriani, and S. Heinze, Phys.
Rev. B 83, 165442 (2011).

[40] G. M. Pastor and J. Dorantes-Dávila, Phys. Rev. B 52, 13799
(1995).

[41] G. Nicolas, J. Dorantes-Dávila, and G. M. Pastor, Phys. Rev. B
74, 014415 (2006).

[42] Y. Kakehashi, Phys. Rev. B 31, 3104 (1985).
[43] A. A. Aligia and T. Kroll, Phys. Rev. B 81, 195113 (2010).
[44] A. A. Aligia, Phys. Rev. B 88, 075128 (2013).

134414-12

http://dx.doi.org/10.1051/jphyscol:1988803
http://dx.doi.org/10.1051/jphyscol:1988803
http://dx.doi.org/10.1051/jphyscol:1988803
http://dx.doi.org/10.1051/jphyscol:1988803
http://dx.doi.org/10.1103/PhysRevB.81.024415
http://dx.doi.org/10.1103/PhysRevB.81.024415
http://dx.doi.org/10.1103/PhysRevB.81.024415
http://dx.doi.org/10.1103/PhysRevB.81.024415
http://dx.doi.org/10.1103/PhysRevB.79.134421
http://dx.doi.org/10.1103/PhysRevB.79.134421
http://dx.doi.org/10.1103/PhysRevB.79.134421
http://dx.doi.org/10.1103/PhysRevB.79.134421
http://dx.doi.org/10.1103/PhysRevB.87.075426
http://dx.doi.org/10.1103/PhysRevB.87.075426
http://dx.doi.org/10.1103/PhysRevB.87.075426
http://dx.doi.org/10.1103/PhysRevB.87.075426
http://dx.doi.org/10.1103/PhysRevB.83.144403
http://dx.doi.org/10.1103/PhysRevB.83.144403
http://dx.doi.org/10.1103/PhysRevB.83.144403
http://dx.doi.org/10.1103/PhysRevB.83.144403
http://dx.doi.org/10.1002/pssb.201046188
http://dx.doi.org/10.1002/pssb.201046188
http://dx.doi.org/10.1002/pssb.201046188
http://dx.doi.org/10.1002/pssb.201046188
http://dx.doi.org/10.1103/PhysRevB.83.165442
http://dx.doi.org/10.1103/PhysRevB.83.165442
http://dx.doi.org/10.1103/PhysRevB.83.165442
http://dx.doi.org/10.1103/PhysRevB.83.165442
http://dx.doi.org/10.1103/PhysRevB.52.13799
http://dx.doi.org/10.1103/PhysRevB.52.13799
http://dx.doi.org/10.1103/PhysRevB.52.13799
http://dx.doi.org/10.1103/PhysRevB.52.13799
http://dx.doi.org/10.1103/PhysRevB.74.014415
http://dx.doi.org/10.1103/PhysRevB.74.014415
http://dx.doi.org/10.1103/PhysRevB.74.014415
http://dx.doi.org/10.1103/PhysRevB.74.014415
http://dx.doi.org/10.1103/PhysRevB.31.3104
http://dx.doi.org/10.1103/PhysRevB.31.3104
http://dx.doi.org/10.1103/PhysRevB.31.3104
http://dx.doi.org/10.1103/PhysRevB.31.3104
http://dx.doi.org/10.1103/PhysRevB.81.195113
http://dx.doi.org/10.1103/PhysRevB.81.195113
http://dx.doi.org/10.1103/PhysRevB.81.195113
http://dx.doi.org/10.1103/PhysRevB.81.195113
http://dx.doi.org/10.1103/PhysRevB.88.075128
http://dx.doi.org/10.1103/PhysRevB.88.075128
http://dx.doi.org/10.1103/PhysRevB.88.075128
http://dx.doi.org/10.1103/PhysRevB.88.075128



