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Light-induced magnetization in a spin S = 1 easy-plane antiferromagnetic chain
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The time evolution of magnetization induced by circularly polarized light in an S = 1 Heisenberg chain
with large easy-plane anisotropy is studied numerically and analytically. Results at constant light frequency
� = �0 are interpreted in terms of absorption lines of the electronic spin resonance spectrum. The application
of time-dependent frequency � = �(t) light, so called chirping, is shown to be an efficient procedure in order
to obtain within a short time a large, controlled value of the magnetization Mz. Furthermore, comparison with a
two-level model provides a qualitative understanding of the induced magnetization process.
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Far-from-equilibrium condensed-matter physics is chal-
lenging and still largely uncharted territory. With regard to the
out-of-equilibrium dynamics of quantum magnets, the control
of magnetic properties by means other than a conventional
magnetic field is of strong current interest [1–5]. For instance,
engineering the quantum state, i.e., the wave function, is es-
sential for quantum simulators, precision sensors, or spintronic
devices [6–10]. Recent experimental advances have allowed
us to manipulate the elementary low-energy excitations with
terahertz laser pulses [11–15], a prominent example being
the ultrafast coherent control of antiferromagnetic magnons.
A time-dependent (rotating) magnetic field of highly intense
terahertz laser pules, with photon energy below the electron
energy scale, controlled the coherent spin waves without
interfering with the motion of charge carriers.

In quantum magnets with reduced dimensionality, the ther-
modynamic and transport properties exhibit a rich magnetic-
field dependence [16–23] related to the total magnetization of
the system. Prominent examples of such behavior are the field-
induced quantum phase transitions of the organic compound
NiCl2-4SC(NH2)2 (dichlorotetrakisthiourea-nickel, abbrevi-
ated as DTN). At zero temperature, the first transition occurs
at a critical field h1 where the energy gap closes and a finite
magnetization develops in the ground state (GS); the second
one occurs at h2 where the magnetization fully saturates,
leading to a ferromagnetic GS. By now, the low-energy physics
of the DTN compound has been well studied experimentally
[16,22–26] and understood theoretically. The basic model that
describes the magnetic excitation spectrum of DTN was found
to be the one-dimensional S = 1 antiferromagnetic Heisenberg
model (AHM) with exchange coupling constant J and large
easy-plane anisotropy D. As shown in Refs. [27–30], such a
Hamiltonian reproduces in great detail the low-lying electronic
spin resonance (ESR) spectrum. The anisotropy D/J ∼ 4
of DTN, being the largest energy scale in the system, is
responsible for a large energy gap O(D) that can be closed
by a magnetic field h.

In this work, we study the rotating magnetic-field-induced
nonequilibrium magnetization Mz in a large, easy-plane
anisotropy AHM. For a field rotating at constant frequency
(circularly polarized light), we are connecting the numerical
results with the linear-response (LR) theory predictions for the

transition frequency of the corresponding ESR experiment.
In the case of a chirped (time-dependent) frequency of the
light [31], our results indicate that the short-time behavior of
the magnetization is mainly driven by the anisotropy part of
the system. This time scale, together with the dependence
of the magnetization on the chirp parameters, can be accurately
described by a two-level model. The dynamics beyond the
characteristic time of the latter is dominated by the Heisenberg
part of the model. Although we focus on DTN as a typical
one-dimensional S = 1 easy-plane AHM, our analysis is also
valid for other Hamiltonians, e.g., a two-level model will
yield the correct physics for S = 1 models in all dimensions
provided that D � J .

As a prototype model, we choose the S = 1 AHM with
single-site, easy-plane anisotropy D on a chain with L sites,

H0 =
L∑

i=1

[
JSi · Si+1 + D

(
Sz

i

)2 + hSz
i

]
, (1)

where Si = (Sx
i ,S

y

i ,Sz
i ) are spin S = 1 operators at site i,

SL+1 = S1 (periodic boundary conditions), h is a magnetic
field, and J (∼2 K) is the antiferromagnetic exchange constant
(later we will use � = kB = μB = 1 and set J = 1 as the unit
of energy). Hereafter, we will use D = 4 (∼8 K), and for
such an anisotropy the critical fields are h1 � 2.28 and h2 = 8
[28]. We will assume that only the magnetic component of
light, propagating in the z direction, couples to the system.
The time-dependent Hamiltonian of the corresponding setup
can be written as

H (t) = H0 − A

L∑
i=1

(e−ι̇�tS+
i + eι̇�tS−

i ), (2)

where A > 0 and � > 0 are the amplitude and frequency
of light, respectively, and S±

i are spin-raising and -lowering
operators. Thus, each spin “feels” a magnetic field rotating in
the xy plane, 2A

∑
i[S

x
i cos(�t) + S

y

i sin(�t)]. The magneti-
zation induced is positive. To obtain a negative magnetization,
one should substitute � → −� in (2). Note that in a real
experiment, a propagating light pulse has some time and
frequency dependence, an issue that we will discuss later
on. To probe the sample magnetization perpendicular to
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the polarization plane, one can use a second optical pulse
and measure the change in its polarization state induced by
the magnetization either in transmission (Faraday effect) or
reflection (Kerr effect) geometry [2,13,32].

The time evolution of the magnetization is given by

Mz(t) = 〈�(t)|Sz
tot|�(t)〉

〈�(t)|�(t)〉 , (3)

where Sz
tot = (1/L)

∑
i S

z
i , and |�(t)〉 is a solution of the time-

dependent Schrödinger equation ι̇∂t |�(t)〉 = H (t)|�(t)〉. In
our calculation, we choose δt in such a way that typi-
cally 〈�(t)|�(t)〉 � 1 at any time t (δt � 10−3). A general
procedure goes as follows: (i) first, with help from exact
diagonalization we calculate the GS of (1), |�(−δt)〉 = |GS〉;
(ii) next, at time t = 0 we instantaneously turn on the light; and
(iii) finally we perform the time evolution of it on the basis of
the time-discretized version of the Schrödinger equation with
(2) (using a fourth-order Runge-Kutta routine).

Let us first focus on the system (2) at constant frequency
� = �0. It is clear that the maximum value of the magneti-
zation is induced by light at the resonance frequency of the
system, �0 = �R , which can be interpreted in the spirit of
an ESR spectrum. For small enough A (� J ) the system is
in the linear-response regime and the low absorption lines of
the ESR spectrum of (1) [28,33] correspond to the resonance
frequencies �R of (2) at given h. Furthermore, (2) at � = �0

can be mapped by a unitary transformation (or Floquet theory)
to an effective static model [34–36], where the latter has a
form similar to the one when dealing with an ESR experiment.
Note that the same procedure was used in Ref. [34] in order to
study a system with small magnetic anisotropy D = 0.25 (the
Haldane-like limit).

Figure 1(a) depicts a typical example of the time de-
pendence of Mz as a function of time for a system with
h = 0 and constant �. Several conclusions can be drawn
directly from the obtained results: (i) It is evident that the Mz

induced by �0 = �R is dominating above other frequencies.
(ii) The beating frequency presented in the inset of Fig. 1(a) is
attributed to finite-size effects. (iii) The value of �R = 6 for
h = 0 is consistent with the lowest transition lines of the ESR
spectrum. In fact, in the gapless regime h < h1, the ESR lines
can be calculated by a 1/D expansion [27,28], i.e.,

ωA = D + 2J + h , ωB = D + 2J − h .

Such lines correspond to transitions from the GS to states with
�Sz = ±1.

In Fig. 1(b) we present a heat map of the average (over the
time span δt < t < 100) net magnetization, Mz − Mz(t = 0),
as a function of magnetic field h and frequency �0. Our results
perfectly reproduce both ESR predictions, e.g., see Fig. 6
of Ref. [28]. In the considered field h region we also see
a continuation of the ωG = D + h line—transitions from a
magnon to a single-ion bound state. Other resonance lines
can also be captured, e.g., transitions from the fully ordered
ferromagnetic state in the h > h2 region can be resolved
by looking for �R of negative magnetization. In Fig. 2(a),
we present Mz(t = 5) as a function of frequency �0. The
maximum value of magnetization for given h and � > 0, or
� < 0, is consistent with the ESR predictions.
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FIG. 1. (a) Magnetization as a function of time Mz(t) calculated
for L = 11, A = 0.1, h = 0, and �0 = 4,6,8. The dashed horizontal
line represents the average value for �0 = 6. Note that the results
for �0 = 4 and 8 are multiplied by factor of 5 for clarity. Inset:
Mz(t) induced by �0 = �R = 6 (as in the main panel) for t up to
t = 250. (b) Heat map of average net magnetization, Mz − Mz(t =
0), as a function of magnetic field h and frequency �0, calculated
for L = 10 ,A = 0.1. ωB line (red color in the heat map) is obtained
with � > 0 in (2), ωA,G (blue color) with � < 0. Solid and dashed
lines represent the ωA,B,G ESR resonance lines and their continuation
into the gapless regime. The vertical solid line represents the critical
field h1.

Although we chose the GS as the starting point of the
time evolution, this is not a zero-temperature (T = 0) result.
Within LR theory, one would expect for T = 0 rather sharp
transition lines [29]. It is clear from Fig. 1(b) that our
resonance lines are not δ peaks, with nonzero intensity for
all considered transitions ωA,B,G. Also, in Fig. 2(b) we
present the dependence of h = 0 average magnetization Mz on
frequency �0 for various amplitudes A = 0.01,0.05,0.1,0.5
in (2). Within LR such a broadening of the line could be
interpreted as an increase of the effective temperature.

Next, in order to induce macroscopic magnetization in
a controlled way, we study the application of a chirped
pulse, � = �(t). Although the time dependence of � can
be complicated and its functional form dependent on the
experimental setup, the main features should be captured by
the simple form

�(t) = �I − νt, (4)

where �I is the initial (t = 0) frequency and ν is the chirp,
i.e., the “speed” of frequency change. Within such a notation,
�I = �R and ν = 0 corresponds to a time-independent � at
the resonance frequency. In the following, we will consider
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FIG. 2. (a) Frequency �0 dependence of the magnetization Mz

at time t = 5 and L = 11. Results for h = 0,2,4 are calculated
with �0 > 0 (positive magnetization) and for h = 2,8 with �0 <

0 (negative magnetization). Note that for h > h1 (presented for
h = 4,8) the ground state has net magnetization already at t = 0.
(b) Frequency dependence of average magnetization Mz for h = 0,
L = 11 and various amplitudes A = 0.01,0.05,0.1,0.5. Results for
A = 0.01 are multiplied by factor of 5 for clarity.

only the h = 0 case, i.e., �R = 6, as we would like to study
the magnetization induced only by light.

The qualitative dependence of the magnetization on the
amplitude A and chirping ν can be understood within a two-
level model,

H2 = 0|0〉〈0| + D|1〉〈1| +
√

2A(e−ι̇�t |1〉〈0| + H.c.), (5)

where |0〉 (|1〉) corresponds to the Sz
i = 0(1) states of the term

D(Sz
i )2, relevant to the J/D → 0 limit of (1). Note that the

resonance frequency of (5) is simply �R = D. Within this
model, a perturbative expression, α = A/

√
ν → 0, of the time

dependence of the magnetization can be given as

M̃z(t) = |W (t)|2
1 + |W (t)|2 ,

W (t) =
√

2A

∫ t

0
dt ′ e−ι̇(�−νt ′)t ′

=
√

2α e−ι̇�2/4ν

∫ t
√

ν

0
mdτ e

+ι̇(τ− �

2
√

ν
)2

, (6)

where � = �I − �R . It is obvious from the above equation
that M̃z(t) depends only on α and the detuning �.

In Fig. 3(a) we present the magnetization dependence on
the initial frequency �I at fixed ν. In panel (b) we present
numerical results obtained from the full Hamiltonian (2), the
two-level model (5) with corresponding detuning, together
with the perturbative solution Eq. (6), which captures the main
features of the magnetization profile. Note that the results
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FIG. 3. Time dependence of the magnetization calculated for
L = 11, h = 0, and A = 0.1. (a) Magnetization as a function of time
calculated for various initial frequencies �I = 6,8,10 and ν = 0.01.
The horizontal line represents the average value of magnetization
for ν = 0 and �I = �R = 6 (resonance frequency). (b) Comparison
of the magnetization as calculated with Eq. (3) for (i) the full
Hamiltonian (2) with �I = 8 ,ν = 0.01, and (ii) the two-level model
(5) and the perturbative solution M̃z—Eq. (6) with � = 2, ν = 0.01.
(c) Magnetization as a function of normalized time νt for ν =
0.005,0.01,0.05, initial frequency �I = 8, and A = 0.1. Inset: the
same results as a function of time t .

are indistinguishable until the saddle point of Eq. (6), i.e.,
at ts = �/2ν. From the results presented in Fig. 3(b) it is
obvious that the main effect of the exchange coupling J is
in the dynamics of the magnetization at times t beyond ts . It
is also interesting to note that the magnetization induced by
a constant frequency light � = �R , as indicated by a dashed
line in Fig. 3, is reached at the saddle-point time ts . We observe
such behavior for all �I > �R .

In Fig. 3(c) we show the time dependence of the induced
magnetization for different chirping speeds ν. We observe
that (i) in the scaled time νt the curves are practically
identical with the crossing of the mean value at ν = 0 and
�I = �R at νt ∼ νts = 1, reaching maximum at νt ∼ 2; (ii)
the magnetization at long times is weakly dependent on time,
a remarkable result considering that we are dealing with a
full many-body problem, where a decay could be expected;
and (iii) it is clear that, as the total magnetization Sz = ∑

i S
z
i

commutes with the Hamiltonian, after switching off the light
at a certain time, Mz remains constant at its instantaneous
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FIG. 4. Scaling parameter α = A/
√

ν dependence of the magne-
tization as calculated for L = 11, ν = 0.1 (full squares), and ν = 0.01
(open squares). The snapshot of magnetization of the full model
(squares) is taken at νt = 2, i.e., t = 20 for ν = 0.1 and t = 200 for
ν = 0.01. Circles represent the magnetization M̃z(∞) dependence
on α in the two-level model (5) and the black dashed line depicts the
Landau-Zener expression.

value. This allows for a tight control of the value of the
induced magnetization in the system. Further simulations for
different �I > �R confirm this picture; crossing the resonance
frequency by chirping the light frequency induces a stable
macroscopic magnetization in the system. Additionally, it is
clear from the solution of the two-level model that inverting
�′ = −� and ν ′ = −ν produces an identical evolution of
magnetization.

Considering the amplitude and chirping speed dependence
of the long-time asymptotic magnetization achieved, first of
all we observe that the two-level model can be mapped in a
rotating frame to a Landau-Zener-type tunneling problem,

H̃2 = �̃|̃1〉〈̃1| − �̃|̃0〉〈̃0| +
√

2A(|̃1〉〈̃0| + H.c.), (7)

where �̃ = �/2 − νt . In the Landau-Zener problem, � = 0
and the time evolution is from t = −∞ to +∞, while in
the situation we are considering the time evolution starts at
t = 0 and from a finite frequency shift �. For �/ν � 1,
the asymptotic M̃z(∞) coincides with the probability of
occupation of level |1〉 given by the Landau-Zener expression
1 − exp(−πα2).

In Fig. 4 we present a comparison of the long-time
magnetization (νt = 2) in the full model (2), the perturbative
prediction Eq. (6), and the Landau-Zener expression. Note that
although M̃z is a perturbative solution (α → 0) and the detailed

dynamics beyond ts is not captured correctly [see Fig. 3(b)],
the overall agreement of the asymptotic magnetization is
qualitatively described until α ∼ 1 [36].

Finally, turning to the experimental realization, for the DTN
compound (J = 2.2 K, D = 8.9 K) the resonance frequency
is �R ≈ 300 GHz. Light of magnetic field intensity ≈0.3 T
corresponding to an electric field of ≈1 MV/cm and a
chirping speed ν ≈ 0.1 will induce a controlled macroscopic
magnetization within ≈1 ps [37]. In a realistic experimental
situation, several issues arise: (i) in terahertz spectroscopy,
the light is in the form of a pulse of duration ≈1 ps; (ii)
the effect of the electric field should be estimated; (iii)
experiments are at a finite temperature; and (iv) there is
spin-lattice relaxation that could be detrimental to the process
of inducing macroscopic magnetization. However, it is known
that in several quantum magnets [38] the relaxation time is
surprisingly long. Preliminary finite-temperature simulations
and considerations are encouraging in rendering the proposed
experiment feasible. We should also note that the large variety
of quantum magnets allow for a tailoring of the experiments
in terms of light frequency, relaxation time, etc.

In summary, we have studied an efficient protocol that in-
duces magnetization without an external magnetic field applied
to the system. The results for a circularly polarized light pulse
at constant frequency are explained with the help of resonance
lines of ESR transitions at finite temperature. We have also
presented comprehensive results on the dependence of the
magnetization on a chirped pulse. The latter, experimentally
relevant, protocol can be qualitatively and even for some time
scales quantitatively described with the help of a two-level
model. Also, it was shown [29] that (1) can be mapped to an
effective S = 1/2 AHM with exchange anisotropy < 1. Our
two-level predictions for this model will be even more accurate
since the mapping favors the large-D limit.
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O. Piovesana, P. Bouillot, C. Kollath, E. Orignac, R. Citro, and
T. Giamarchi, Phys. Rev. Lett. 101, 137207 (2008).

[20] A. V. Sologubenko, T. Lorenz, J. A. Mydosh, A. Rosch, K. C.
Shortsleeves, and M. M. Turnbull, Phys. Rev. Lett. 100, 137202
(2008).

[21] A. V. Sologubenko, T. Lorenz, J. A. Mydosh, B. Thielemann,
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