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We construct a generalized transfer matrix corresponding to noninteracting tight-binding lattice models, which
can subsequently be used to compute the bulk bands as well as the edge states. Crucially, our formalism works
even in cases where the hopping matrix is noninvertible. Following Hatsugai [Phys. Rev. Lett. 71, 3697 (1993)],
we explicitly construct the energy Riemann surfaces associated with the band structure for a specific class of
systems which includes systems such as Chern insulator, Dirac semimetal, and graphene. The edge states can
then be interpreted as noncontractible loops, with the winding number equal to the bulk Chern number. For these
systems, the transfer matrix is symplectic, and hence we also describe the windings associated with the edge
states on Sp(2,R) and interpret the corresponding winding number as a Maslov index.
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I. INTRODUCTION

The topological phases of matter have been a subject
of considerable interest [1–3]. In their simplest form, for
noninteracting periodic systems, they are characterized by
a topological invariant on the Brillouin zone. For instance,
the two-dimensional topological states may have a nontrivial
Chern number of the U(1) bundle of the phase of the Bloch
eigenstates over the Brillouin zone [4].

One of the remarkable features of the topological phases
is the existence of boundary states: modes localized on the
surface/edge at energies that reside in the bulk band gap, which
cannot be gapped out by local perturbations. For topological
phases that are insulating in the bulk, the existence of these
modes is related to the fact that the topological phase is
topologically different from vacuum, a trivial insulator, and
hence they cannot be connected without closing the gap.

The topological phases are commonly described by non-
interacting lattice Hamiltonians, which can be studied in the
framework of Bloch theory (also known as Floquet theory in
the differential equation literature [5,6]). But, one of the central
tenets of Bloch theory is that we only consider eigenstates to
the Hamiltonian that are translation invariant (up to a phase),
which is desirable if the system in question is truly periodic,
so that the (quasi)momentum k is well defined. However, the
presence of an edge naturally breaks that symmetry. Can we
still account for the edge modes in a Bloch-type formalism? As
it turns out, the answer is yes, if we allow the quasimomentum
to be complex.

Let ψn be a wave function for lattice sites indexed by
n = (n1,n2, . . . ,nd ) ∈ Zd . Then, an imaginary part of the
quasimomentum Im(ki) = κi �= 0 leads to ψn ∼ e±niκi , a
growing or decaying exponential along the direction i, which is
not normalizable in the case of an infinite system. However, an
edge state can be naturally thought of as a decaying exponential
(indeed, we can calculate the penetration depth of the edge
states), which corresponds to a quasimomentum k with a
nonzero imaginary part.

A system with boundary can be naturally described in the
language of transfer matrices [7–11]. By assuming the system
to be periodic in directions parallel to the edge/surface, we
can reduce it to a family of quasi-one-dimensional (quasi-1D)
system [12] parametrized by the transverse quasimomentum

k⊥, for which a transfer matrix gives the wave function
of a block in terms of previous block(s). The eigenvalues
of the transfer matrix decide whether the state is periodic
or decaying: an eigenvalue with magnitude unity corresponds
to Bloch state, while the magnitude being less (greater) than
unity corresponds to a decaying (growing) exponential as
n → +∞.

Transfer matrices have been studied in diverse contexts,
for instance, electronic band structure [7,9,10,13,14], dis-
order [15], conductivity [16], Majorana fermions [17], and
wave motion in electromechanical systems [18]. They have
also been studied by mathematicians as monodromy matrices
under the banner of Floquet theory [5,6,19,20]. In condensed
matter, they have been used to compute the Z2 invariants
for time-reversal-invariant systems [13]. However, all of these
constructions have been limited to very specific models and/or
invertible hopping matrices.

As we will see, the perspective of transfer matrices and
a complex k space is not a mere curiosity or a tool to
simplify calculations; instead, it offers interesting insights into
the geometry associated with the edge states of the system.
For one, as the eigenvalue condition for the transfer matrix,
expressed as the characteristic polynomial, is algebraic in
energy ε and ζ = eik, one can associate algebraic curves with
the characteristic polynomials. A natural thing to do is to
complexify ε, as the algebraic equation always has roots in the
complex plane, which follows from the fundamental theorem
of algebra. The characteristic polynomial defines an algebraic
variety of codimension 1 on (ε,ζ ) ∈ Cd+1 for a d-dimensional
system, often termed as a Bloch variety [21]. We shall not delve
much into this picture, however, algebraic curves in complex
spaces can also be naturally thought of as Riemann surfaces,
a perspective that turns out to be particularly useful, which we
shall consider in this paper.

One of the first steps in that direction was taken by
Hatsugai [7,8], who showed that for the Hofstadter model
with flux φ = p/q per plaquette, the edge states correspond
to nontrivial windings around the holes of the ε-Riemann
surface, which is a two-dimensional surface of genus q − 1,
where q is the periodicity of the lattice in presence of the
magnetic field, or, equivalently, the number of bulk bands
(hence q − 1 being the number of band gaps). Furthermore,
he proves that the winding number so associated with the edge
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states is equal to the bulk Chern number. The Riemann surface
picture was first introduced in condensed matter physics by
Kohn [22], however, it has been investigated in substantial
detail in mathematics literature [23].

Substantial progress has been made since, with regards to
the bulk-boundary correspondence. In particular, using the
methods of noncommutative geometry, the equality of the
Chern number and the Hall conductivity at finite disorder has
been rigorously addressed within the mathematical physics
literature [24,25], and with generalizations to time-reversal-
invariant topological insulators [26]. Complementary to this
are approaches based on Green’s functions [27,28], which
have also demonstrated the bulk-boundary correspondence
from a field theoretic perspective. In addition, aspects of this
correspondence have also been discussed from the viewpoint
of quantum transport using S matrices [29,30].

In this paper, we seek to study the bulk and edge spectra
of and the complex geometry associated with generic tight-
binding Hamiltonians using transfer matrices, as a contin-
uation of Hatsugai’s analysis beyond the Hofstadter model.
We work out a general construction of transfer matrices for
quasi-1D systems, including the cases when the hopping
matrices are singular. The size of the transfer matrices turns
out to be twice the rank of the hopping matrix. We work
out analytic computations in some detail for various systems
where the hopping matrix is of rank 1, e.g., Hofstadter model,
Chern insulator, Dirac semimetal, and graphene, as well as for
a model with a rank-2 hopping matrix, viz., the topological
crystalline insulator model proposed by Fu [31]. In all these
cases, we derive explicit analytic expressions for the bulk band
edges as well as the edge state spectra.

For the rank-1 systems, we also describe the topological
winding associated with the edge states on the energy Riemann
surface, following Hatsugai. The case of Chern insulator is
particularly nice, as the energy Riemann surface turns out
to be a 2-torus, and we work out Hatsugai’s construction
explicitly using elliptic functions. Furthermore, as the transfer
matrix for these models is 2 × 2 real symplectic matrix,
and the associated Lie group Sp(2,R) is homeomorphic to
a solid 2-torus, we plot the transfer matrix as a function of
the transverse momentum for a given edge spectrum using
an explicit parametrization of Sp(2,R). Using the fact that
π1[Sp(2,R)] ∼= Z, we identify the corresponding winding
number as a Maslov index, which, in all the cases discussed,
turns out to be equal to the bulk Chern number.

Finally, we use our transfer matrix formalism to study
Chern insulator on a rectangular geometry in presence of
diagonal disorder, where we marry our general transfer matrix
formalism with the conventional numerical methods [32]
to compute localization lengths and their scaling. We then
demonstrate the existence of edge states for a disordered Chern
insulator.

The rest of this paper is organized as follows: in Sec. II,
we describe our general construction of the transfer matrix
and discuss their properties and applications. In Sec. III, we
describe the computations for rank-1 systems, taking Chern
insulator as the prototypical model. In Sec. IV, we construct
the ε-Riemann sheet and describe the windings associated
with edge states. In Sec. V, we analytically compute the
transfer matrix for a rank-2 system, the topological crystalline

insulator (TCI). In Sec. VI, we apply our formalism to Chern
insulator with diagonal disorder. Finally, we conclude and
make general comments in Sec. VII. Details of some of the
lengthy calculations and mathematical facts relevant to the
work are relegated to the appendixes.

II. TRANSFER MATRICES

Transfer matrices arise naturally in discrete calculus as a
representation of finite order linear difference equations, where
it is an operator that implements a first-order shift on a block.
In general, a transfer matrix will depend on the independent
variable; however, if the system is periodic, the transfer matrix
that translates by a single period acquires a special significance,
as its repeated application can propagate a solution as far as
one wishes. This matrix is often known as the monodromy
matrix in dynamical systems literature [5,6].

As noninteracting lattice models are essentially composed
of hopping (i.e., shift) operators, which act on the wave func-
tions, the Schrödinger equation can alternatively be written
as difference equations (or recursion relations) by action on a
one-particle state, as we demonstrate in the following.

A. Outline for tight-binding lattice Hamiltonians

The tight-binding lattice Hamiltonians, in presence of
(discrete) translation symmetry, are diagonal in the momentum
basis, thereby reducing the computation of the bulk spectrum
to the diagonalization of a finite-dimensional, momentum-
dependent Bloch Hamiltonian. However, as we are interested
in the edge states, the translation symmetry is naturally broken
in the direction normal to the edge, as the system is finite
in that direction. We shall assume that for a system in d

space dimensions, we have periodic boundary conditions
(PBC) along d − 1 directions parallel to the edge, so that
the corresponding quasimomentum k⊥ ∈ Td−1 [the (d − 1)-
dimensional torus] is a good quantum number [12,33], which
reduces a given d-dimensional system into a family of 1D
system parametrized by k⊥.

Consider, then, the tight-binding Hamiltonian of such an
arbitrary 1D model parametrized by the transverse quasi-
momentum k⊥, with finite range hopping along the finite
direction. In the most general form, we can write such a
Hamiltonian as

H =
N∑

n=0

q∑
α,β=1

R∑
	=0

[c†n+	,αt	,αβcn,β + H.c.]

=
N∑

n=0

R∑
	=0

[c†n+	t	cn + H.c.], (1)

where R is the range of the hopping and we have q

internal degrees of freedom (spin/orbital/sublattice) per site
of the lattice. In the second line, we have bundled up the
creation/annihilation matrices corresponding to q orbitals in
the q vectors c†/c, while t	 is the corresponding hopping
matrix with 	th nearest neighbors. We shall suppress the
explicit dependence on k⊥ in the following equations to avoid
notational clutter; however, all parameters should be assumed
to depend on k⊥, unless stated otherwise.
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By considering the action of this Hamiltonian on a one-
particle state

|ψ〉 =
N∑

n=0

ψnc†n|
〉, (2)

where |
〉 is the fermionic vacuum state and ψn ∈ Cq is the
wave function for each physical site, the eigenvalue problem
H|ψ〉 = ε|ψ〉 can be written as a recursion relation in ψn, as

R∑
	=0

(t	ψn+	 + t†	ψn−	) = ε ψn. (3)

We now construct blocks consisting of these sites, so that the
system is periodic in these blocks and the hopping between
such blocks is restricted to nearest neighbor [9], as shown in
Fig. 1. These blocks form the sites of a superlattice. We shall
hereafter refer to those blocks as supercells. Note that this
is always possible as the hopping has a finite range, hence,
we can always choose a supercell consisting of R sites. In
terms of these supercells, each containing N = qR degrees
of freedom, the recursion relation becomes

J�n+1 + M�n + J †�n−1 = ε�. (4)

Here, J is the hopping matrix connecting nearest-neighbor
supercells and M is the onsite matrix, which encodes the
hopping between degrees of freedom inside the supercell as
well as the onsite energies. The wave function for a supercell
�n is defined as

�n =

⎛⎜⎜⎝
ψn

ψn+1
...

ψn+R−1

⎞⎟⎟⎠ ∈ CN . (5)

We shall denote the standard basis of CN with ei ,i =
1, . . . ,N , where (ei)j = δij .

For a nonsingular J , the transfer matrix construction works
by noticing that [13]

�n+1 = J−1(ε1 − M)�n − J−1J †�n−1 (6)

can be rewritten as(
�n+1

�n

)
=
(

J−1(ε1 − M) −J−1J †

1 0

)(
�n

�n−1

)
≡ T

(
�n

�n−1

)
. (7)

Hence, we have a 2N × 2N transfer matrix T . However, this
does not work for a singular J , which is often the case.

What exactly does rank(J ) mean? Think of the N degrees
of freedom inside each supercell as N sites.1 Then, rank(J )
is the number of linearly independent rows in J , and hence
the number of degrees of freedom that enter in the recursion
relation, when expressed in a suitable basis. In more physical
terms, rank(J ) denotes the number of bonds between adjacent
supercells. Hence, physically, the singularity of J means that

1This is the opposite of the traditional way of doing things, where
sites inside a supercell are effectively treated as orbitals.

FIG. 1. (a) A schematic depiction of the recursion relation, with q

internal degrees of freedom, range of interaction R = 2, and Dirichlet
boundary conditions at the left edge. We can form blocks (supercells)
of such sites with two sites each, so the there is only nearest-neighbor
hopping between them. (b) A simplified depiction of the reduced
recursion relation, with α, β, γ corresponding to the coefficients of
V , W , and X subspaces (introduced in Sec. II B), respectively. (c) We
club together βn with αn−1 to obtain n, which is translated by one
step using the transfer matrix.

there are sites in the supercell from which one cannot hop
directly to a site in another supercell. In other words, if the N
degrees of freedom in a supercell are thought of as nodes of a
graph, where J and M encode the connectivity of the graph,
then there are nodes in a supercell that are not connected to any
nodes in other supercells, and rank(J ) is the number of links
between the supercells. We seek to compute a transfer matrix
for singular J , where we, in some sense, mod out the redundant
degrees of freedom, thereby inverting J on a reduced subspace
to get a reduced transfer matrix.

We shall seek to compute the transfer matrix in a basis-
independent fashion, i.e., without referring to the explicit
forms of the J and M matrices. However, we present an explicit
calculation for the case of Chern insulator in Appendix D
which motivated us for the following general construction.
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B. Constructing the transfer matrix

We begin with the recursion relation

J�n+1 + J †�n−1 = (ε1 − M)�n. (8)

Let rank(J ) = r . We will see that the corresponding transfer
matrix will be 2r × 2r . Indeed, if J had full rank [rank(J ) =
N ], we could have inverted it to get a 2N × 2N transfer
matrix, as computed in Sec. II A. In the following, we shall
also assume a big enough supercell that J is nilpotent of degree
2, i.e., J 2 = 0, so that r � N /2. Physically, for N > 2, this
simply means that in a given supercell, the nodes in a supercell
that are connected to the right neighboring supercell and the
left neighboring supercell are not directly connected to each
other.

Now, consider M . We note that G = (ε1 − M)−1 is the
resolvent (or the Green’s function) of a single supercell.
Clearly, ε1 − M is singular when ε is an eigenvalue of M .
What does that mean? Consider a system with the uncoupled
N -degrees-of-freedom supercells, obtaining by tuning to
J = 0 in the recursion relation of Eq. (8). The corresponding
spectrum consists of N degenerate levels. As we turn on
the hopping J , these degenerate levels broaden into bands.
Hence, the eigenvalues of M can be interpreted as the centers
of the bands. Since we are primarily concerned with the band
gaps and the edge states therein, we can take ε1 − M to be
nonsingular as far as we do not venture deep inside the bands.2

We perform a reduced singular value decomposition [34]
(SVD) of J ,

J = V · � · W †, (9)

where

V = (v1,v2, . . . ,vr )N ×r ,

W = (w1,w2, . . . ,wr )N ×r ,

� = diag{ξ1,ξ2, . . . ,ξr}r×r , (10)

with

V † · V = W † · W = 1, V † · W = 0. (11)

The first two expressions follow from the definition of SVD,
while J 2 = 0 implies the third. Hence, J 2 = 0 is required to
ensure that the V and W subspaces are orthogonal and the
corresponding coefficients can be extracted by taking inner
products.

The SVD can equivalently be written as

J =
r∑

i=1

ξivi ⊗ wi (12)

with

〈vi ,vj 〉 = 〈wi ,wj 〉 = δij , 〈vi ,wj 〉 = 0. (13)

2This breaks down if the bandwidth turns out to be zero, i.e., when
the band pinches to a point (for instance, in case of graphene, or
Chern insulator with m = 1). However, we can get around that using
the well-known trick of adding a small imaginary part to the Green’s
function in order to move the poles off the real line.

We shall hereby refer to these vector pairs (vi ,wi) as channels.
As we can still change the phases of v and w without violating
the orthonormality, we choose their phases such that all the
singular values are positive, i.e., ξi > 0 ∀ i. Clearly, �† = �.

Now, morally speaking, we claim that the only directions
in CN relevant for the problem are vi’s and wi’s, i.e., span
{V } and span {W }. Take a basis of CN as {vi ,wi ,xj }, where
i = 1, . . . ,r, j = 1, . . . ,N − 2r , and expand �n as

�n =
r∑

i=1

(αn,ivi + βn,iwi) +
N −2r∑
j=1

γn,j xj , (14)

with αn,i ,βn,i ,γn,i ∈ C or, equivalently,

�n = V αn + Wβn + Xγ n, (15)

with αn,βn ∈ Cr , γ n ∈ CN −2r . We have defined X analogous
to V and W , so that

V † · X = W † · X = 0, X† · X = 1. (16)

Also,

αn = (αn,1,αn,2, . . . ,αn,r ), (17)

with βn and γ n defined in a similar fashion.
We can rewrite the recursion relation in Eq. (8), in terms of

the Green’s function G = (ε1 − M)−1, as

�n = G · J �n+1 + G · J † �n−1. (18)

But,

J�n = V · � βn, J †�n = W · � αn, (19)

which follows from the SVD [Eqs. (11) and (16)]. We can
now premultiply Eq. (18) by V †, W †, and X† to extract the
coefficients αn, βn, and γ n, respectively. In order to simplify
notation, we denote the restriction of G to V and W subspaces
by Gvv = V † · G · V , Gvw = W † · G · V , etc.3 Then,

αn = Gvv · � βn+1 + Gwv · � αn−1,

βn = Gvw · � βn+1 + Gww · � αn−1, (20)

γ n = Gvx · � βn+1 + Gwx · � αn−1,

where the Gab, a,b ∈ {v,w}, is a r × r matrix. After some
matrix gymnastics (see Appendix A 1), the first two equations
can be reorganized as

n+1 = T n, n ≡
(

βn

αn−1

)
, (21)

with

T = −
(
Gvv · � −1
Gvw · � 0

)−1(
0 Gwv · �

−1 Gww · �

)
=
(

�−1 · G−1
vw −�−1 · G−1

vw · Gww · �

Gvv · G−1
vw

(
Gwv − Gvv · G−1

vw · Gww

) · �

)
. (22)

Hence, we have managed to construct a closed-form expres-
sion for a 2r × 2r transfer matrix explicitly for the given
recursion relation. This is one of our central results.

3Note that the order of V and W in subscript is opposite to that in
the expression.
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Defining Gab = Gab · �, we can also express this result as

T =
(

G −1
vw G −1

vw · Gww

Gvv · G −1
vw Gwv − Gvv · G −1

vw · Gww

)
. (23)

This expression is somewhat cleaner, but it obscures the
different physical significance associated with G and �, as
well as properties of G, which we now state. As the Green’s
function is Hermitian, i.e., G† = G, we have

G†
vv = Gvv, G†

ww = Gww, G†
vw = Gwv. (24)

Using these and Eq. (A4), an explicit computation shows that

det T = det
(
G−1

vw

)
det(Gwv) = (detGvw)∗

detGvw

, (25)

which we can write as

det T = e−2iθ ∈ U (1), θ = arg (detGvw). (26)

However, we can gauge this phase away by the gauge transform

n → einθ/rn, T → eiθ/rT . (27)

In the following, whenever we refer to the transfer matrix,
we shall assume that we have gauged away the phase of the
determinant of T so that det T = 1.

C. Properties

Before we go on to compute physically relevant quantities
from the transfer matrix, we discuss a few features of our
construction:

(a) The transfer matrix propagates α and β degrees of
freedom. Given one of the ’s, say, m, we can compute n

for all n, and, using the expression for γ n in Eq. (20), compute
the wave function �n ∀ n. Furthermore, as T is nonsingular by
construction, we can also use T −1 to propagate n backwards.

(b) The transfer matrix is basis independent, as we have
never referred to the explicit form of the J and M matrices. It
reduces the computation of transfer matrix for a system to the
identification of the J and M matrices, as everything else can
be mechanized. We shall illustrate that with examples later on
(see Table II).

(c) The size and spectral properties of the transfer matrix
are independent of the size of the supercell chosen, once it is
above a certain size. Hence, we can define a minimal supercell,
which is a block consisting of the minimum number of sites so
that the hopping between the supercells is nearest neighbor and
the corresponding hopping matrix is nilpotent. In Appendix B,
we show that if we take a supercell that is m times the minimal
supercell, the transfer matrix is simply exponentiated by m,
i.e., T → T m, but its size, which is twice the rank of the
hopping matrix, stays invariant under this operation. But as in
computing the band structures, we are concerned only with the
behavior of T n for large n (see Sec. II D), the band structure, as
expected, stays invariant under such a transformation. Hence,
we can always make the supercell bigger than the minimal
supercell, while leaving the bands and edge states invariant.
We shall use this property in certain proofs.

(d) As Gab, a,b ∈ {v,w}, are simply restrictions of the
Green’s functions, they are propagators connecting the a and
b degrees of freedom for each supercell, while � encodes
the tunneling probabilities, or the relative strength of each

FIG. 2. Diagrammatic representation of the recursion relations
[Eq. (20)] for (a) αn and (b) βn.

channel. In fact, the recursion equation in terms of α and
β [Eq. (20)] has a simple diagrammatic interpretation as su-
perpositions of possible nearest-neighbor hopping processes.
This is illustrated in Fig. 2, where the Green’s functions Gab

express the propagation within a block and � the tunneling
between blocks. The transfer matrix equation (21) can then be
seen as an equation of constraint that respects these hopping
processes.

(e) In Floquet theory for a continuous independent vari-
able, the monodromy matrix is symplectic if the system is
Hamiltonian [35]. Is that also true for the discrete case? An
explicit computation using Eq. (24) shows that

T † · J · T = J , J =
(

0 1
−1 0

)
, (28)

if

[Gab,�] = 0, a,b ∈ {v,w}. (29)

Physically, this condition implies that the various channels
that connect the nearest-neighbor supercells need to be
independent, so that the order of tunneling (�) and propagation
(G) is irrelevant. We term this condition as T beingJ unitary or
complex symplectic [T ∈ Sp(2r,C)]. The spectral properties
of J -unitary operators have been studied in great detail in
the mathematics literature [36]. Furthermore, if T is real, we
say that T is symplectic [T ∈ Sp(2r,R)]. In the discussion on
bulk bands, we show that if the transfer matrix is symplectic,
it can effectively be decomposed into a set of chains, one
corresponding to each channel. The conditions onGab obtained
above are physical manifestations of that fact. As � is, by
definition, a diagonal matrix, in order for it to commute with
another matrix A, A, in general, must also be diagonal.4 Hence,
for T to be symplectic, Gvv and Gvw must also be diagonal. (f)

4This breaks down if two or more diagonal entries of � are equal,
as � then becomes proportional to identity in that subspace, so that
A restricted to that subspace can be anything.
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Recall that a complex square matrix A is termed normal if it
commutes with its adjoint, i.e., if

A†A = AA†. (30)

The matrix A is diagonalizable by a unitary matrix if and
only if it is normal. In other words, the eigenvectors of a
matrix form an orthonormal basis if and only if it is normal,
a condition often ignored in physics literature. However, as
it turns out, the transfer matrices are almost never normal.
Hence, in the subsequent arguments, we shall not assume that
T is normal in general, which, naturally, makes them somewhat
more involved.

D. Using the transfer matrix

We now discuss the computation and interpretation of
spectra from the transfer matrices.

1. Bulk bands

The transfer matrix can be used to propagate a state spatially
into the system. The eigenstates with an eigenvalue ρ ∈ C
propagate indefinitely if |ρ| = 1, i.e., the ρ lies on the unit
circle S1 ≡ {z ∈ C | |z| = 1} in the complex plane, while it
grows/decays as n → ∞ is ρ lies outside/inside the unit circle.
Hence, a given (ε,k⊥) lies in the bulk band if all eigenvalues
of T (ε,k⊥) lie on the unit circle, while it lies in the gap if all
of them lie off the unit circle.

Formally, let σ [T (ε,k⊥)] ⊂ C be the spectrum of T for
a point (ε,k⊥) ∈ R × Td−1. We define the bulk band B ⊂
R × Td−1 as

B = {(ε,k⊥) | σ [T (ε,k⊥)] ⊂ S1}, (31)

and the bulk gap as

G = {(ε,k⊥) | σ [T (ε,k⊥)] ⊂ C\S1}. (32)

For r > 1, the possibility exists that there can be points (ε,k⊥)
for which some eigenvalues are on and some off the unit circle.
We shall term such points partial gaps P , defined as

P = (R × Td−1)\(G ∪ B). (33)

By construction, each (ε,k⊥) falls in one of these sets.
To compute the bulk bands, one needs to compute the

eigenvalues of the transfer matrix. This can always be done
numerically in a given case, however, if the transfer matrix is
symplectic, its characteristic polynomial has further structure
(see Appendix C) which allows us to compute the eigenvalues
analytically.

Let us start off with r = 1, where det T = 1 implies that T

is symplectic. It also implies that the product of eigenvalues is
unity, so that the eigenvalues are reciprocals of each other, so
that

� ≡ trT = ρ + ρ−1, (34)

which can be solved to get

ρ± = 1
2 [� ±

√
�2 − 4]. (35)

Hence, either both the eigenvalues are on the unit circle or both
on the real line. In turn, a given (ε,k⊥) either belongs to G or
B, so that P = ∅.

For r > 1, if the transfer matrix is symplectic, the eigenval-
ues always come in reciprocal pairs, i.e., if ρi is an eigenvalue,
so is ρ−1

i . Hence, given a 2r × 2r transfer matrix, we construct
the r Floquet discriminants using the traces of powers of T

(see Appendix C for details), where

�i = ρi + ρ−1
i , i = 1,2, . . . ,r (36)

so that the eigenvalues of the transfer matrix are

ρi,± = 1

2

[
�i ±

√
�2

i − 4
]
. (37)

For instance, for r = 2, the explicit expression for the Floquet
discriminants is

�± = 1

2
[trT ±

√
2trT 2 − (trT )2 + 8]. (38)

Hence, if the transfer matrix is symplectic, we can essentially
decompose it into a set of r = 1 systems, which are indepen-
dent of each other!

From the expression for the eigenvalues, we deduce that we
have an oscillating state for |�i | � 2 and a growing/decaying
state for |�i | > 2. Hence, we can alternatively define the bulk
band and the band gap as

G = {(ε,k⊥) | |�i(ε,k⊥)| > 2 ∀ i = 1, . . . ,r},
B = {(ε,k⊥) | |�i(ε,k⊥)| � 2 ∀ i = 1, . . . ,r}. (39)

Furthermore, the band edges are simply given by the
conditions |�i | = 2, i = 1,2, . . . ,r . Hence, we can simply
solve these conditions for ε(k⊥), numerically if needed, to
compute the band edges, without having to diagonalize T for
all possible (ε,k⊥), which one would need to do in general.

2. Decay conditions

The edge states are typically the states that reside outside
the bulk bands (ε,k⊥) ∈ G ∪ P , which implies that they are
growing/decaying as n → ±∞. In order to be normalizable,
they are taken to be decaying into the bulk away from the edges.
Typically, one is interested in the existence of these states, and,
should they exist, in the edge spectrum, i.e., the energy of the
edge state εedge(k⊥), as a function of the transverse momentum
k⊥.

Given k for an arbitrary site k, we can use the transfer
matrix to compute n+k = T n. Hence, given a  ∈ C2r ,
we are concerned with the asymptotics of |T n| for n →
±∞, where | . . . | is the vector norm over C2r . A  can be a
legitimate left edge state if |T n| → 0 as n → ∞. Similarly,
 can be a legitimate right edge state if |T n| → 0 as n →
−∞. In this section, we seek the conditions imposed on 

by the transfer matrix (i.e., the bulk) for it to be a legitimate
decaying edge state, while we defer the implications of the
boundary condition to the next subsection. In the following,
we consider the left edge, the arguments for the right edge
being their exact analogs.

Consider first the case when T is normal and satisfies the
conventional eigenvalue equation

T ϕs = ρsϕs, ρs �= 0 ∀ s = 1, . . . ,2r. (40)

Now, span {ϕs} = C2r , so that any state  ∈ C2r can be written
as a linear combination of the eigenvectors of the transfer
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matrix, and

 =
2r∑

s=1

αsϕs ⇒ T n =
2r∑

s=1

ρn
s αsϕs. (41)

We deduce that |T n| decays as n → ∞ only if the contribu-
tion of the growing eigenvalue is 0, i.e.,

|ρs | > 1 ⇒ αs = 0. (42)

This restricts  to a subspace ofC2r corresponding to |ρs | � 1.
However, in general, T is not a normal matrix and hence

it cannot have an eigenvalue equation in the usual sense and
cannot be diagonalized by a unitary matrix, a fact that is often
overlooked in the physics literature. Nevertheless, it can always
be brought to a Jordan canonical form [37]. The behavior of
|T n| is still dictated by the generalized eigenvalues of T , so
that to ensure exponential spatial decay of |T n| as n → ∞,
we now require that  contain no generalized eigenvectors
with eigenvalues |ρs | > 1. Similarly, for the right edge, we
want |T n| to decay as n → −∞. Hence, the corresponding
condition demands that  contain no generalized eigenvectors
with eigenvalues |ρs | < 1.

In order to obtain a precise mathematical condition for
the |ρs | ≶ 1 subspaces, we express T in its Jordan canonical
form [37]

T =
∑

s

[ρsPs + Ds], (43)

where the sum extends over all generalized eigenvalues ρs , Ps

project in the eigenspace of ρs , and Ds are nilpotent matrices.
However, it remains true that the determinant of T is equal
to the product of its generalized eigenvalues

∏
s ρs = det T ,

as can be seen by applying a similarity transform to (43). We
define the projector to the |ρs | < 1 subspace as

P< ≡
∑

|ρs |<1

Ps , (44)

and similarly, P0 and P> for |ρs | = 1 and |ρs | > 1, respec-
tively. Clearly,

P< + P0 + P> = 1. (45)

Then, a sufficient condition for  ∈ C2r to be a left edge state
is

P< =  (46)

and similarly for a right edge,

P> = . (47)

A rigorous proof of this statement is provided in Appendix A
3. We shall term these decay conditions.

3. Boundary conditions

We now discuss the boundary conditions required to
compute the physical edge states of the system, as observed
in an exact diagonalization of the lattice models on finite-size
lattices. Most of the following is a restatement of the results by
Lee and Joannopoulos [9] in our formalism, which, we believe,
is more general. In the following, we shall only consider the
system that is terminated abruptly at layer 0 and N , hereafter
termed a hard boundary condition.

We mention in passing that as the edge state spectrum is
strongly dependent on the boundary conditions, it can get
modified quite drastically by local terms at the boundary, an
effect commonly known as edge reconstruction. In order to
consider the most general case, we should take a Hamiltonian
H̃ = H + δH, where δH is an operator localized at the edge,
which can account for the edge reconstruction, for instance,
due to an impurity [38] or lattice deformation [39]. Such a
boundary condition imposes additional conditions [9,40,41]
on the eigenvectors of the transfer matrix. As our purpose in
this paper is to expound the geometry and topology associated
with the band structure which is independent of such local
deformations, we shall not discuss such cases in detail.

For concreteness, we consider just a left edge since the
right edge is analogous. The hard boundary condition [8] is
the simplest Dirichlet boundary condition at an edge, whereby
we simply demand that �0 = (0,0), which leads to α0 = 0.
Hence, any initial state vector

1 ≡
(

β1
0

)
(48)

will satisfy this Dirichlet boundary condition on the left edge.
Similarly, on the right edge, as �N+1 = (0,0)T , we have

N ≡
(

0
αN

)
. (49)

Note that β1,α1 ∈ Cr are still undetermined for r > 1 on their
respective edges. We shall use the decay conditions to fix these
in the next section.

Formally, we can also define projectors to write the
boundary condition in a way similar to the decay conditions.
We begin by defining the 2r × r matrices

Qα =
(

0r×r

1r×r

)
, Qβ =

(
1r×r

0r×r

)
(50)

as the injectors into the β and α subspaces, respectively. In
terms of these operators, the Dirichlet condition on the left
edge is equivalent to the statement that  ∈ range(Qβ), while
the right edge is equivalent to  ∈ range(Qα). Finally, define
the projectors

PR = QαQ†
α, PL = QβQ†

β . (51)

Then, a sufficient condition for  ∈ C2r to be a left edge state
is

PL = , (52)

while for the right edge, we have

PR = . (53)

These are our boundary conditions.

4. Physical edge states

We have obtained two sets of conditions, viz., the decay
conditions and the boundary conditions, that we need to
solve simultaneously in order to obtain the physical edge
states. However, before we attempt to do so, we can ask a
somewhat perverse question, which turns out to have important
consequences: What if we chose the wrong decay condition
for a given boundary? We tabulate the situation in Table I.
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TABLE I. Boundary(rows) vs decay(column) conditions.

P< =  P> = 

PL =  Left edge Unphysical
PR =  Unphysical Right edge

The wrong choice of decay condition implies that the
corresponding state grows (instead of decaying) exponentially
in the bulk, and is hence not normalizable and unphysical.
However, we shall see that in order to account for all the
windings corresponding to the edge state, we shall need to
take the unphysical states into account. Furthermore, these
should not be thought of as a complete fantasy, as they can
be revealed by changing the boundary condition, as we shall
demonstrate explicitly in Sec. III D

At this point, we can compute the physical edge states
by solving the decay conditions and the boundary conditions
simultaneously. For instance, for the left edge state, we seek
to simultaneously solve

P< =  = PL (54)

or, alternatively,

P<1 = 1; 1 =
(

β1
0

)
. (55)

Note that as rank(P<) � r , this is a homogeneous linear
system of up to r equations for the r variables, viz., the
coefficients of β1. But, for a nontrivial state, we demand
that β1 �= 0, from which we can obtain a Cramer’s condition,
which can be numerically solved to obtain the physical edge
spectrum.

In the following, we also analytically construct a closed-
form expression combining the decay and the boundary
conditions for the case when there are an equal number
(= r) of eigenvalues inside and outside the unit circle in the
complex plane, which corresponds to an (ε,k⊥) ∈ G , i.e., in
the bulk gap. This implies that Tr(P<) = Tr(P>) = r , so that
P< + P> = 1 and

P<1 = 1 ⇒ P>1 = 0. (56)

We seek to represent P> in terms of the (generalized)
eigenvectors of T . Let ρi ∈ C be the generalized eigenvalues
of T with corresponding left and right generalized eigenvectors
being φi’s and ϕi’s. Furthermore, let us assume that that ρi lies
outside the unit circle for i = 1, . . . ,r while it lies inside the
the unit circle for i = r + 1, . . . ,2r . Then, we define the left
and right subspaces corresponding to P> as

L> = (φ1, . . . ,φr ), R> = (ϕ1, . . . ,ϕr ), (57)

where L>,R> ∈ C2r×r span the cokernel and range of P>,
respectively.

If T were normal, i.e., diagonalizable by a unitary trans-
form, then the right eigenvectors ϕi’s form an orthonormal
basis of C2r . As P> projects along a subset of these
eigenvectors, it is an orthogonal projection, which can be
written as

P> = ϕ1ϕ
†
1 + ϕ2ϕ

†
2 + · · · + ϕrϕ

†
r = R>R†

>. (58)

Alternatively, in terms of the left eigenvectors, we can also
write P> = L>L†

>.
In general, the analog of this expression is the nonorthogo-

nal representation [42] of P>

P> = R>(L†
>R>)−1L†

>. (59)

Hence, the decay condition P>1 = 0 [Eq. (56)] implies
L†

>1 = 0, which, using Eq. (57), can be written explicitly
as

r∑
j=1

(φ∗
j )i(β1)j = 0, i = 0, . . . ,r (60)

which constitutes r linear equations for r variables (β1)j . Note
that β1 is unique up to a nonzero complex scalar since the right-
hand sides are all zero. Thus, the space of unique solutions
really is the complex projective CPr−1 valued. Equation (60)
has a nontrivial solution if and only if

det[L†
>Qβ] = 0, (61)

which is essentially a Cramer’s condition. The analogous right
edge conditions reads as

det[R†
<Qα] = 0. (62)

These conditions incorporate both the boundary and decay
conditions and can be solved numerically to obtain ε as a
function of k⊥ to obtain the edge spectrum εedge(k⊥).

Equation (61) is very convenient for numerical computa-
tions, but we also present an alternative characterization which
is more explicit in terms of T ’s projection. The general spectral
decomposition of the resolvent of T [37] yields

P> =
∮

|z|=1

dz

i2π
(z − T −1)−1

=
∮

|z|=1

dz

i2π
T (zT − I)−1. (63)

Essentially, we use the fact that the integrand has poles
whenever z equals an eigenvalue ρs of T so that |ρs | > 1.

Now, in the simpler case of a normal T , we have P> =
L>L†

> = R>R†
>, so that

det[Q†
βP>Qβ] = det(Q†

βL>) det(L†
>Qβ) = 0. (64)

Substituting the integral representation of P> from Eq. (63),
we get

det

[∮
|z|=1

dz{T (ε)[zT (ε) − I]−1}ββ

]
= 0, (65)

where [∗]ββ denotes the r × r submatrix of the argument and
we have expressed the ε dependence of T explicitly. Such
an equation, though impractical for numerical computations,
makes explicit the analytic properties of an edge dispersion
ε(k⊥) in open neighborhoods where it exists as a solution.

In the most general case where P> is oblique (nonorthog-
onal), the analog of Eq. (64) is

det[[P†
>P>]ββ] ≡ det[Q†

βP†
>P>Qβ] = 0, (66)

where P> is still given by the integral equation (63).
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III. CASE OF r = 1

Now that we have a hammer, we look for a nail. The
simplest nontrivial case for our formalism corresponds to
r = 1. In the following, we shall see that this case offers
further simplifications, as well as additional structure that is not
present, or at least not immediately obvious, in the higher-rank
cases.

A. Transfer matrix

Let us start with an explicit calculation of the transfer
matrix using Eq. (22). For r = 1, � is a 1 × 1 matrix, i.e.,
a number, which we can set to 1 by a suitable normalization of
the recursion relation.5 We write the 2 × 2 transfer matrix as

T = 1

|Gvw|
(

1 −Gww

Gvv − det(G|span(v,w))

)
, (67)

where we have defined the restricted determinant as

det
(
G|span(v,w)

) =
∣∣∣∣Gvv Gvw

Gwv Gww

∣∣∣∣ = GvvGww − GvwGwv.

The prefactor becomes |Gvw| after we gauge away the phase
of T by the gauge transform from Eq. (27) as

T → eiθT = ei arg (Gvw)T . (68)

Also, the conditions on the Green’s function in Eq. (24) reduce
to

Gvv, Gww ∈ R, G∗
vw = Gwv. (69)

As T is real and det T = 1, T ∈ Sp(2,R) ∼= SL(2,R). Hence,
all transfer matrices for r = 1 are symplectic, by construction.6

We can write out the Floquet discriminant, the trace of the
transfer matrix, as

�(ε) = 1

|Gvw| [1 − det(G|span(v,w))]. (70)

The band edges are given by �(ε,k⊥) = ±2, which can be
used to solve for ε(k⊥), at least locally. Note that ε enters
the calculation only as G = (ε1 − M)−1, which is a rational
function of ε, so that solving for the band edges is equivalent
to finding the zeros of a polynomial in ε.

The case of the edge states is also particularly simple for
r = 1. As the subspaces corresponding to |ρs | ≶ 1 are either
∅ or one dimensional, the decay condition requires that 1 be
an eigenvector:

P<1 = 1 ⇒ 1 ∝ ϕ1, (71)

where ϕ1 is the eigenvector of T corresponding to the
eigenvalue |ρ1| < 1, i.e., in the bulk gap. We get the analogous
condition for the right edge.

We start off with a somewhat less restrictive condition
which can be represented in a neat geometric way. We demand
simply that 1, N be eigenvectors of T (hereby referred to as

5This also rescales ε, but that is analogous to writing the energy in
units of the hopping energy, a practice that is quite standard.

6This may not be true for higher ranks, as Sp(n,R) ⊂ SL(n,R) is a
proper subset for n > 2.

the eigenvalue condition). We note that for any antisymmetric
J ∈ R2×2 and ϕ ∈ C2, we have

ϕT J ϕ = 0. (72)

The eigenvalue condition (T ϕ ∝ ϕ) can then be equivalently
expressed as

f (ε,k⊥) ≡ ϕT J · T (ε,k⊥) ϕ = 0. (73)

In dynamical systems literature, the function f is often referred
to as the Evans function [20]. This is equivalent to the statement
that ϕ satisfies either the left or the right decay condition, i.e.,
it lies entirely in the growing or the decaying subspace. We
can later check whether these states are physical by computing
the corresponding eigenvalues.

The hard boundary condition [Eqs. (48) and (49)] implies
that

1 =
(

1
0

)
, N =

(
0
1

)
, (74)

where we have exercised our right to scale 1,N by an arbitrary
complex number. This then suggests that we choose

J =
(

0 1
−1 0

)
(75)

such that J is the symplectic form with respect to the β and α

subspaces. Such a choice of J automatically incorporates the
hard boundary data into the Evans function.

We term a solution εedge(k⊥) of the equations (73)–(75) for
either ϕ = 1,N as the edge spectrum. Note that this includes
the physical as well as the unphysical edge states, as defined
in Sec. II D. These conditions describe a curve in the (ε,k⊥)
space, which has an associated winding number.

B. Hofstadter model

We start off by repeating Hatsugai’s [7] calculation in our
formalism. The Hofstadter Hamiltonian, after a partial Fourier
transform along y, the direction with PBC, is given by

H = −
∑

n

[c†ncn+1 + c
†
n+1cn + 2 cos(ky − 2πnφ)c†ncn],

(76)
where φ = p/q, p,q ∈ Z+. The system is periodic with
period q, and we get a gapped system with edge states for
odd q. We club together q physical sites to make a supercell,
so that J has all entries equal to zero except J1q = 1, while M

has 2 cos(ky − 2πnφ) as its diagonal entries while it has 1’s
on the first diagonal. For instance, for the simplest nontrivial
case of φ = 1

3 , these matrices are

J =
⎛⎝0 0 1

0 0 0
0 0 0

⎞⎠ (77)

and

M = 2

⎛⎝cos
(
ky − 2π

3

)
1 0

1 cos
(
ky + 2π

3

)
1

0 1 cos(ky)

⎞⎠. (78)
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FIG. 3. The spectrum of Hofstadter model, with the band edges
(dark blue) computed using the transfer matrix formalism and the left
and right edge state dispersions (dashed and dashed-dotted curves)
from the Evans equation (73), overlaid on the spectrum computed
using exact diagonalization for a (top) commensurate and (bottom)
incommensurate system. Note that in the latter case, the edge states
seen in exact diagonalization exactly follow the winding right edge
state obtained from the transfer matrix.

Going through the machinery above, we obtain the Floquet
discriminant as

�(ε,ky) = ε3 − 6ε − 2 cos(3ky). (79)

In general, for arbitrary q, � is a polynomial in ε of order
q. The edge state calculation is identical to Hatsugai’s, so we
shall not discuss it in any detail. However, we emphasize his
remark that if the total number of sites is commensurate with
the flux φ, i.e., a multiple of q, then for a given ky , we either
get edge states on both left and right edges, or no edge states
at all. In order to have an edge state for all ky , which will have
an associated winding, we need to consider a system with the
number of sites incommensurate with the flux7 (see Fig. 3).

7Our usage of the words “commensurate” and “incommensurate”
seems to be opposite that of Hatsugai!

In our picture, for the latter case, the number of supercells
is not an integer. This makes physical sense for a Hofstadter
model as the N degrees of freedoms per supercell are physical
sites for the Hofstadter model, so that we can remove those
sites. In general, the degrees of freedom inside a supercell are
not physical sites. However, we shall see that the number
of supercells being fractional still formally makes sense,
and hence we can contrive (potentially unphysical) boundary
conditions for those cases which will exhibit the winding of the
edge states. We shall hereafter use the word incommensurate
(with the superlattice) to refer to the cases where the number
of supercells is not an integer.

C. Natural basis and “unfolding”

Hatsugai’s calculation of the transfer matrix worked be-
cause of the fact that the system had nearest-neighbor hopping.
Before we proceed to further examples, we stop to consider
the implications of nearest-neighbor hopping inside a single
supercell, which implies, in our notation, that M is tridiagonal,
and J = e1 ⊗ eN , as in the Hofstadter model. Explicitly, if

J =

⎛⎜⎜⎝
0 0 . . . 1
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞⎟⎟⎠, M =

⎛⎜⎜⎝
μ1 τ1 . . . 0
τ1 μ2 . . . 0
...

...
. . .

...
0 0 . . . μN

⎞⎟⎟⎠,

(80)
with μn,τn ∈ R ∀ n = 1,2, . . . N , where we have defined
τN = 1, then we can write the recursion relation as

τnφn+1 + μnφn + τnφn−1 = εφn, (81)

where τn and μn are periodic with period N . Following
Hatsugai and others [9,10], we can compute the transfer matrix
as

T =
N∏
n=1

Tn, Tn =
(− 1

τn
(ε − νn) −1

1 0

)
, (82)

where Tn is the transfer matrix from site n to site n + 1 with
periodicity Tn+N = Tn. This construction always results in
the transfer matrix being polynomial in ε, as it simply involves
a product of matrices linear in ε. Subsequently, the Floquet
discriminant � = trT is a polynomial in ε, a fact which we
shall use when discussing the winding in Sec. IV.

Now, an interesting aspect of our computation of the transfer
matrix is that it is basis independent, as we have not used the
explicit form of J or M anywhere in this calculation. Can we
choose a basis for our system where J and M are of the form
in Eq. (80)? Let us assume so, and let such a basis of CN be
{ξ i , i = 1, . . . ,N }.

We start off by noting that J a natural orthonormal basis
for CN , viz.,

CN = span{v,xj ,w}, j = 2, . . . ,N − 1. (83)

As J = v · w†, in this basis, 〈vJw〉 = 1, and all other matrix
elements of J are zero, which is what we demand in Eq. (80).
Hence, we set ξ 1 = v and ξN = w. Now, we can represent M
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in this basis as

M =
⎛⎝v†Mv v†MX v†Mw

X†Mv X†MX X†Mw
w†Mv w†MX w†Mw

⎞⎠. (84)

Note that we still have freedom to choose {ξ j } as linear
combinations of xj , j = 2, . . . ,N − 1. We seek to turn
M tridiagonal by this freedom. Any such choice would
correspond to a unitary transform of M as defined in Eq. (84)
only in the subspace spanned by xj ’s, i.e., M → U · M · U†,
where

U =
⎛⎝1 0 0

0 UX 0
0 0 1

⎞⎠ · UJ , (85)

where UJ simply sets ξ 1 = v and ξN = w, while leaving
the X subspace invariant. We seek a suitable choice of UX ∈
U (N − 2) which tridiagonalizes M . For U · M · U† to be real
tridiagonal, we need that

w†Mv = 0,

UX(X†MX)U†
X is tridiagonal,

UX(X†Mv) ∝ (1,0 . . . 0)T ∈ RN −2,

UX(X†Mw) ∝ (0,0 . . . 1)T ∈ RN −2. (86)

The first condition simply means that the degrees of freedom
in a supercell connected to the next and the previous supercells
are not directly connected to each other (except for when
N = 2). This can always be arranged by taking a big enough
supercell.

For the second condition, we note that any Hermitian
matrix can be reduced to a real tridiagonal form using the
Lanczos/Householder algorithm [43,44]. We choose UX to
be the (nonunique) unitary matrix that tridiagonalizes the
Hermitian matrix X†MX.

Finally, the question of tridiagonalizing M has reduced
to the question of satisfying the conditions for rotations
of X†Mv and X†Mw, which should be checked explicitly
for a given case, employing the nonuniqueness of UX for
tridiagonalization.

If such a unitary transform U does exist, we shall refer
to such a transformation as unfolding the model to a 1D
chain. A quick survey of the matrix M in this basis reveals
various restrictions on the transfer matrices. For instance, if
v†Mv and w†Mw are real, it immediately follows that the
entries of the transfer matrix are real. Furthermore, we can
often glean information about the edge states by looking at the
hopping of the resulting 1D chain. We discuss that explicitly in
Sec. III D 3.

D. Chern insulator

Finally, we proceed to the case of Chern insulator, where
we compute the transfer matrix. This model turns out to be the
drosophila melanogaster (fruit fly) of topological states, as we
shall show in the following calculations. Furthermore, as the
transfer matrix is quadratic in ε, we can carry out much of
the computation analytically.

1. Transfer matrix

Consider the 2D lattice Hamiltonian

H = sin kxσ
x + sin kyσ

y + (2 − m − cos kx − cos ky)σ z

(87)
with an edge along the x axis (see Appendix D for details
of the model as well as a direct computation of the transfer
matrix). We begin with the identification

J = 1

2i
(σx − iσ z), M = sin kyσ

y + �(ky)σ z, (88)

with �(ky) = 2 − m − cos ky , and compute

T = 1

|�(ky)|
(−ε2 + �2(ky) + sin2 ky ε − sin ky

−(ε + sin ky) 1

)
. (89)

Note that this is not identical to the transfer matrix obtained
in Eq. (D10), but is related by a similarity transform, as they
both have the same determinant and trace:

�(ε,ky) = 1 − ε2 + �2(ky) + sin2 ky

|�(ky)| . (90)

This is the main advantage of calculating in a basis-
independent fashion: the transfer matrix itself depends on the
choice of basis, but the Floquet discriminant, which governs
the bulk properties, is a basis-independent quantity.

We can compute the band edges from this expression, using
� = ±2, to get

ε2 = sin2 ky + (2 ∓ 1 − m − cos ky)2. (91)

The bands are symmetric under ε → −ε, and stretch between
εmin < |ε| < εmax, with

εmin =
√

sin2 ky + (1 − m − cos ky)2,

εmax =
√

sin2 ky + (3 − m − cos ky)2 (92)

for 0 < m < 2. We can see that this agrees with the spectrum
computed using exact diagonalization, as shown in Fig. 4.

2. Unfolding the 1D chain and SSH model

For the Chern insulator, the unfolding to a 1D chain is
particularly neat, as it leads to an alternating bond model,
a quintessence of which is the Su-Schrieffer-Hieger (SSH)
model [45] for polyacetylene. We demonstrate this idea
explicitly in the following. We start off with the Hamiltonian

H = sin kxσ
x + sin kyσ

y + (2 − m − cos kx − cos ky)σ z.

(93)
We again identify

J = 1

2i
(σx − iσ z) ≡ v · w†, (94)

where

v = 1√
2

(−i

1

)
, w = 1√

2

(
i

1

)
. (95)

As M is 2 × 2 and hence, by definition, tridiagonal, the
unfolding requires a unitary operator which takes J to the
desired form of Eq. (80). Take a unitary operator U , defined as

U = 1√
2

(i1 + σx), (96)
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FIG. 4. The spectrum of Chern insulator for m = 0.8, with the
band edges (dark blue) computed using the transfer matrix formalism
and the left and right edge state dispersions (dashed and dashed-
dotted curves) from the Evans equation (73), overlaid on the spectrum
computed using exact diagonalization for a (top) commensurate and
(bottom) incommensurate system. Note that in the latter case, the
edge states seen in exact diagonalization exactly follow the winding
right edge state obtained from the transfer matrix.

so that Uv = e1 and Uw = e2. The lattice Hamiltonian
transforms as H → H′ = UHU†, with

H′ = sin kxσ
x + sin kyσ

z − (2 − m − cos kx − cos ky)σy.

(97)
We now transform this Hamiltonian to the real space along x

to get

H′(ky) =
∑

n

[
c†n+1

(−iσ x + σy

2

)
cn − c†n

(
iσ x + σy

2

)
cn+1

+ c†n(sin kyσ
z − �(ky)σy)cn

]
, (98)

where cn ≡ (cn,c̄n)T . Redefining c̄n = b2n, cn = b2n+1 and
expanding the products, we get

H′(ky) =
∑

n

[(−i τnb
†
n+1bn + H.c.) + μnb

†
nbn], (99)

FIG. 5. Unfolding the Chern insulator: In (a), we see the Chern
insulator in the usual basis, treating the two degrees of freedom as
sites. A change of basis in (b) transforms the model to a 1D chain
with alternating hopping.

where

μn = (−1)n sin(ky), τn =
{
�(ky), n = even
1, n = odd.

Hence, by a basis transformation on the Chern insulator, we
have obtained the Hamiltonian for a 1D chain with alternating
bond strengths 1 and �(ky) (see Fig. 5). This is analogous
to the situation with the SSH model, with the addition of an
alternating onsite energy term.

3. Edge states

We can compute the edge spectrum explicitly. For the left
edge, applying the Evans condition [Eq. (73)], we get

0 = Gvv = ε + sin ky ⇒ εL(ky) = − sin ky, (100)

while for the right edge, we have

0 = Gww = −(ε − sin ky) ⇒ εR(ky) = sin ky. (101)

These correspond to the states that satisfy a decay and a
boundary condition, but not necessarily the right combination
thereof (see Table I). To check that, we will need to compute
the eigenvalues of the transfer matrix of T [εL,R(ky),ky]. For
εL(ky),

T [εL(ky),ky] = 1

|�(ky)|
(

�2(ky) −2 sin ky

0 1

)
, (102)

so that

T [εL(ky),ky]1 = |�(ky)|1, (103)

where 1 = (1,0)T . Hence, for a hard boundary condition,
this edge is physical if

|�(ky)| = |2 − m − cos ky | < 1, (104)

which implies that 1 − m < cos ky < 3 − m. Hence, we have
edge states for cos ky > 1 − m if m ∈ (0,2) and cos ky < 3 −
m if m ∈ (2,4).
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Similarly, for the right edge, using a hard boundary
condition, we get

T [εL(ky),ky]N = 1

|�(ky)|N, (105)

which is physical if∣∣∣∣ 1

�(ky)

∣∣∣∣ > 1 ⇒ |�(ky)| < 1, (106)

which is identical to the condition for the left edge state.
Using the SSH picture, the emergence of edge states is

transparent: whenever one opens a boundary, one gets an edge
state if the boundary cuts open a strong bond. Scanning as a
function of ky , we can see that the edge states vanish when
the bonds change their relative strength, i.e., when �(ky) =
1 ⇒ cos ky = 1 − m, which is what one obtains from more
elementary means [33] or sees in exact diagonalization.

Furthermore, in the SSH model, the edge state appears at
zero energy [2]. However, for the Chern insulator, we also
have an onsite energy term μn = (−1)n sin(ky). Hence, the
spectrum of the edge state is given by ε(ky) = − sin(ky) for
the left edge (n = 1) and ε(ky) = sin(ky) for the right edge
(n = 2 × number of supercells), which is also what we got
from a direct computation.

If the SSH chain has an even number of sites, so that
the number of sites is commensurate with the size of the
supercell, the edge states always occur in pairs, i.e., either both
at the left and right end or not at all. This corresponds to the
physical situation, as the aforementioned sites correspond to
local spin/orbital degrees of freedom and hence always occur
in pairs, which explains why the left and the right edges always
switch off at the same ky in the computation above. However, if
one considers the incommensurate case where the SSH chain
has an odd number of sites, there is an edge state for every ky .
Hence, if we allow such an (unphysical) boundary condition,
we can expose the entire edge state in an exact diagonalization
calculation, which is associated with the winding number on
the Riemann surface (see Fig. 4).

E. Further examples

Using the transfer matrix construction, the calculation of
bulk bands as well as edge states becomes simply a matter of
identifying the J and M matrices. We list these matrices for
some of the well-known topological and semimetal phases

in Table II. The corresponding band structures and edge
states, superimposed over the exact diagonalization result, are
collected in Fig. 6.

The parametrization for the case of a square lattice with
an edge along a side of the square is straightforward, as we
simply identify the direction normal to the edge as x and
the other direction as y. The same idea works for nonsquare
lattices, but it needs some care to define the J and M

matrices. In the following, we discuss the identification for
kagome semimetal, which had been previously analyzed using
less general methods [46]. Consider a tight-binding model
with nearest-neighbor hopping on a kagome lattice, which is
described by the Bloch Hamiltonian [47,48]

H(k) = 2

⎛⎝ 0 cos k1 cos k3

cos k1 0 cos k2

cos k3 cos k2 0

⎞⎠, (107)

where ki = k · ai , and

a1 =
(

1
0

)
, a2 = 1

2

(−1√
3

)
, a3 = −1

2

(
1√
3

)
(108)

are the lattice vectors corresponding to the three bonds.
Let us define the x and y directions to be along the unit

vectors

ex = 1

2

(√
3

−1

)
, ey = 1

2

(
1√
3

)
, (109)

so that k = kxex + kyey . We then write ki in terms of kx and
ky , and decompose the Bloch Hamiltonian as

H(k) = ei
√

3kx/2J (ky) + M(ky) + e−i
√

3kx/2J †(ky), (110)

where J and M are independent of kx .

IV. RIEMANN SURFACE AND WINDINGS

It is well known that the edge states of a topological phase
carry topological characteristics dictated by the bulk, which
prevents them from being gapped out. Despite the strong
dependence of the edge spectrum on the precise boundary
condition, the number of (signed) crossings of a given energy
level in the band gap is a topological invariant, equal to the
bulk Chern number. The proof of this so-called bulk-boundary
correspondence is highly nontrivial [25], and has been worked
out in detail for the clean limit only in certain specific
cases [12,49]. However, an alternative perspective, due to

TABLE II. A list of J and M matrices for some of the well-known topological and semimetal states. The corresponding spectra are plotted
in Fig. 6.

Model J M

Chern insulator
1

2i
(σ x − iσ z) sin kyσ

y + �(ky)σ z

Dirac semimetal
1

2i
(σ x − iσ z) �(ky)σ z

Graphene

(
0 1
0 0

) (
0 1 − eiky

1 − e−iky 0

)
Kagome semimetal

⎛⎝ 0 0 0
eiky/2 0 e−iky /2

0 0 0

⎞⎠ ⎛⎝ 0 eiky/2 2 cos ky

e−iky /2 0 eiky/2

2 cos ky e−iky /2 0

⎞⎠
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FIG. 6. The spectrum of (top) Dirac semimetal, (middle)
graphene, and (bottom) kagome semimetal. See Sec. III E and Table II
for details.

Hatsugai, identifies the topological invariants of the edge states
as winding numbers of the edge states around certain holes in
the (complex) energy Riemann surface. He also provides a
proof of this correspondence [8].

In this section, following Hatsugai, we describe the geom-
etry associated with the transfer matrices. The central purpose

of this analysis is to obtain a better understanding of the
topological nature of the edge states.

A. The two complexifications

In the Bloch analysis of discrete periodic systems, we
usually restrict ourselves to real energies and momenta, which
correspond to plane-wave eigenstates. However, in this section,
we shall see that there is much to be gained by allowing them
to be complex (“complexifying” them). In the following, we
shall only describe the situation for r = 1. Furthermore, we
shall restrict ourselves to a system in two spatial dimensions,
with hard boundary conditions along x and periodic boundary
conditions along y, so that the transverse momentum is
k⊥ = ky ∈ S1.

Consider, then, a 2 × 2 transfer matrix for a two-
dimensional system T (ε,ky). The eigenvalues of the transfer
matrix are

ρ± = 1

2
[� ±

√
�2 − 4], � = trT , (111)

which satisfy ρ+ρ− = det T = 1. Following the Bloch ansatz,
we can put ρ+ = eikx ⇒ ρ− = e−ikx , so that kx is a function of
(ε,ky). In the standard Bloch theory, (ε,ky) ∈ G , the band gap,
if |ρ±(ε,ky)| �= 1, i.e., when ρ+ = eikx has no real solution
in kx ∈ R. Physically, this simply means that there are no
propagating states along x in the gap.

However, ρ±(ε,ky) = e±ikx can always be solved in C, as
ρ+ρ− = 1 ⇒ ρ± �= 0. That is our first complexification. In
terms of the Floquet discriminant,

�(ε,ky) = 2 cos kx. (112)

By solving this equation for kx ∈ C, we get the so-called
complex band structure of the system [7,22], which can also
be numerically computed and plotted in a three-dimensional
space [Re(kx),Im(kx),ε] for a given ky [10,40]. The imaginary
part of kz is interpreted as the inverse penetration depth of the
edge modes, with Im(kx) negative (positive) corresponding to
the left (right) edge.

Now on to the second, and much more interesting, com-
plexification. We note that the expression for the eigenvalues
involves

√
�2 − 4, which is not a genuine function until we

choose a branch of the square root. For real ε, the argument of
the square root is also real and the two branches are picked for
ρ±, respectively. However, if we allow ε to be complex, the
square root becomes a genuine function from a two-sheeted
Riemann surface to the complex plane, with the two sheets
corresponding to the two choices for a branch, connected at the
branch cuts in the complex plane [7,22]. For real eigenvalues,
the two sheets correspond to the magnitude of the eigenvalue
being greater than (less than) unity. It is this structure that we
seek to expose in the following.

As remarked earlier, the Floquet discriminant is, in general,
a rational function of ε and ζ = eiky . However, we shall
restrict ourselves to the cases where it is a polynomial in ε,
so that the denominator is independent of ε (see Sec. III C for
relevant conditions for this to happen). Let us, then, define the
discriminant of Eq. (111) as

P (ε,ky) = �2(ε,ky) − 4. (113)
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We shall hereafter simply write P (ε), tacitly assuming the
dependence on ky . For a given system with N degrees of
freedom per supercell, the highest power of ε is that in det(ε1 −
M), i.e., εN , so that P (ε) is a polynomial of order 2N in ε.

For a given ky , P (ε) has 2N real roots, corresponding to
the band edges for N bands. Hence, allowing ε to be complex,
we get a ε-Riemann surface with two sheets connected along
N branch cuts on the real axis. This corresponds to a surface
with genus [50] N − 1.

In the following, we exhibit this structure explicitly for the
case of the Chern insulator. Starting with Eq. (90), we can
write

P (z) = ε4
min(z − a)(z − 1)(z + 1)(z + a) (114)

with

z(ky) = ε

εmin
, a(ky) = εmax

εmin
> 1,

where εmin(ky) and εmax(ky) are band edges, as defined in
Eq. (92).

The prefactor ε4
min is nonzero for all ky , except when the

parameter m = 0,2,4, i.e., at the gapless points. Hence, as far
as edge states are concerned, we shall drop it in the subsequent
discussion as it does not affect the roots of P (z) and hence the
branch-cut structure. On the other hand, for m = 0,2,4, the
system becomes gapless and the topology of the Riemann
sheet changes. In fact, for the gapless case, the polynomial can
be written as

P (z) = z2(z − εmax)(z + εmax), z = ε (115)

so that the Riemann surface now consists of two sheets
connected at the single branch cut running between −εmax

and εmax, which has the topology of a sphere [50].
For the gapped case, given a(ky), we can map the Riemann

surface to a torus (or a rectangle in the complex plane with
opposite edges identified, to be precise), using the elliptic
integral [50]

w =
∫ z

z0

dt√
P (t ; ky)

, (116)

where the integral is independent of the path, as long as it does
not wind around the branch cuts, corresponding to the two
holonomies of the torus. On the other hand, such a winding
gives the two periods of the torus, as

ω1(ky) =
∮

α

dt√
P (t)

, ω2(ky) =
∮

β

dt√
P (t)

. (117)

Hence, the elliptic integral maps the coordinate z on the
Riemann sheet to w on the rectangle formed by 0, ω1, ω1 +
ω2, and ω2 in the complex plane, with the opposite edges
identified. We can perform a GL(2,R) transform w �→ w̃ to
map this rectangle to the square S bounded by 0, 1, 1 + i,
and i. Finally, given w̃ = θ + iφ, we can embed the torus in
three-dimensional Euclidean space as

x1 = (R + sin φ) cos θ,

x2 = (R + sin φ) sin θ, (118)

x3 = cos φ,

FIG. 7. The schematic for plotting the Riemann sheet correspond-
ing to Chern insulator.

where (x1,x2,x3) ∈ R3 and R > 1 is a fixed constant. Hence,
using the sequence of maps described above, any given curve
ε(ky) can now be visualized as a curve on a torus. A schematic
of this process is depicted in Fig. 7. We also show such a plot
in Fig. 8.

Essentially, what we have is a family of Riemann sheets
parametrized by ky , and we used the fact that they all have the
same topology independent of ky to map them all to a single
torus. However, we mention in passing that when the topology
depends on ky , for instance, if the gap closes for some ky , we
can still discuss the family of Riemann sheets in the language
of cobordism. We shall not delve into the details of that picture
here.

B. Windings on the Riemann surface

In order to motivate the winding numbers associated with
the edge state, we recall that the edge spectrum was computed
from the Evans function condition of Eq. (73), with ϕ equal
to the boundary value required by the boundary condition.

FIG. 8. The energy ε-Riemann surface for a Chern insulator,
plotted explicitly using Mathematica. The black curve corresponds
to an edge state.
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Given a choice of ϕ, the Evans condition can be solved, at least
locally, to obtain ε as a function of ky . As ky ∈ S1 winds around
the Brillouin zone, ε(ky) describes a loop on the ε-Riemann
surface which can be associated with a set of winding numbers,
one along each of the noncontractible loops of the Riemann
surface.

Note that as ε(ky) is real on this curve, the essential fact
of Riemann surface that we are actually using is that it has
two copies of the real line, connected at the branch cuts.
We could have done that artificially, by gluing together two
branches of

√
P (z) wherever P (z) = 0, where the branches

yield the same result, but the language of Riemann surface
is more familiar and hence less ad hoc. The actual maps
that we are concerned with are, in essence, S1 → S1 such
that ky �→ εL(ky) ∈ R. This map is associated with just one
winding number as π1(S1) ∼= Z, which is not the same as the
fundamental group of the Riemann surface, as, for instance,
π1(T 2) ∼= Z ⊕ Z.

For concreteness’ sake, we plot the curve corresponding
to the left edge state for Chern insulator in Fig. 8. The edge
spectrum is εL(ky) = − sin ky , as computed in Sec. III D 3.
If the associated curve εL(ky) winds around a hole of the
Riemann surface, it has to be on both the sheets. But, the two
sheets correspond to the eigenvalues of T being less than or
greater than 1, i.e., for the modes to be decaying as n → ∞ and
n → −∞, respectively. Hence, in order to have a curve with a
nontrivial winding, we need both the physical and unphysical
states, as defined in Table I. We point out that in Hatsugai’s
analysis, the winding was obtained using only the physical
edge states by using a boundary condition such that 1 = N

in Table I, so that any given state is physical at, at least, one
of the edges. This corresponds to the incommensurate case in
our description.

In the discussion on the ε-Riemann surface, we remarked
that its topology changes when the system becomes gapless. In
particular, for the Chern insulator at m = 0 = ky , the Riemann
sheet is a 2-sphere, on which all loops are contractible. Hence,
as one tunes m across one of these gapless points, the winding
number (and hence the Chern number) can change, as the
loops that were noncontractible on the torus can be contracted
to a point on the sphere. This does not necessarily mean
that there are no states anymore that satisfy the boundary
and decay conditions; rather, it simply implies that the
curves corresponding to such states are now contractible (see
Fig. 10). Furthermore, we can also expose such a state in
exact diagonalization by taking an incommensurate system,
as shown in Fig. 9. Physically, this indicates that even when
the bulk is trivial, there can still be states that decay into the
bulk, but they are not topologically protected, and hence can
be removed by adding a suitable boundary term.

C. Winding in Sp(2,R)

A particularly nice windfall of the r = 1 systems is
that the corresponding transfer matrices T ∈ Sp(2,R), a Lie
group which is a three-dimensional manifold homeomorphic
to a solid 2-torus, i.e., D2 × S1, where D represents the
two-dimensional open disk. In Appendix A2, we describe a
particular parametrization of this space.

FIG. 9. The spectrum of Chern insulator for m = −0.8, with the
band edges (dark blue) computed using the transfer matrix formalism
and the left and right edge state dispersions (dashed and dashed-
dotted curves) from the Evans equation (73), overlaid on the spectrum
computed using exact diagonalization for a (top) commensurate and
(bottom) incommensurate system.

Given ε(ky) which is a continuous function of ky , consider
T [ε(ky),ky]. As ky ∈ S1, this describes a curve C on Sp(2,R),
which we can plot explicitly using Mathematica. Now, the
Evans condition describes just such a function ε(ky), hence,
corresponding to every edge state, we have such a curve in
Sp(2,R). We show an example of such a plot for the Chern
insulator in the topological as well as the trivial regime in
Fig. 10. We can clearly see the topological nature of the edge
state in the fact that the curve corresponding to the trivial
state is contractible, while the curve corresponding to the
topological state is not.

Note that this computation does not need any of the
complexifactions described in the previous sections. Another
advantage of plotting these curves in Sp(2,R) over the curves
on the ε-Riemann surface is that the curves described here are
always a solid torus for all rank-1 systems, as opposed to the
Riemann surface, which is a surface whose genus is a function
of the number of bands. For instance, we plot the edge state
for the Hofstadter model with φ = 1

5 in Fig. 11, the Riemann
surface corresponding to which has genus 4. The edge state
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FIG. 10. The plot of the transfer matrix corresponding to the left
edge state for Chern insulator, with m = +0.8 (red dashed curve)
and m = −0.8 (black solid curve) on the Sp(2,R) manifold, which
is homeomorphic to a solid torus. See Figs. 4 and 9, respectively, for
the corresponding spectra.

shown has a winding number of 2, a fact that can be easily
gleaned from the figure.

Finally, we show that there exists a winding number
associated with T in Sp(2,R), which is independent of
ϕ. To begin with, we note that as the fundamental group
π1[Sp(2,R)] ∼= Z (for a proof, see Appendix A 2), any curve C
on Sp(2,R) is associated with a winding number (also known
as Maslov index [51,52]). Formally, we have a map

μ : Z1[Sp(2,R)] → Z, (119)

which associates a winding number with each loop C ∈
Z1[Sp(2,R)], where Z1(M) denotes the set of all closed loops
on a smooth manifold M .

Now, the Evans condition for a given ϕ is a continuous
function of ky , to which we can associate a curve Cϕ , with
the corresponding winding number μ(Cϕ). Hence, for each
ϕ ∈ C2\{0}, we get a map ϕ �→ μ(Cϕ) ∈ Z. But, as μ(Cϕ) is
an integer, it cannot change continuously under a continuous
change of ϕ. Thus, μ(Cϕ) must be independent of ϕ’s for a
given gap.

So far, we have not shown using our formalism that the
winding number of a curve corresponding to a Evans function
condition in Sp(2,R) should be the same as the winding
number of the corresponding curve on the ε-Riemann surface,
even though we notice it to be so in all the examples that we
checked, and we intuitively expect it to be so. A proof of a
similar statement is discussed in Ref. [13] using K theory,
but it is rather opaque from the point of view of physicists.
Finally, the interpretation of the Chern number as a Maslov
index can provide new ways of computing it numerically, as
well as analytically [13,53].

V. AN EXAMPLE FOR r = 2

The computation of the transfer matrix naturally becomes
more intricate for r > 1. However, if the transfer matrix

FIG. 11. The spectrum of the Hofstadter model for φ = 1
5 (top),

and (bottom) the curve of transfer matrices on Sp(2,R) corresponding
to the left edge state in the second gap from the bottom. Note that the
curve winds around twice in Sp(2,R), as expected from the spectrum.

turns out to be symplectic, we can take advantage of the
additional structure for exact computations. Here, we compute
the transfer matrix for a r = 2 model in closed form and derive
exact analytical expressions for its surface spectrum for such a
case. The model we study is a topological crystalline insulator
(TCI), first introduced by Fu [31], whose topological surface
states are protected by crystalline symmetries alongside time-
reversal symmetry. Moreover, our derived expressions for the
topological surface bands correctly capture the closing of the
surface band gap as the model is tuned to its C4-symmetric
limit, in agreement with the k · p analysis of Fu [31], as well
as the lifting of the degeneracy of the surface bands as we
break the C4 symmetry.

The Fu model is defined on a three-dimensional tetragonal
lattice, with alternating layers of square lattices of A and B type
along the z axis. The system has a C4 symmetry in the plane
normal to the z axis. The lattice model consists of nearest- and
next-nearest-neighbor hoppings between two orbitals on each
site (typically identified as px and py), with the strength of
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hopping being equal in magnitude but opposite in sign on the
A and B sublattices. Thus, the model consists of four bands,
with two orbitals and two sublattice degrees of freedom. The
Bloch Hamiltonian is given by

H(k) =
(HA(k) HI (k)
H†

I (k) HB(k)

)
(120)

with the layer Hamiltonian Ha, a ∈ {A,B}, and the interlayer
hopping HI . The 2 × 2 blocks are given by

Ha(k) = 2ta
1

(
cos kx 0

0 cos ky

)
+ 2ta

2

(
cos kx cos ky sin kx sin ky

sin kx sin ky cos kx cos ky

)
= [ta

1 (cos kx + cos ky) + 2ta
2 cos kx cos ky

]
12

+ 2ta
2 sin kx sin kyσx + ta

1 (cos kx − cos ky)σz,

HI (k) = [t ′1 + 2t ′2(cos kx + cos ky) + t ′ze
ikz ]12, (121)

where we take tAi = −tBi ≡ ti for i = 1,2, so that HA =
−HB = H0. The system is invariant under C4 rotations, with
the C4 action defined by

C4 H(kx,ky,kz) C−1
4 = H(−ky,kx,kz), (122)

where C4 = i12 ⊗ σy . Clearly, a cut normal to the z axis
preserves the C4 symmetry. We cut the system along z (as
opposed to x in the previous sections but conforming to the
notation in Ref. [31]). Defining

H1(k⊥) = [t ′1 + 2t ′2(cos kx + cos ky)]12, (123)

where k⊥ = (kx,ky), we identify

J = t ′z

(
0 12

0 0

)
, M =

(
H0 H1

H1 −H0

)
. (124)

In order to reduce the notational clutter, we set

H0 = a 12 + b · σ , H1 = m12, (125)

where we define

a = t1(cos kx + cos ky) + 2t2 cos kx cos ky,

b = [2t2 sin kx sin ky, 0, t1(cos kx − cos ky)],

m = t ′1 + 2t ′2(cos kx + cos ky),

and b = |b|. We also normalize the parameters of the model
so that t ′z = 1.

To compute the transfer matrix, we begin with the SVD of
J as J = V · � · W †, with

V =
(
12

0

)
, � = 12, W =

(
0
12

)
. (126)

The condition for the transfer matrix being complex symplectic
was that [Gab,�] = 0, which is always true here. Furthermore,
as M and J are both real, the transfer matrix will be real. Thus,
T ∈ Sp(4,R).

Next, we need

G =
(

(ε − a)12 − b · σ −m12

−m12 (ε + a)12 + b · σ

)−1

≡
(

A B

C D

)−1

, (127)

where A = ε12 − H0, B = C = H1, and D = ε12 + H0. As
each block here is invertible for almost all ε, we use Eq. (A8)
from the Appendix to get

G =
(

A−1 + A−1BS−1
11 CA−1 −A−1BS−1

11
−S−1

11 CA−1 S−1
11

)
, (128)

where S11 = G−1/A = D − CA−1B. For the definition of V

and W as above, the computation of Gab, a,b ∈ {v,w}, is
simply taking the correct submatrices, viz.,

Gvv = A−1 + A−1BS−1
11 CA−1,

Gvw = − S−1
11 CA−1,

(129)
Gwv = − A−1BS−1

11 ,

Gww = S−1
11 .

Using Eq. (22), the transfer matrix becomes

T =
(

B − AC−1D AC−1

−C−1D C−1

)
, (130)

and substituting the blocks, we get

T = 1

m

(
η212 − 2ab · σ (a − ε)12 + b · σ

(a + ε)12 + b · σ −12

)
, (131)

where

η2 = ε2 − a2 − b2 − m2.

As T is symplectic, using results from Appendix C its spectrum
is given by

σ [T ] = 1

2

(
�μ ±

√
�2

μ − 4
)
, μ = ± (132)

where, for μ = ±1,

�μ = 1

2
[trT + μ

√
2trT 2 − (trT )2 + 8]

= 1

m
[ε2 − m2 − 1 − (a + μb)2]. (133)

The band edges are given by

|�μ| = 2 ⇒ �μ = 2λ, λ = ±1 (134)

which can be solved to get

ε = ±
√

(m + λ)2 + (a + μb)2, λ,μ = ±1. (135)

For the edge states, given  = (β,0)T , which satisfies the
boundary conditions for the left edge, we demand that T  is
in the same subspace as , spanned by e1 and e2. But,

T

(
β

0

)
=
(

(η212 − 2ab · σ )β
[(a + ε)12 + b · σ ]β

)
. (136)

Thus, for  to be a left edge state, we demand that

[(a + ε)12 + b · σ ]β = 0. (137)
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FIG. 12. The spectrum of the topological crystalline insulator
model due Fu [31], with the parameters t1 = 0.5, t2 = 0.25, t ′

1 = 1.25,
t ′
2 = 0.25, and t ′

z = 1 in Eq. (121). The band edges (dark blue)
and the left and right edge state dispersions (dashed and dashed-
dotted) computed using the transfer matrix formalism, overlaid on
the spectrum computed using exact diagonalization equivalent to
Fig. 2(b) of Ref. [31].

We get a nontrivial solution for β iff the matrix is singular, i.e.,
iff

σ [(a + ε)12 + b · σ ] = (a + ε)2 − b2 = 0. (138)

Thus, the left edge spectrum is given by

εL = −a ± b. (139)

Similarly, the right edge spectrum is given by

εR = a ± b. (140)

Thus, we have analytically obtained explicit expressions for
the boundaries of the bulk bands and the edge spectra. We
plot them, alongside the spectrum computed from exact
diagonalization, in Fig. 12, overlaid on the band structure
obtained by exact diagonalization.

From the figure, we note that there is a quadratic band
touching at the surface near kM = (π,π ), the projection of
the M point of the 3D Brillouin zone on a constant kz plane.
Expanding the left edge spectrum in the vicinity of this point
as k⊥ = kM + δk up to the second order in δk, we get

εL ≈ − 2(t2 − t1) − t1 − 2t2

2
(δk)2

± t1

2

√
(δk)4 + 4

[
1 −

(
2t2

t1

)2]
δk2

xδk
2
y. (141)

For t1 = 2t2 = t , we get a radially symmetric quadratic band
touching, with the spectrum given by

εL ≈ −t

[
1 ∓ 1

2
(δk)2

]
. (142)

Thus, we can uncover the fine-tuned nature of this surface
quadratic band touching as well as derive the coefficients of
a k · p expansion around that point, which was guessed on
symmetry grounds in Ref. [31].

This calculation for the rank-2 TCI reveals some aspects of
our formalism that did not come into play in the rank-1 case:

(i) The above calculation involved the eigenvalue problem
of a 4 × 4 transfer matrix, but it was still amenable to analytic
calculations leading to explicit closed-form expressions for
the bulk band edges and edge spectra, owing to the symplectic
nature of the transfer matrix.

(ii) For r = 2, we can potentially have partial gaps defined
in Sec. II D 1, which correspond to the (ε,k⊥) values where a
pair of eigenvalues of the transfer matrix lie on the unit circle
and the other pair off it. The edge states always touch one of
the band edges, but sometimes they can mean the edge to a
partial gap, so that for a given (ε,k⊥), there is an edge state as
well as a bulk band state. This is clearly seen in Fig 12.

(iii) The closed-form expression of the surface spectrum
can be used to analytically track the lifting of degeneracy of
the surface states at the high-symmetry points on the addition
of a C4-breaking term. For instance, we can add a term
δH = μσz ⊗ σz to the Hamiltonian, corresponding to breaking
the degeneracy of the px and py orbitals. Then, at the M

point,

a = 2(t2 − t1), b = (0,0,μ),

so that the left edge spectrum becomes

εL = 2(t1 − t2) ± μ. (143)

The gap is clearly proportional to μ, the strength of the C4-
breaking term.

VI. APPLICATION TO DISORDERED SYSTEMS

The generalized transfer matrix formalism can be used
to directly investigate tight-binding models in presence of
disorder and their metal-insulator transitions. The standard
approach [15,32,54] of determining the scaling properties of
the longest localization length of a quasi-1D representative of
a d-dimensional model, in the form of either a cylinder or a
strip, may be employed without modification to the generalized
transfer matrix formalism. In this section, we will demonstrate
how this is to be achieved.

Consider again a generic d-dimensional tight-binding
lattice model with q degrees of freedom per unit cell. The
simplest model of disorder is a diagonal (or the Anderson type)
disorder, which explicitly breaks the translational symmetry,
so that the transverse momentum k⊥ is not a good quantum
number anymore. Instead, we consider the system on a strip
geometry, i.e., infinite along x and finite along all the transverse
directions, with open or periodic boundary conditions.

Thus, we write our system in the position basis and
construct the supercells from the sites corresponding to a
constant x. For instance, for a two-dimensional strip of
width Ly , with sites indexed by m = 1, . . . ,Ly and internal
degrees of freedom at each site by α = 1, . . . ,q. The disorder
corresponds to the Hamiltonian

Vn =
Ly∑

m=1

q∑
α=1

Vnmαc†nmαcnmα, (144)

where {Vnmα} are i.i.d. real random variables, taken from a
uniform distribution around 0 with width W . Our supercells
now consist of the N = qLy degrees of freedom. Using the
method described in Sec. II, we can identify the hopping matrix
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J and the onsite matrix Mn, where only M depends on n as the
disorder is diagonal. We can construct the transfer matrix as a
function of n, i.e., n+1 = Tnn, where Tn now depends on
the disorder realization. Thus, for a system with N sites along
the x axis, we define the total transfer matrix as the product
TN ≡∏N

n=1 Tn.
To investigate the existence of topological edge states,

we note that for a strip geometry in two dimensions, there
are edge states localized at m = 1,Ly along the y axis and
strongly delocalized along x, even in the presence of disorder.
Thus, we need to look for an eigenvalue ρ of the total transfer
matrix which lies on the unit circle. Alternatively, we look for
the vanishing of a Lyapunov exponent, defined as λ = ln |ρ|.
In the next subsection, we describe a recipe to compute
the Lyapunov exponents numerically for a given disorder
realization.

A. Lyapunov exponents and localization lengths

The conventional approaches [15,32,54] to studying bulk
phases of disordered noninteracting models and their An-
derson transitions rely on obtaining the smallest Lyapunov
exponent (in magnitude) or, equivalently, the longest localiza-
tion length in the x direction for a fixed energy ε. When the
Fermi energy is set to ε, a further finite-size scaling analysis
of the longest localization length in the transverse directions
discriminates between conducting and insulating phases of the
bulk. Thus, to observe the quasi-(d − 1) dimensional metallic
edge modes in a d-dimensional disordered topological phase, it
is desirable to compute the multiset of all Lyapunov exponents,
hereafter termed the Lyapunov spectrum.

For a clean system, the eigenvalues ρi of the transfer
matrix determine the growth/decay rate of the corresponding
eigenstates, so that we can identify the Lyapunov exponents,
or alternatively, the inverse localization length, as λi =
1/li = ln |ρi |. Alternatively, we can define � = (T †T )1/2

with eigenvalues �i = |ρi |, so that λi = ln �i . For the dis-
ordered case, the transfer matrices depend on n, so that we
define

� = lim
N→∞

[T†
NTN ]1/(2N); TN ≡

N∏
n=1

Tn. (145)

The fact that such a finite-valued matrix exists is guaranteed by
Oseledec’s theorem [55]. The Lyapunov exponents are again
given by λi = ln �i , where �i ∈ R are the eigenvalues of �.
When TN is regarded as the evolution map of a dynamical
system in time N , the metallic states correspond to stable limit
cycles as N → ∞.

In principle, given the transfer matrix, one could directly
compute the matrix product in Eq. (145), and hence the
Lyapunov exponents, as a function of N . However, in practice,
such a numerical matrix multiplication and diagonalization is
usually plagued by numerical rounding and overflow errors,
associated with the finite precision of the floating point
representation of real numbers. In order to circumvent these
issues, we follow the method described in Ref. [55]. The key
idea is to perform a QR decomposition [32] after every step
involving a matrix multiplication.

Explicitly, we begin by performing a QR decomposition of
the first transfer matrix in the sequence as T1 = Q1R1, where
Q1 is unitary and R1 is upper triangular with real, positive
diagonal entries, sorted in descending order. Iterating, we
get

TN =
(

N∏
n=3

Tn

)
T2T1 =

(
N∏

n=3

Tn

)
T2(Q1R1)

=
(

N∏
n=3

Tn

)
T ′

2R1 =
(

N∏
n=4

Tn

)
T3(Q2R2)R1

= · · · = T ′
N

N∏
m=1

Rm = QN

N∏
m=1

Rm, (146)

where we have defined T ′
n+1 ≡ TnQn and carried out its

QR decomposition as T ′
n+1 = Qn+1Rn+1 at each iteration.

As Q†Q = 1 and R
†
mRm = Sm is diagonal with the diagonal

entries Sm,ii = (Rm,ii)2, we simply get

� =
[

N∏
m=1

Sm

] 1
2N

= diag

⎧⎨⎩
(

N∏
m=1

Rm,ii

) 1
N

⎫⎬⎭
i

. (147)

As N → ∞, the Lyapunov exponents converge to

λi = lim
N→∞

1

N

N∑
m=1

ln[(Rm)ii]. (148)

Hence, only the diagonal elements of Rm are needed at each
iteration, thereby avoiding the accumulation of numerical
error. Convergence to the true Lyapunov exponents can also
be ascertained by studying the statistical fluctuations of the
average on the right-hand side of (148).

B. Disordered Chern insulator

We now specialize to the case of a Chern insulator with
diagonal disorder. For a clean system, the onsite matrix M is
given by

M = 1

2

Lmax∑
m=1

(em+1 · e†m) ⊗ (iσ y − σ z) + H.c.

+ (2 − m)1Ly
⊗ σ z (149)

and the onsite Green’s function is

Gn = (ε1L ⊗ 12 − M − Vn)−1, (150)

where Lmax = Ly in the case of PBC and Lmax = Ly − 1 for
the open boundary condition. It is worth remarking that for
fixed ε and M ,G−1

n is noninvertible only for a set of measure Vn

realizations, i.e., almost everywhere, and so we shall sidestep
questions of its singularity.

The interlayer coupling matrix J remains unchanged for
this ensemble of disorder and takes the form of a 2Ly × 2Ly

matrix

J = 1

2i
1Ly

⊗ (σx − iσ z), (151)

which, however, remains singular, with rank r = Ly . This
conforms with the expectation of Ly independent channels
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FIG. 13. Numerically computed estimates of Lyapunov expo-
nents as a function of system length N for Chern insulator on a
strip geometry with width Ly = 40 and parameters m = 1.0, ε = 0.
For large N , the estimates converge to the Lyapunov exponents
{λi}. (a) Open boundaries along the vertical and disorder W = 0.1
show robust metallic edge modes (red trace) with λi = 0 in this
scale. Also highlighted is an insulating bulk mode (green trace) with
λi ≈ 3. (b) Vertical spatial profiles of the eigenstates for N = 103

with components (αN−1,βN ) for the modes highlighted in (a), where
the top is the bulk insulating mode (green trace) and the bottom
the metallic edge state (red trace) which is strongly localized at the
vertical boundaries. Arrows mark the position of these eigenmodes
in the Lyapunov spectrum. (c) The same system as in (a) with
periodic boundary conditions which shows no metallic edge states.
(d) Strongly disordered case (W = 5.0) with open boundaries and
absent metallic states.

in the nondisordered limit, which are explicitly coupled by
disorder. The SVD for J remains virtually unchanged:

J = 1Ly
⊗ (v · w†) =

Ly∑
y=1

Vy · W†
y, (152)

with v and w defined as in Eq. (95), and we have defined
the channels Vy := ey ⊗ v and Wy := ey ⊗ w; {ey}Ly

y=1 being
the standard basis of CLy . Also, � = 1Ly

, which implies that
the transfer matrix is symplectic, following Eq. (29).

For each n, the transfer matrix Tn can now be computed
using Eq. (22), which can be used to further compute the
Lyapunov exponents using Eq. (148). As the transfer matrix
is symplectic, the eigenvalues occur in reciprocal pairs, so
that the Lyapunov spectrum will always be symmetric about
zero. We seek a localized, potentially topological mode, with
a Lyapunov exponent zero (within numerical error).

In Fig. 13, we show the Lyapunov spectrum as a function of
N for the Chern insulator in the topological phase, with m = 1
and strip width Ly = 40. We limit ourselves to the energy
ε = 0, corresponding to the center of the band gap. For a weak
disorder (W = 0.1) and open boundary conditions along y,
there are two quasi-1D metallic modes with λi ≈ 0 at the center
of the spectrum, highlighted in red in Fig. 13(a). Numerically,

the relevant exponents are never zero to machine precision,
but are comparatively small (|λi | < 10−5 at N = 104) and
systematically decrease (as a power law) with increasing
strip length N . To confirm the identification of these modes
as topological edge states, we plot their spatial profile in
Fig. 13(b)(top), which clearly shows localization at the edge,
in contrast to an insulating localized mode with λi ≈ 3.
Furthermore, for the same parameters but with closed periodic
boundaries, no metallic modes are observed, as shown in
Fig. 13(c). We note that tuning the mass parameter m to the
topologically trivial range or moving ε into the center of the
bulk band also removes these metallic modes.

Finally, for a strong enough disorder (W = 5.0), the
metallic modes are also absent, as shown in Fig. 13(d). We
observe that the lifting of the metallic edge modes from the
asymptotic value λi = 0 occurs continuously with changes of
tuning parameters, in agreement with the theory of continuous
Anderson transitions [54]. However, further work is needed
to verify that the scaling exponents {νi} corresponding to the
divergence of the localization lengths {li} at the metal-insulator
transition agree with the expectations for the integer quantum
Hall transition [56,57]. We leave such numerical investigations
for future work.

VII. CONCLUSIONS AND DISCUSSION

In Bloch theory, the band structure is derived for Bloch
states indexed by a quasimomentum k, which can be thought
of as the analogs of plane-wave states for a system with
a periodic potential. However, a plane-wave state is strictly
defined only for an infinite periodic system (or, equivalently, a
system with PBC), which is manifestly violated in the presence
of a boundary. Nevertheless, the presence of such a boundary
is often crucial to make manifest the topological nontriviality
of the bulk band structure. In this sense, the transfer matrix
approach, being partly a real-space method, is ideally suited
to expose this physics. Nonetheless, the usual form of the
transfer matrix approach only works in the cases were the
hopping operator (J in our notation) is invertible, which has
often limited its applicability.

In this work, we have presented a general construction of the
transfer matrix for tight-binding models with physical edges.
Crucially, this generalization of the transfer matrix works even
in the cases where the hopping matrix element is not invertible.
Previously, such systems could only be tackled using either
numerical diagonalization and/or Green’s functions methods.
However, the linearity of the transfer matrix equation and
the ability to work in the infinite bulk limit gives it many
advantages over the other methods. For instance, localization
studies in disordered systems using the transfer matrix method
will benefit from our generalized formalism by allowing
the study of a wider class of tight-binding lattice models
and not just their representative Chalker-Coddington network
models [54].

We have also applied our formalism to several important
tight-binding models, many of which exhibit an integer
quantum Hall effect and topological chiral edge states. The
seminal works of Hatsugai [7,8] were re-examined using
our methods and formalism. When applied to the simple
2D Chern insulator and other r = 1 systems, our transfer
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matrix approach simplifies considerably and yields a close
relationship with symplectic geometry and has direct analogs
with dynamical systems through the Evans function. We have
presented, as Hatsugai has done for the Hofstader model, the
energy-Riemann surface of the Chern insulator and shown it
to be the simplest topological integer quantum Hall system.

Often, the application of transfer matrices is envisioned to
be applicable only to square lattices, where the hoppings in
the direction normal and parallel to the edge are independent.
However, we have also applied our construction to systems
on nonsquare lattice, for instance, the honeycomb (graphene)
and kagome lattices, to obtain bands and edge states that agree
with exact diagonalization. In essence, the singular value de-
composition in our construction identifies the relevant modes
that hop across the neighboring blocks, thereby mechanizing
the process that would otherwise take significant amount of
care to keep track of.

An interesting connection that we discovered on the side
is the mapping of the Chern insulator to the SSH model, an
insight which makes the origin of the edge states very clear.
Despite not being completely general, this connection hints
at the possibility of decomposing other relatively complicated
tight-binding Hamiltonians as one-dimensional chains by a
suitable basis transformation of the Hamiltonian, which can
be gleaned off from the tridiagonalization of J and M in our
notation.

We remark that all the interesting simplifications that let
us compute things analytically for the rank-1 case followed
simply from the fact that the transfer matrix was symplectic.
There are a wealth of interesting results for symplectic matrices
that can be used to further study these cases [36]. We did
describe the mathematical conditions for the transfer matrix
of systems of higher rank to be symplectic, however, the
physical interpretation and implications of those conditions
require further study.

One obvious next step would be a rigorous proof of
the bulk-boundary correspondence between bulk band Chern
number and the count of the chiral edge modes within our
generalized transfer matrices with little or no assumptions
on the underlying lattice. As the transfer matrix encodes the
data about the bulk bands and their wave functions, as well
as the edge states and their windings, we expect it to be of
importance in studying the bulk-boundary correspondence.
Optimistically, one can hope for a proof based on elementary
algebraic methods.

It would be interesting to study the effect of discrete
symmetries of the Hamiltonian, i.e., the symmetries associated
with our J and M matrices, on the corresponding transfer
matrix. For instance, transfer matrices can be used to compute
the Z2 invariant and show the bulk-boundary correspondence
for systems that preserve time-reversal symmetry [13]. The
interplay between the Altland-Zirnbauer classes for tight-
binding Hamiltonian and our transfer matrices may shed new
light on the classification scheme.

Furthermore, the interpretation of the singular values of the
hopping matrix J as the strength of various channels that the
system can be decomposed in provides a potential scheme of
controlled approximation for the transfer matrix and hence the
band structure of the system. This can be particularly useful
for a disordered system, where the transfer matrices between

consecutive layers would be quite big, but the SVD can extract
the important degrees of freedom to compute the approximate
band structure.

Over the past century, band theory has continued to prove
itself to be a treasure of interesting results, and we hope that
this approach will shed further light and offer insights in the
ongoing excavations in that area, as well as help uncover the
associated geometrical and topological structures. We also
hope that this work would help bridge at least some of the
gap between similar works in condensed matter physics and
the relevant mathematics literature.
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APPENDIX A: MATHEMATICAL PRELIMINARIES

1. Block matrix manipulations

In this appendix, we describe a few well-known results
to do with operations on partitioned matrices with square
blocks [58]. Consider a square matrix of dimensions 2n × 2n,
consisting of blocks of dimensions n × n:

M =
(

A B

C D

)
. (A1)

We seek formulas relating the properties of M to those of
A,B,C,D. The starting point is a decomposition of M in terms
of triangular matrices

M =
(

A 0
C 1

)(
1 A−1B

0 D − CA−1B

)
(A2)

or, alternatively,

M =
(
1 B

0 D

)(
A − BD−1C 0

D−1C 1

)
, (A3)

which can be verified by a direct computation.
Using this, we can compute the determinant of M as

det M = det(A) det(D − CA−1B)

= det(D) det(A − BD−1C). (A4)

The quantities of the form A − BD−1C that appear in these
expressions are known as Schur complements, usually denoted
by

M/D = A − BD−1C, (A5)

where the order of the matrices in the second term is clockwise
in M .

Now, the inverse. For a lower triangular matrix with
nonsingular A and D, the inverse can be computed as(

A 0
C D

)−1

=
(

A−1 0
−D−1CA−1 D−1

)
. (A6)
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Similarly, for an upper triangular matrix,(
A B

0 D

)−1

=
(

A−1 −A−1BD−1

0 D−1

)
. (A7)

An expression for inverse of M is

M−1 =
(
1 A−1B

0 M/A

)−1(
A 0
C 1

)−1

=
(

A−1 + A−1B(M/A)−1CA−1 −A−1B(M/A)−1

(M/A)−1CA−1 (M/A)−1

)
.

(A8)

This expression illustrates the principle of decomposing a
block matrix into a product of upper-triangular and lower-
triangular matrices and computing the inverses individually,
using the expressions above.

2. Symplectic groups and winding

We seek to parametrize Sp(2,R), and show that it is
homeomorphic to a solid 2-torus [59,60]. This can be shown
using an Iwasawa decomposition [61]. Explicitly, let us
consider a matrix S ∈ Sp(2,R), parametrized as

S =
(

a + b c − d

c + d a − b

)
, (A9)

with (a,b,c,d) ∈ R4. The determinant condition det S = 1
demands that

(a2 + d2) − (b2 + c2) = 1. (A10)

Hence, Sp(2,R) corresponds to a submanifold of R4 of
codimension 1, which can be thought of as a four-dimensional
analog of a hyperbola. We reparametrize

a = cosh η cos θ1,

b = sinh η cos θ2,

c = sinh η sin θ2,

d = cosh η sin θ1,

where η ∈ R and θi ∈ [0,2π ). This makes Sp(2,R) homeo-
morphic to R × S1 × S1 ∼= R × T 2. Finally, define

χ = 1

2
(1 + tanh η) ∈ (0,1), (A11)

so that Sp(2,R) ∼= D × S1. Finally, it is straightforward to
embed the torus formed by (χ,θ1,θ2) in R3.

This parametrization also provides a particularly simple
proof of the fact that π1[Sp(2n,R)] ∼= Z for the n = 1 case.
Generally, the proof involves the fact [51,52] that U (n) ⊂
Sp(2n,R) is its maximally compact subgroup, so that Sp(2n,R)
has U (n) as its strong deformation retract. Furthermore,
π1[U (n)] ∼= Z, which can be seen by the determinant map
for U ∈ U (n) as U �→ detU ∈ S1, and π1(S1) ∼= Z.

For Sp(2,R), consider the deformation retract

St = S(ηt,θ1,θ2) : [0,1] → Sp(2n,R). (A12)

For t = 1, we recover S, while for θ = 0, we get

a0 = cos θ1, d0 = sin θ1, b0 = c0 = 0

so that S0 is parametrized simply by θ1 ∈ S1, which implies
that S1 is a deformation retract of Sp(2n,R), which proves our
result.

3. Jordan canonical form

The Jordan canonical form of a matrix T ∈ C2r×2r can be
expressed as [37]

T =
∑

s

[ρsPs + Ds], (A13)

where the sum extends over all generalized eigenvalues ρs , Ps

are idempotent projectors that project in the eigenspace of ρs ,
and Ds are nilpotent operators of order equal to the algebraic
multiplicity of the eigenvalue. These operators satisfy

Ps ′Ds = DsPs ′ = Dsδss ′ . (A14)

The generalized eigenvalue equations are then

(T − ρsI)kϕ = 0, (A15)

φ†(T − ρsI)k = 0 (A16)

for left (ϕ) and right (φ) eigenvectors, and where k = rank(Ps)
is the multiplicity of the eigenvalue ρs . We define the projector
to the decaying subspace as

P< ≡
∑

|ρs |<1

Ps (A17)

and construct

T< ≡ TP< = P<T =
∑

|ρs |<1

[ρsPs + Ds] (A18)

which, by construction, has generalized eigenvalues satisfying
|ρs | < 1, i.e.,

lim sup
n

‖T n
<‖1/n = ρ(T<) < 1 (A19)

by the spectral radius formula [62], where ‖ . . . ‖ is the operator
norm overC2r×2r . Now, given a  ∈ C2r , a sufficient condition
for |T n| to decay as n → ∞ is P< = , as

|T n| = |T nP<| = |(T<)n|
� ‖T n

<‖ · || → 0 (A20)

as n → ∞, which proves our assertion.

APPENDIX B: TRANSFER MATRIX AND BLOCK SIZE

The recursion relation is given by

J�n+1 + J †�n−1 = (ε1 − M)�n. (B1)

Taking m copies of this equation for n = nm,nm −
1, . . . ,nm − m + 1 and defining

�̃n = (�mn,�mn−1, . . . �mn−m+1)T , (B2)

we have a recursion relation for �̃n as

J̃ �̃n+1 + J̃ †�̃n−1 = (ε1 − M̃)�̃n, (B3)
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where J̃ and M̃ can be written in terms of J and M as

J̃ =

⎛⎜⎜⎝
0 0 . . . J

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞⎟⎟⎠, M̃ =

⎛⎜⎜⎜⎝
M J † . . . 0
J M . . . 0
...

...
. . .

...
0 0 . . . M

⎞⎟⎟⎟⎠.

(B4)
We have rank(J̃ ) = rank(J ) = r , and the reduced SVD of J̃

is

J̃ = Ṽ · � · W̃ †, (B5)

where

Ṽ =

⎛⎜⎝V
...
0

⎞⎟⎠
N m×r

, W̃ =

⎛⎜⎝ 0
...

W

⎞⎟⎠
N m×r

, (B6)

and the singular values � are same as those of J .
Now, following the calculation in Sec. II B, we compute the

recursion relations for α̃n and β̃n, the coefficients of �̃n along
Ṽ and W̃ , and construct a 2r × 2r transfer matrix T̃ , so that

̃n+1 = T̃ ̃n, ̃n ≡
(

β̃n

α̃n−1

)
. (B7)

But using the definition of �̃n, we get

α̃n = Ṽ †�̃n = V †�nm = αnm,

β̃n = W̃ †�̃n = W †�nm−m+1 = β (n−1)m+1, (B8)

so that

̃n =
(

β (n−1)m+1
α(n−1)m

)
= (n−1)m+1. (B9)

Using the old transfer matrix T , we also have

̃n+1 = nm+1 = T m(n−1)m+1 = T m̃n, (B10)

so that the action of T̃ is identical to the action of T m on any
arbitrary wave function. We conclude that T̃ = T m.

APPENDIX C: TRANSFER MATRICES AND
FLOQUET DISCRIMINANTS

Given an N × N real square matrix A, finding its eigen-
values is equivalent to finding the roots of its characteristic
polynomial, a polynomial of degree N with real coefficients.
Generally, the solution cannot be obtained in a closed form if
N � 4. However, if the matrix is symplectic, we can often find
all of its eigenvalues analytically. We discuss the procedure in
the following.

Recall that a matrix A is symplectic if A ∈ R2r×2r and

ATJA = J , J =
(

0 1
−1 0

)
. (C1)

An immediate consequence [52] of this result is det A = 1,
from which we deduce that all eigenvalues of A are nonzero.

Let the characteristic polynomial of A be

P (ρ) = det(ρ1 − A) =
2r∑

n=0

anρ
n. (C2)

We are interested in the eigenvalues of A, i.e., the zeros of
P (ρ). We begin by noting that if ρ is an eigenvalue of A, so is
ρ−1. To see that, take Aϕ = ρϕ. Then,

J ϕ = ATJAϕ = ATJ ρϕ ⇒ AT (J ϕ) = ρ−1(J ϕ),

and as A and AT have the same spectrum, we conclude that
ρ−1 is an eigenvalue of A. Hence, P (ρ) = 0 implies that

0 = P (ρ−1) =
2r∑

n=0

anρ
−n = ρ−2r

(
2r∑

n=1

a2r−nρ
n

)
. (C3)

As ρ �= 0, we conclude that an = a2r−n, i.e., the characteristic
polynomial is palindromic [35,51]. Thus, we can rewrite the
eigenvalue condition as

0 = P (ρ) = ρr

(
ar +

r∑
n=1

ar−n(ρn + ρ−n)

)
. (C4)

Defining � = ρ + ρ−1, we can express ρn + ρ−n as Cheby-
shev polynomials of the first kind in �. To see this, define
ρ = eiθ , so that

Tn(cos θ ) = cos(nθ ) = 1
2 (ρn + ρ−n). (C5)

But, as � = 2 cos θ , we get

ρn + ρ−n = 2 Tn

(
�

2

)
. (C6)

Explicitly,

ρ2 + ρ−2 = �2 − 2,

ρ3 + ρ−3 = �3 − 3�, etc.

The eigenvalue problem then becomes the problem of finding
the zeros of a polynomial of order r in �, which can be written
explicitly as

ar + 2
r∑

n=1

ar−nTn

(
�

2

)
= 0. (C7)

Once we solve for the r roots �1, . . . ,�r ∈ C, we can solve
for ρ as

ρ + ρ−1 = �n ⇒ ρ = 1

2

[
�n ±

√
�2

n − 4
]
, (C8)

where n = 1,2 . . . ,r .
In the following, we work out the case of r = 2 explicitly.

The eigenvalue condition becomes

a0(ρ2 + ρ−2) + a1(ρ + ρ−1) + a2 = 0,

with

a0 = 1, a1 = −trA, a2 = 1

2
[(trA)2 − trA2].

In terms of �, we get

a0(�2 − 2) + a1� + a2 = 0

which implies that

�± = 1

2a0

[− a1 ±
√

a2
1 − 4a0(a2 − 2a0)

]
.
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Substituting an’s, we get the Floquet discriminants as

�± = 1

2
[trA ±

√
2trA2 − (trA)2 + 8]. (C9)

APPENDIX D: TRANSFER MATRIX FOR
CHERN INSULATOR

The Chern insulator is a two-dimensional lattice model
described by the lattice Hamiltonian [1]

H = a sin kxσ
x + a sin kyσ

y

+ b(2 − m − cos kx − cos ky)σ z. (D1)

The system is gapped in the bulk, except for m = 0,2,4, when
the gap closes. It is topological for 0 < m < 2 with edge states
around k = 0 and for 2 < m < 4 with edge states around k =
π .

Let us put the Chern insulator on a cylinder which is
periodic along y and finite along x. Then, we need to inverse
Fourier transform along x (as kx is not well defined for a finite
system) and write the Hamiltonian as

H(ky) =
N∑

n=0

[
a

2i
(c†n+1σ

xcn − c†nσ
xcn+1)

− b

2
(c†n+1σ

zcn + c†nσ
zcn+1)

+ c†n[sin kyσ
y + b�(ky)σ z]cn

]
, (D2)

where cn(ky) is a row vector, corresponding to the annihilation
operator for the two degrees of freedom on each lattice site
and �(ky) = 2 − m − cos ky . Here, ky (≡ k⊥) just acts as a
parameter in the Hamiltonian. We are only concerned with a
topological state for n � 0.

The corresponding recursion relation is

1

2i
(aσ x − ibσ z)ψn+1 − 1

2i
(aσx + ibσ z)ψn−1

= [ε1 − a sin kyσ
y − b�(ky)σ z]ψn. (D3)

We identify the hopping matrix

J = 1

2i
(aσ x − ibσ z) (D4)

which has eigenvalues

σ (J ) = ±1

2

√
b2 − a2. (D5)

Hence, J becomes singular when a = b, which is precisely the
case that we are interested in. For the subsequent calculations,
we set a = b = 1. Hence,

J = 1

2i
(σx − iσ z) = −1

2

(
1 i

i −1

)
(D6)

and ker (J ) is spanned by v = (1,i)T , while ker (J †) is spanned
by w = (1, − i)T . The crucial fact, that helps us compute the
transfer matrix, is that v and w are orthogonal, i.e., 〈v,w〉 = 0.

To see that explicitly, we write out ψn = (ψ1
n ,ψ2

n )T , and the
recursion relation as(

1 i

i −1

)(
ψ1

n+1
ψ2

n+1

)
−
(−1 i

i 1

)(
ψ1

n−1

ψ2
n−1

)

= −2

(
ε − �(ky) i sin ky

−i sin ky ε + �(ky)

)(
ψ1

n

ψ2
n

)
. (D7)

We now premultiply the above expression by (1,i) and
(1, − i) to get two recursion relations, one excluding ψn+1

and one excluding ψn−1. We can simplify these expressions
greatly by defining

φn = ψ2
n + iψ2

n , φ̄n = ψ2
n − iψ2

n . (D8)

Notice that these are not complex conjugates, as ψi
n’s are in

general complex. In terms φ’s, we get

(ε + sin ky)φn − �(ky)φ̄n + φ̄n−1 = 0,

φn+1 − �(ky)φn + (ε − sin ky)φ̄n = 0. (D9)

Replacing n → n + 1 in the former and reorganizing the
terms, we get(

φ̄n+1

φn+1

)
=
(

1−ε2+sin2 ky

�(ky ) ε + sin ky

−(ε − sin ky) �(ky)

)(
φ̄n

φn

)
. (D10)

Hence, we have managed to compute the transfer matrix, acting
as

n+1 = T n, n =
(

φ̄n

φn

)
. (D11)

We can explicitly check that det(T ) = 1. The other useful
quantity is the trace

�(ε,ky) = 1 − ε2 + �2(ky) + sin2 ky

�(ky)
. (D12)

This is equal to the trace obtained by using the formal
construction in Eq. (90). Finally, we can compute the band
edges and edge states, as described in Sec. II D.
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