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Nonequilibrium dynamics of the Ising chain in a fluctuating transverse field
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We study nonequilibrium dynamics of the quantum Ising chain at zero temperature when the transverse field
is varied stochastically. In the equivalent fermion representation, the equation of motion of Majorana operators is
derived in the form of a one-dimensional, continuous-time quantum random walk with stochastic, time-dependent
transition amplitudes. This type of external noise gives rise to decoherence in the associated quantum walk and
the semiclassical wave packet generally has a diffusive behavior. As a consequence, in the quantum Ising chain,
the average entanglement entropy grows in time as t1/2 and the logarithmic average magnetization decays in the
same form. In the case of a dichotomous noise, when the transverse field is changed in discrete time steps, τ ,
there can be excitation modes, for which coherence is maintained, provided their energy satisfies εkτ ≈ nπ with
a positive integer n. If the dispersion of εk is quadratic, the long-time behavior of the entanglement entropy and
the logarithmic magnetization is dominated by these ballistically traveling coherent modes and both will have a
t3/4 time dependence.
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I. INTRODUCTION

Recent progress of experiments with ultracold atoms in op-
tical lattices [1–11] has triggered intensive theoretical research
to understand the properties of nonequilibrium relaxation pro-
cess of closed quantum systems. One basic question is related
to the behavior of the system after a (global) quantum quench,
i.e., after sudden change of parameters in the Hamiltonian
[12–63]. After sufficiently long time, the system evolves to a
stationary state which is, however, different for integrable and
nonintegrable systems. Nonintegrable systems generally show
thermalization [16–26], whereas for integrable systems the so
called generalized Gibbs ensemble is expected to hold [58–63].
Concerning the functional form of the relaxation process a few
exact results are available for integrable systems, which can
be—even qualitatively—explained in the frame of a semiclas-
sical theory [18,37,42,43]. This is based on the observation
that, after the quench, entangled pairs of excitations (so called
quasiparticles) are emitted, which propagate ballistically (in
opposite directions) in translationally invariant systems. This
explains, among others, the linear increase of the entanglement
entropy and the exponential decrease of the magnetization after
a global quench in homogeneous chains. This semiclassical
theory can be used for nonintegrable systems; furthermore,
this picture explains qualitatively the sub-ballistic dynamics in
nonhomogeneous (random [64–69] or aperiodic [70]) systems.
For accelerated dynamics, see Refs. [71,72].

Besides global quenches, other time-dependent processes
have been investigated, as well. Here we mention local
quenches [18,73–79], when only a few parameters are changed
suddenly, adiabatic relaxation [17,80–96], when the parame-
ters are slowly (generally linearly) ramped through a quantum
critical point, a process also used in quantum annealing for
random systems [97], and periodic quench [98,99], which is
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a sequence of single quenches occurring at discrete times.
Periodically driven quantum systems are interesting on their
own right [100], and show many unexpected phenomena,
like the Kapitza pendulum [101], which are not present in
equilibrium systems. In this case the Hamiltonian of the system
is time dependent and often finite dimensional, which is then
mapped onto an infinite-dimensional but time-independent
Floquet Hamiltonian.

In the present paper, we consider a different setup, when
the drive is time dependent, but not periodic; thus Floquet
theory does not hold. Namely, the drive of the quantum system
under study has a stochastic character; it varies randomly
in time but it is perfectly correlated in space, mimicking
interaction with a fluctuating environment. Similar models,
namely one-dimensional nearest-neighbor interacting quan-
tum spin chains with external fields fluctuating independently
on each site have recently been studied from the aspect of
information propagation [102]. We can then ask the question
how an external noise alters the conservative time evolution of
observables after a quench. We aim at studying this question
in the Ising chain subject to a globally fluctuating transversal
magnetic field. Recently, the nonequilibrium dynamics of
this model with a weak Gaussian white noise have been
studied with a focus on the crossover from a prethermalized
regime toward a thermalized one, where the transversal
correlator is characterized by a diffusive behavior [103]. The
advantage of this model is that the standard free-fermion
technique makes possible an efficient numerical treatment
of the dynamics. We will point out a close relationship
between the dynamics of this model and continuous-time
quantum walks (CTQW) [104,105] in the presence of temporal
noise. Studies of the latter model have been motivated by
understanding of decoherence in quantum systems. Based on
numerical results, temporal noise in the CTQW is conjectured
to destroy interference manifesting itself in ballistic spreading
and to give way for diffusive spreading characteristic for
classical random walks for long times [106,107]. Here, we
will present numerical results for the time dependence of the
average entanglement entropy and the relaxation of the average
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magnetization of the Ising chain in a transverse field that
is switched randomly between two values at discrete times
but remains constant within periods of duration τ . Interest-
ingly, the large-frequency (small τ ) and the low-frequency
(large τ ) regimes show different asymptotic behaviors. In
the former case, the associated CTQW, which describes the
quasiparticles created after the quench, will lose its quantum
coherence due to the temporal noise and spreads diffusively.
We will argue within a semiclassical theory and confirm
by numerical results that this leads to a square-root time
dependence of the entanglement entropy and the logarithmic
magnetization. For slow enough variations (large τ ), however,
quantum coherence survives temporal noise for discrete
excitations, which therefore still propagate ballistically. For
certain cases, these rare modes will dominate the dynamics of
the above quantities, resulting in a different asymptotic time
dependence.

The rest of the paper is organized in the following way.
In Sec. II, the model is introduced and, using its fermion
representation, a relationship to continuous-time random
quantum walks is pointed out. In Sec. III, the evolution of
different quantities, such as the spatiotemporal correlation
function, entanglement entropy, and magnetization, are studied
numerically and analytically. A theory explaining the devia-
tions from diffusive behavior by the existence of stroboscopic
eigenmodes is presented. Finally, results are discussed in
Sec. IV, and some of the details of calculations are deferred to
the appendix.

II. ISING DYNAMICS AND QUANTUM WALKS

We are going to study the spin-1/2 transverse-field Ising
chain with time-dependent parameters, defined by the Hamil-
tonian

H(t) = −J (t)

2

L−1∑
i=1

σx
i σ x

i+1 − h(t)

2

L∑
i=1

σ z
i , (1)

where σx
i and σ z

i are Pauli operators at site i. The number
of sites L is assumed to be even. Note that, for the sake of
concreteness and simplicity in numerical calculations, we have
chosen here free boundaries, but our asymptotic results apply
to the bulk of a large system, where boundary effects do not
play a role.

We consider a simple form of time dependence with
piecewise constant Hamiltonians in periods of duration τ . The
Hamiltonian H(n) acting in the nth time interval (tn−1,tn],
where tn ≡ nτ , n = 1,2, . . . , is chosen randomly from a
set {Hl}Nl=1 of noncommuting, constant Hamiltonians Hl

containing parameters Jl and hl . In the numerical calculations
we used a dichotomous noise (N = 2), where one of two
Hamiltonians is chosen at the beginning of each period
independently with equal probabilities. The parameters we
mainly used were J1 = J2 = 1, h1 = h, and h2 = −h [112].

We considered then the unitary time evolution from some
initial state |�0〉:

|�(tn)〉 = UnUn−1 · · ·U1|�0〉, (2)

where Un = e−iH(n)τ . Owing to the simple choice of a
piecewise constant time dependence of the Hamiltonian, the

time evolution is composed of a sequence of conservatively
evolving segments. Let us therefore first recapitulate the
nonequilibrium dynamics with a constant Hamiltonian, i.e.,
J (t) = J , h(t) = h, and then write it in a form most comfort-
able for constructing time evolution in the noisy model.

As it is well known, the Hamiltonian in Eq. (1) can be
written in a quadratic form of fermion creation (c†i ) and
annihilation (ci) operators by means of the Jordan-Wigner
transformation [108] as

H = −J

2

L−1∑
i=1

(c†i − ci)(c
†
i+1 − ci+1) − h

L∑
i=1

(
c
†
i ci − 1

2

)
.

(3)
In terms of Clifford operators defined as

d̂2i−1 = c
†
i + ci =

⎛
⎝∏

j<i

−σ z
j

⎞
⎠σx

i ,

d̂2i = c
†
i − ci = i

⎛
⎝∏

j<i

−σ z
j

⎞
⎠σ

y

i ,

i = 1,2, . . . ,L, (4)

and having the anticommutation relations

{d̂m,d̂n} = 2(−1)m−1δmn, (5)

the Hamiltonian assumes the form

H = 1

4

2L∑
i,j=1

d̂
†
i Hij d̂j , (6)

with the symmetric matrix

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 h

h 0 J

J 0 h

h 0
. . .

. . .
. . . h

h 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

Using the relations in Eq. (5), one obtains the equation of
motion of Clifford operators in the Heisenberg picture in the
form

dd̂i(t)

dt
= −i

2L∑
j=1

Hij d̂j (t). (8)

This form of the evolution equations makes the relationship
of the model with continuous-time quantum random walks
transparent. Clearly, an identical form of equations can be
written for the matrix element of d̂i(t) between two fixed states
as for d̂i(t) itself in Eq. (8). These equations can then be
interpreted as a CTQW on a one-dimensional open lattice
with 2L sites and with alternating transition amplitudes h and
J on odd and even bonds, respectively, while the properly
normalized matrix elements of d̂i(t) play the role of probability
amplitudes of the quantum walk at time t .

Before proceeding with the stochastic model, two caveats
are in order. First, the relation between the dynamics of
the quantum Ising chain and the CTQW holds also for
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inhomogeneous systems, in which the couplings, Ji , and the
transverse fields, hi , are position dependent. The dynamics
of the random transverse-field Ising chain being ultraslow,
the same should be true for the CTQW with spatial disorder.
Second, the symmetric matrix in Eq. (7) can be interpreted
as the transfer matrix of a classical, discrete-time random
walk model. This correspondence has been used to connect
the equilibrium critical behavior of the quantum Ising chain
and that of the related classical random walk [109,110].

Let us now return to the time-dependent model with noise.
We will restrict ourselves to a stroboscopic view of the time
evolution at discrete times tn = nτ , n = 0,1,2, . . . . This
facilitates numerical calculations since one only needs to
calculate the unitary evolution matrices U1 = e−iH1τ and U2 =
e−iH2τ over periods τ with constant Hamilton matrices H1 and
H2, respectively. This can easily be done via diagonalizing H1

and H2, which have the form given in Eq. (7). The resulting
matrices U1 and U2 contain complex entries, see, e.g., Ref.
[14], but working with self-adjoint Majorana operators

ǎ2i−1 = d̂2i−1, ǎ2i = −id̂2i , i = 1,2, . . . ,L (9)

rather than with d̂i , their evolution matrices over τ , O1, and
O2 will be real; see Ref. [76]. In the noisy system, as we
defined above, the evolution matrix O(n) in the nth period is
either O1 or O2 with equal probabilities. Note that, between
ǎi(τ ) and its initial values, ǎj , the matrix, O(1), represents
a linear relation. After n steps for a given realization of the
temporal noise, the time evolution is thus given by

ǎi(tn) =
2L∑
j=1

[O(1)O(2) · · ·O(n)]ij ǎj . (10)

Working again with Clifford operators, their time evolution
in the noisy system is equivalent with a noisy CTQW, in
which the transition amplitudes change randomly at discrete
times t = tn.

III. NONEQUILIBRIUM RELAXATION
IN TEMPORAL NOISE

A. Spatiotemporal correlation function

In the framework of a semiclassical theory mentioned
in the Introduction, the key to the understanding of the
nonequilibrium dynamics in the case of sudden quenches
is the way an excitation propagates through the chain. This
can be characterized by the correlation function of Majorana
operators

Gl(t) = 1√
2
〈x|ǎl(t)ǎL|x〉, (11)

where |x〉 denotes the product state polarized in the positive
x direction, |x〉 ≡ | →→ · · · →〉 [113]. It is easy to calculate
that the only nonzero initial values of Gl(t) at time t = 0 are
GL(0) = 1/

√
2 and GL+1(0) = i/

√
2 and, due to the unitary

evolution for a given realization of the noise [see Eq. (10)],

2L∑
l=1

|Gl(t)|2 = const = 1 (12)

for any t � 0.

The correlation function in Eq. (11) has a clear interpre-
tation in the quantum walk picture. Up to a constant phase
factor, it corresponds to the amplitude Al(t) on site l at time t

of a quantum walk, which was initialized in the middle of the
chain, i.e., on sites L and L + 1 with amplitudes −1/

√
2:

Al(t) ≡ 1√
2
〈x|d̂l(t)d̂L|x〉 = −(−i)pGl(t), (13)

where p = l mod 2. With this initial condition, the probabil-
ity distribution of the position of the walker will be left-right
symmetric, i.e., |Gl(t)|2 = |GL−l+1(t)|2.

In order to probe the dynamics of quasiparticle excitations,
we have numerically studied the time evolution of the
probabilities |Gl(t)|2 in the model with temporal disorder.
Clearly, |Gl(t)|2, similar to other observables, will depend on
the particular realization of the noise, and in the case of a suf-
ficiently narrow distribution, which is the case here according
to numerical results, it is reasonable to consider an average
over different temporal histories. A considerable advantage of
the chosen dichotomous noise is that the average of certain
observables such as |Gl(t)|2 can be efficiently computed by
writing appropriate recursions directly for the average. To see
this, let us start with the time evolution of the matrix

Gij (t) ≡ G∗
i (t)Gj (t) (14)

during a single segment:

Gij (tn) =
2L∑

k,l=1

Oik(n)Ojl(n)Gkl(tn−1), (15)

where we have used that O(n) is real.
Performing now the averaging results in

Gij (tn) =
2L∑

k,l=1

Oik(n)Ojl(n) · Gkl(tn−1)

=
2L∑

k,l=1

1

2
{[O1]ik[O1]j l + [O2]ik[O2]j l}Gkl(tn−1).

(16)

Here, we have made use of the fact that the temporal noise
is uncorrelated. Using the second line in Eq. (16), Gij (tn)
can be computed recursively starting from the initial values
Gij (0) by O(L3n) operations. The diagonal elements Gii(tn)
are the probabilities we are looking for. We have numerically
calculated |Gl(tn)|2 and, the corresponding CTQW being
dimerized, we have considered the probability pl(t) of the
walker being in the lth cell comprising site 2l − 1 and 2l:

pl(t) ≡ |G2l−1(t)|2 + |G2l(t)|2, l = 1,2, . . . ,L, (17)

as well as the variance:

σ 2(t) =
L∑

l=1

(l − l0)2pl(t), (18)

where l0 = L+1
2 .

We have performed numerical calculations keeping the
couplings time independent, J1 = J2 = 1, and letting only the
sign of the transverse field fluctuate, i.e., h1 = −h2 = h for
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FIG. 1. Numerically calculated inverse dynamical exponent as
defined in Eq. (20) as a function of time for J1 =J2 =1, h1 = −h2 = 1
and different τ . The topmost data correspond to τ = π/2, while
the other data from bottom to top correspond to values of τ in an
increasing order. The size of the system is L = 2048. The arrows
indicate the asymptotic values obtained by the theory in Sec. III B.

different h and τ . Expecting a power-law dependence of the
variance on time,

σ 2(t) ∼ t2/z, (19)

for long times, we have calculated an effective, inverse
dynamical exponent

1

zeff(tn)
= ln[σ (tn)/σ (tn−1)]

ln(tn/tn−1)
(20)

from finite-time data. These are plotted against time in Fig. 1
for h = 1 and various τ . At the times used in the numerical
calculations, the finite-size effects coming from the finiteness
of the lattice are negligible.

As can be seen in the figure, the increase of the variance is
slower than ballistic, i.e., 1/zeff(t) seems to tend to a limiting
value 1/z(τ ), which is less than one and is dependent on τ .
For fast enough variations of the magnetic field, τ < π/2, the
effective inverse dynamical exponent seems to approach 1/2,
although the convergence is slow for τ � π/2. This tendency
changes abruptly at τ = π/2. From this value on, τ � π/2,
1/z(t) seems to tend to values definitely higher than 1/2. The
highest value is observed right at the edge of this domain,
τ = π/2, as well as for τ = π (not shown), while, for τ > π/2,
the limiting values are somewhat lower.

The distributions pl(t) also look differently for short and
long τ . For short enough τ , as exemplified in Fig. 2 for τ = 1,
the profile shows diffusive scaling

pl(t) = t−1/2p̃[(l − l0)t−1/2], (21)

where the scaling function p̃(x) fits well to a Gaussian.
For larger τ , τ ∼ 1.4, the diffusive scaling still holds but the

scaling function starts to deviate from a Gaussian, possessing
a slower decaying tail. At τ = π/2, as shown in Figs. 3 and
4, the central part of the profile shows diffusive scaling, but
two symmetrically placed peaks appear, which move outwards
ballistically. They spread out diffusively and, at the same time,

-30

-20

-10

 0

-5  0  5

ln
[p

l(t
)t

1/
2 ]

(l-l0)/t1/2

τ=1

Gauss
t/τ=23

t/τ=24

t/τ=25

t/τ=26

t/τ=27

t/τ=28

t/τ=29

t/τ=210

FIG. 2. Numerically calculated distribution pl(t) rescaled accord-
ing to Eq. (21) at different times. The size of the system is L = 512;
the parameters of the model are J1 = J2 = 1, h1 = −h2 = 1, and
τ = 1. The thick curve is a Gaussian fitted to the data at t/τ = 210.
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FIG. 3. Numerically calculated probability distribution pl(t) at
different times. The size of the system is L = 2048; the parameters
of the model are J1 = J2 = 1, h1 = −h2 = 1, and τ = π/2.
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FIG. 4. Scaling plot of the probability distributions pl(t) at
different times shown in Fig. 3.
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FIG. 5. Scaling plot of the probability distributions around the
rightmoving peak for the same parameters as in Fig. 3. The velocity
of the center of the peak is v = 0.5 and the scaling exponent of the
weight decrease is a = 0.3.

continuously lose their weight W (t) as

W (t) ∼ t−a, (22)

with a = 0.30 at τ = π/2; see the scaling plot of the part of
the profile around a peak in Fig. 5.

It is easy to see that the slow decrease of the weight of the
peaks leads to the buildup of fat (algebraic) tails of the scaling
function p̃(x). Let us consider the total probability outside of
a ballistically expanding domain:

P>(t) =
∑

|l′|>vt

pl′(t), (23)

where l′ = l − l0 and assume that v is smaller than the velocity
of the peak. We have then P>(t) ∼ t−a or, equivalently, in
terms of the scaling variable x = l′/

√
t = v

√
t , P>(x) ∼

(x/v)−2a . The scaling function p̃(x) = −dP>(x)/dx thus
decays as

p̃(x) ∼ x−(1+2a). (24)

See Fig. 6.
We have computed the probability distributions for other

values of the duration τ = 1.75,2,π/
√

2 and obtained quali-
tatively similar results, however, with a velocity of the front
dependent on τ and a decay exponent a = 0.55 for all the
above values; see Fig. 7.

The contribution of ballistically propagating peaks to the
variance σ 2(t) is O(t2−a), and this suppresses the diffusive
contribution of order t , since a < 1. Thus, for τ � π/2, we
obtain z = 2/(2 − a); otherwise, the variance grows linearly
with time, i.e., z = 2.

B. Theory of stroboscopic eigenmodes

In the following, we give an explanation of the anomalous
behavior, i.e., different from classical diffusion observed in the
case τ � π/2. Let us return to a formulation of the model that
is a bit more general than the example of the previous section
and consider an arbitrary value of the transverse field, h, (the
coupling is set to J = 1 throughout). Since boundary effects do

-7

-6

-5

-4

-3

-2

-1

 0  1  2  3

ln
[p

l(t
)t

1/
2 ]

ln[(l-l0)/t1/2]

FIG. 6. Log-log plot of the scaled probability distributions for the
same parameters as in Fig. 3. The slope of the straight line is −1.60.

not play a role in the spreading of the quasiparticle excitations
seen in the numerics, we can concentrate on the bulk of a large
system and can make use of translational invariance in finding
the eigenmodes of the corresponding CTQW, i.e., eigenvectors
of the matrix in Eq. (7) (for a fixed h) in the bulk. Due to the
dimerization, these are of two kinds, f +

k and f −
k , having the

components

f ±
k (2n − 1) = N ei�keikn,

f ±
k (2n) = ±N e−i�keikn, (25)

where N = 1
2L−1/2, tan 2�k = − sin k

h+cos k
, and the possible

wave numbers k (L in number) fill the Brillouin zone [−π,π ]
equidistantly. The corresponding eigenvalues are

ε±
k = ±

√
1 + h2 + 2h cos k. (26)

Note that these are nothing but the excitation energies of free
fermions η̂2k−1,η̂2k , k = 1,2, . . . ,L obtained by a Bogoliubov
transformation, in terms of which the Hamiltonian in Eq. (6)

-6

-4

-2

-20 -10  0  10  20

ln
[p

l(t
)t

1/
2 ]

(l-l0)/t1/2

τ=1.75

FIG. 7. Scaling plot of the numerically calculated probability
distribution pl(tn) at different times. The size of the system is
L = 2048; the parameters of the model are J1 =J2 =1, h1 =−h2 = 1,
and τ = 1.75.
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assumes a diagonal form:

H = 1

4

L∑
k=1

[ε−
k η̂2k−1η̂2k + ε+

k η̂2kη̂2k−1]. (27)

These modes can then be regarded as the excitations or
quasiparticles that propagate in the system after a quench.

Returning to the corresponding CTQW, let us consider two
Hamiltonians HA and HB , with different transverse fields hA

and hB , respectively, and denote their eigenvectors by f ±
k,A and

f ±
k,B , respectively. The two sets of eigenvectors are related to

each other simply as

f ±
k,A = 1

2 (ei
k ± e−i
k )f +
k,B + 1

2 (ei
k ∓ e−i
k )f −
k,B, (28)

where 
k = �A
k − �B

k . Consider now the time evolution of
eigenmodes of HA under the action of UB(τ ) = e−iHBτ :

UB(τ )f ±
k,A = e−iε+

k,B τ 1
2 (ei
k ± e−i
k )f +

k,B

+eiε+
k,Bτ 1

2 (ei
k ∓ e−i
k )f −
k,B, (29)

where we have used that ε−
k = −ε+

k . It is obvious from Eq.
(28) that f ±

k,A are not eigenvectors of HB since the eigenvalues
corresponding to f +

k,B and f −
k,B are different (having opposite

signs). Nevertheless, if, for some k, the condition

ε+
k,Bτ = mBπ (30)

is fulfilled with some integer mB = 1,2, . . ., then the pair of
vectors f ±

k,A will be eigenvectors of UB(τ ) with eigenvalues
+1 or −1,

UB(τ )f ±
k,A = (−1)mB f ±

k,A, (31)

although they are not eigenvectors of HB itself.
The pair of vectors f ±

k,A will thus be common eigenvectors
of UA(τ ) and UB(τ ). Similarly, another set of common
eigenmodes appear if there exists a wave number k for which

ε+
k,Aτ = mAπ (32)

is fulfilled with some integer mA = 1,2, . . ..
Restricting the state space to the subspace of such “stro-

boscopic” eigenmodes (SEs) of HA and HB , the evolution
matrices UA(τ ) and UB(τ ) will commute, although they are
noncommuting on the complete state space. The existence of
stroboscopic eigenmodes will appear in the spreading of the
quantum walker as a pair of ballistically moving peaks.

Note that, if HA is critical (hA = 1), the excitation energy
corresponding to the wave number k = π will be zero, ε+

π,A =
0. Consequently, the eigenmode of HB corresponding to k =
π does not change under the action of UA(τ ), therefore it
will be a trivial common eigenmode of UA(τ ) and UB(τ ).
Formally, this corresponds to Eq. (32) being fulfilled with
mA = 0 for an arbitrary τ . But, according to our assumption
[HA,HB] �= 0, consequently hB �= 1, and, in this case, one can
see from Eq. (26) that the group velocity at k = π is zero, i.e.,
dε+

k,B

dk
|k=π = 0, when UB(τ ) acts. Therefore, the velocity of the

signal appearing in the wave function due to the existence of
such a trivial SE is zero, i.e., it stays at the origin and thus
basically differs from other nontrivial SEs that propagate with
a finite velocity. In the case when also the other Hamiltonian

0

1

2

3

-π -π/2 0 π/2 π

1/
τ k

k

τ=0.4 π
τ=0.5 π
τ=0.6 π

FIG. 8. Inverse lifetime of modes as a function of the wave
number k for the model with J1 = J2 = 1, h1 = −h2 = 1, for
different τ . Note that 1/τk = 0 for k = 0,π and for arbitrary τ , which
is the consequence of the appearance of trivial (nonpropagating)
SEs since both Hamiltonians are critical; see the text. For τ = π/2,
nontrivial (propagating) SEs with a quadratic dispersion appear at
k = 0,π , while for τ > π/2, two pairs of nontrivial SEs with a linear
dispersion appear at some intermediate wave numbers.

is critical (hB = −1), another trivial SE appears at the wave
number k = 0.

As the conditions in Eqs. (30) or (32) are met only for a
discrete set of wave numbers k, a packet built from modes of
wave numbers in a narrow range [k − 
k,k + 
k] around a
stroboscopic eigenmode will be gradually losing its weight as
components with even a slightly different wave number will
not be common eigenmodes and are being scattered out.

The numerical results obtained for the model hA = 1,
hB = −1 are in accordance with the above picture. The highest
eigenvalue being ε+

0,A = ε+
π,B = 2, there exist no (nontrivial)

stroboscopic eigenmodes for τ < π/2. The conditions in
Eqs. (30) and (32) are first met at τ = π/2 with mA = mB = 1
for the highest excitation energy, and for τ > π/2 with
a lower excitation energy ε = π/τ . For τ � mπ/2, with
integers m > 1, further stroboscopic eigenmodes appear with
excitation energies ε = mπ/τ . In this region, multiple peaks
are expected to emerge in the profile; numerically calculated
distributions for τ = π (not shown) indeed contain two distinct
peaks moving with different velocities.

After having explained the origin of ballistically propagat-
ing peaks, let us give a quantitative characterization of their
rate of decay. In order to do this, let us assume that the initial
state is an eigenstate of HA, |f +

k,A〉, and consider the average
probability of the system being in this state at time t ,

P +
k (t) ≡ |〈f +

k,A|f (t)〉|2. (33)

As it is shown in the Appendix A, this state decays exponen-
tially as

P +
k (tn) − P +

k (∞) ∼ e−tn/τk , (34)

where the lifetime τk can be obtained as a root of a cubic
equation. The inverse lifetime is plotted against k in Fig. 8.
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If, for a fixed τ and for some k, |f +
k,A〉 (and |f −

k,A〉) are
stroboscopic eigenmodes of HB , then UB (τ ) in Eq. (A1) will be
the unit matrix (up to a possible sign), and we have 1/τk = 0.
The leading-order dependence of W (t) on time comes from
the contribution of slowly relaxing modes around the minima
τ−1
k0

= 0.
Considering an initial state that is localized in space, it will

be a combination of all eigenmodes of HA with weights that
can be taken as constant in the vicinity of k0. We can then write
for the contribution of a minimum at k = k0

Wk0 (t) ∼
∫ k0+
k

k0−
k

e−t/τk dk ∼
∫ k0+
k

k0−
k

e−tC(k−k0)nk0
dk∼ t−1/nk0 ,

(35)

where we have inserted the leading term of the expansion of
the inverse lifetime around k0, τ−1

k = C(k − k0)nk0 + o[(k −
k0)nk0 ].

The order nk0 of the first correction is dependent on
whether or not ε+

k0,B
is at the band edge. The reason for

this is that, regarding τ−1
k as a function of ε+

k,B rather than
of k, it is quadratic around k = k0, τ−1

k ∼ (ε+
k,B − ε+

k0,B
)2 at

any minimum k0. But the dispersion is linear within the
band, ε+

k,B ∼ k − k0, while it is quadratic at the band edges,
ε+
k,B ∼ (k − k0)2; thus we have nk0 = 2 and nk0 = 4 in the two

cases, respectively.
If there exists a stroboscopic eigenmode at the band edge

(highest excitation energy), we have therefore W (t) ∼ t−1/4,
while if there are only SEs with energies within the band,
we have W (t) ∼ t−1/2. For the model studied numerically, the
upper band edge is at ε+

0,A = ε+
π,B = 2, and such special SEs

exist for the values τ = mπ/2, m = 1,2, . . . . In this case we
observed a = 0.30, while otherwise we have seen a = 0.55.
These are slightly higher than the theoretical values 1/4 and
1/2, respectively, and the discrepancy may be attributed to
corrections to the asymptotic behavior still present at the time
scale of numerical calculations.

C. Entanglement entropy

The nonequilibrium dynamics of the entanglement entropy
of a subsystem, which is part of an isolated quantum system,
contains information about the properties of the excitations
which are created after a quench. Here, we divide our system
into two halves; thus the subsystem contains the set of spins
n � L/2. For simplicity, at t = 0, the complete system is in a
product state |ψ0〉 = |z〉 ≡ |↑↑ . . . ↑〉, where all spins point to
the positive z direction; thus initially there is no entanglement
between the two parts of the system. The entanglement is
quantified by the von Neumann entropy

S(t) = −Trn�L/2ρS(t) ln ρS(t) (36)

of the reduced density operator ρS(t) = Trn>L/2|ψ(t)〉〈ψ(t)|
of the subsystem at time t . For free-fermion models,
the entanglement entropy can be calculated from the re-
duced correlation matrix of Majorana operators, Cmn(t) =
〈ψ0|ǎm(t)ǎn(t)|ψ0〉, m,n = 1, . . . ,L [76,111]. Writing it as
Cmn(t) = δmn + mn(t), S(t) is determined by the eigenvalues

±νn, n = 1, . . . ,L/2 of the matrix  as

S(t) = −
L/2∑
n=1

[
1 + νn

2
ln

1 + νn

2
+ 1 − νn

2
ln

1 − νn

2

]
. (37)

In the initial state, the nonzero elements of the matrix are
2l−1,2l = −2l,2l−1 = −i.

The essence of the semiclassical theory of entanglement
after a global quench can be formulated in the language of
CTQW as follows. The spreading of excitations induced by
the sudden quench is described by quantum walks, which are
localized on each site at t = 0 and start to spread out after the
quench. The entanglement entropy at time t is given by the
integrated current φ(t) = ∫ t

0 I (t ′)dt ′ of quantum walkers from
the subsystem to the environment and vice versa. In the case
of a sudden quench, the Hamiltonian is constant for t > 0,
and the spreading of quantum walks is ballistic. Therefore,
φ(t) ∼ t , and we have an entanglement entropy that increases
linearly in time.

Applying this picture to the model with a fluctuating
field, we need to distinguish between two contributions to
the current of quantum walkers. First, there is a contribution
from the diffusive part of the wave function of CTQW,
which is always present. This gives a diffusive current, i.e.,
φd (t) ∼ √

t . Second, if there exist stroboscopic eigenmodes,
the corresponding ballistic peaks result in a contribution
φb(t) ∼ ∫ t

W (t ′)dt ′ ∼ t1−a . Consequently, in the case there
are no stroboscopic eigenmodes, we obtain

S(t) ∼ t1/2 (38)

for long times in an infinite system. If, however, there exist
stroboscopic eigenmodes with a quadratic dispersion, for
which a = 1/4, they give the dominant contribution to the
current and lead to

S(t) ∼ t3/4. (39)

If the stroboscopic eigenmodes have a linear dispersion, thus
a = 1/2, then both φd (t) and φb(t) have the same time
dependence; thus the leading behavior is described by Eq. (38).
Since the shape of the probability distribution is modified due
to the presence of stroboscopic eigenmodes one can expect
some logarithmic multiplicative correction to the leading
behavior.

Numerical results for the time dependence of the entan-
glement entropy are shown in Fig. 9. The exponent obtained
from finite-time data for the case of no SEs (0.47) is close
to the semiclassical prediction. In the case there are SEs of
linear dispersion only, the numerical value is somewhat larger
(0.55), while in the case of the presence of SEs with a quadratic
dispersion (0.75) the exponent is in agreement with Eq. (39).

D. Magnetization

Finally, we study the relaxation of the magnetization after a
quench in the quantum Ising chain with fluctuating transverse
fields. After a global quench, it relaxes exponentially for long
times [42,43,45,47,70], and this form of time dependence is
correctly reproduced by a semiclassical theory [42,43]. The
essence of the latter theory is that quasiparticles emitted from
each site after the quench move ballistically and as a kink
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τ=0.25π

t0.46

FIG. 9. Time dependence of the average entanglement entropy
calculated numerically for the model with J1 =J2 =1, h1 = −h2 = 1,
for τ = π/4, π/2, and 3π/4. The number of noise realizations was
2000. The straight lines are linear fits to the data, and the typical
deviations of the data from the fitted lines are less than 0.01 in the
fitting range. For τ = π/4 there are no SEs; for τ = π/2 there are
ones with a quadratic dispersion; for τ = 3π/4 there are SEs with a
linear dispersion only. Note that the deviations from the asymptotic
linear form in the large t domain are due to finite-size effects.

excitation, or domain wall, flip the spins when they pass by.
When several quasiparticles pass a site, then, for odd (even)
number of particles, the given spin changes its sign (keeps its
value). In the following, we present a simple consideration
based on a stochastic process, which is able to predict the
functional form of the relaxation. Namely, the orientation of
a given spin changes with a rate I (t), which is determined by
the current of quasiparticles passing through that site. In the
language of CTQW, I (t) is the current of quantum walkers
starting out from every site after the quench through the given
site. Then, the probability p+(t) of the given spin pointing to
the positive x direction obeys the master equation

d

dt

[
p+(t)

1 − p+(t)

]
=

[−I (t) I (t)
I (t) −I (t)

][
p+(t)

1 − p+(t)

]
. (40)

The solution of this simple equation for the magnetization,
mx(t) = 2p+(t) − 1, if initially mx(0) = 1, is of the form

mx(t) = 2p+(t) − 1 = e−2
∫ t

0 I (t ′)dt ′ . (41)

In the case of a sudden quench, I (t) is constant, and given
by the sum of contributions of the quasiparticles as I =∑

k>0 vkfk , where vk = δεk/δk is the semiclassical velocity
and fk is the occupation probability of the given mode in the
initial state. From this follows that mx(t) = e−t/tr , and the
relaxation time is given by tr = 1/(2I ), which agrees with the
semiclassical result in [42,43].

Applying the above considerations for the model with a
fluctuating field, the integrated current, φ(t), calculated in the
previous section has to be inserted in Eq. (41). This yields a
stretched exponential decay of the average magnetization

mx(t) ∼ e−ct3/4
(42)

2

4

0 2 4 6

ln
{-

ln
[m

x (t
)]

}

ln(t)

τ=0.5π
t0.79

τ=0.75π
t0.54

τ=0.25π
t0.47

FIG. 10. Same as in Fig. 9 for the average magnetization. The
typical deviations of the data from the fitted lines are less than 0.05
in the fitting range.

if SEs with a quadratic dispersion exist, and

mx(t) ∼ e−ct1/2
(43)

otherwise, with a possible logarithmic correction in the case
of an SE with linear dispersion.

We have tested the validity of these conjectures by nu-
merically calculating the magnetization 〈x|σx(t)|x〉. Using
〈x|σx(t)|x〉 = 〈+|σx(t)|−〉, where |±〉 = 1√

2
(|→→ · · · →〉

± |←← · · · ←〉), it can be calculated as Pfaffian, which is
given as the square root of a determinant; for the details, see,
e.g., Ref. [70]. According to the numerical data presented
in Fig. 10, the average magnetization follows a stretched
exponential decay and the estimates of the powers are close to
those that appear in Eqs. (42) and (43) with small deviations
seen also for other quantities.

IV. DISCUSSION

We have studied in this work the nonequilibrium relaxation
dynamics of the Ising chain in a fluctuating transverse field.
As the model can be reformulated as a Majorana chain with
quadratic terms, its true dimensionality is 2L rather than 2L,
and, using this, we have pointed out a close relationship
between the dynamics of the model and continuous-time
quantum walks. Namely, the equations of motion of Majorana
operators, from which all observables can be built up, in the
Heisenberg picture are formally identical to a Schrödinger
equation of a particle on a chain of length 2L, i.e., a
one-dimensional continuous-time quantum walk. The linear
time dependence of the entanglement entropy and logarithmic
magnetization in the case of a sudden quench are then
intimitely related to the well-known ballistic spreading of the
CTQW associated with the model.

In the case of a fluctuating transverse field, the associated
one-particle model will be a noisy (or random) CTQW. The
external noise, in general, is known to destroy quantum
interference, and CTRW crosses over to a classical random
walk with the well-known diffusive dynamics [106,107]. As
we have shown by a semiclassical reasoning and confirmed
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by numerical calculations, the diffusive spreading leads to a
square-root time dependence of the entanglement entropy and
logarithmic magnetization in the fluctuating model. Although
we have carried out calculations in a concrete integrable model,
we conjecture the square-root increase of the entanglement
entropy to be generally valid for one-dimensional quantum
systems subject to an external noise, in the pure version
of which entropy growth is realized by the propagation of
entangled quasiparticle excitations.

For the particular case of a dichotomous noise composed of
segments of constant duration, we have found that coherence
is not completely destroyed. Namely, so called stroboscopic
eigenmodes can exist, which are common eigenmodes of both
clean evolution operators, and these appear as ballistically
propagating but algebraically decaying peaks in the wave
function of the associated CTQW. If SEs with a quadratic
dispersion exist, the contribution of which is dominant over the
diffusive one, the power 1/2 in the above laws changes to 3/4.
We stress, however, that this phenomenon arises only for the
particular form of the noise with segments of constant duration,
and not for a general dichotomous Markov noise or other noise
with a random duration of segments. Even a small noise in the
duration τ or in the transverse fields is expected to introduce a
finite lifetime for stroboscopic eigenmodes, which could be
obtained by extending the calculations of the Appendix, but
this is out of the scope of the present work.

Further directions in connection with stochastic noise that
could be explored are, among others, local quench dynamics
instead of a global one considered in this work, or inclusion
of spatial inhomogeneity, which, in the absence of noise,
gives rise to an ultraslow dynamics in the critical model and
localization otherwise. These are left for future research.
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APPENDIX: DECAY RATE OF MODES

To calculate the probability P +
k (t) defined in Eq. (33),

notice that the state |f (t)〉 remains in the two-dimensional
subspace spanned by |f +

k,A〉 and |f −
k,A〉. The unitary evolution

operators of system A and B are represented in this basis by
the matrices

UA =
[
e−iε+

k,Aτ 0
0 eiε+

k,Aτ

]
, UB =

[
ω∗

k −γk

γk ωk

]
, (A1)

where ωk = cos(ε+
k,Bτ ) + i sin(ε+

k,Bτ ) cos(2
k) and γk =
sin(ε+

k,Bτ ) sin(2
k).
Denoting the vector representing the state at time tn by

[F1(tn),F2(tn)]T , and introducing F
(n)
ij ≡ F ∗

i (tn)Fj (tn), i,j =
1,2, we can write, similar to Eq. (16),

F
(n)
ij =

2∑
k,l=1

1

2
{[U ∗

A]ik[UA]j l + [U ∗
B]ik[UB]j l}F (n−1)

kl . (A2)

Defining a four-component vector as F (n) = [F (n)
11 ,F

(n)
12 ,

F
(n)
21 ,F

(n)
22 ]T , the right-hand side of Eq. (A2) amounts to a

multiplication of F (n−1) by the 4×4 matrix U ≡ 1
2 (U ∗

A ⊗ UA +
U ∗

B ⊗ UB):

F (n) = UF (n−1). (A3)

The long-time behavior of P +
k (tn) = F

(n)
11 is determined by

the spectrum of U . It has a unit eigenvalue for all k, which
corresponds to the stationary state limn→∞ F (n) = [ 1

2 ,0,0, 1
2 ]T ,

while the asymptotic decay of P +
k (tn) is determined by the

eigenvalue with the second largest modulus rk , as

P +
k (tn) − P +

k (∞) ∼ rn
k ∼ e−tn/τk , (A4)

where the lifetime τk of the mode is τk = τ/| ln rk|.
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