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Anderson metal-insulator transitions with classical magnetic impurities
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We study numerically the effects of classical magnetic impurities on the Anderson metal-insulator transition.
We find that a small concentration of Heisenberg impurities enhances the critical disorder amplitude Wc with
increasing exchange coupling strength J . The resulting scaling with J is analyzed which supports an anomalous
scaling prediction by Wegner due to the combined breaking of time-reversal and spin-rotational symmetry.
Moreover, we find that the presence of magnetic impurities lowers the critical correlation length exponent ν and
enhances the multifractality parameter α0. The new value of ν improves the agreement with the value measured
in experiments on the metal-insulator transition (MIT) in doped semiconductors like phosphor-doped silicon,
where a finite density of magnetic moments is known to exist in the vicinity of the MIT. The results are obtained
by a finite-size scaling analysis of the geometric mean of the local density of states which is calculated by means
of the kernel polynomial method. We establish this combination of numerical techniques as a method to obtain
critical properties of disordered systems quantitatively.
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Experimental studies of uncompensated doped semicon-
ductors like Si1−xPx (Si:P) show a metal-insulator transition
(MIT) as function of dopant density x. This is one of the most
extensively studied cases of a quantum phase transition [1–3].
The doping increases the carrier density and thereby the
conductivity but also creates the onsite disorder potential.
The random positioning of the dopants results in random
hopping amplitudes between the dopant sites. Moreover, the
electron-electron interaction causes spin and charge correla-
tions. Therefore, the MIT can neither be described completely
by an Anderson MIT (AMIT) [4,5], driven solely by disorder,
nor by a correlation-driven MIT, the Mott transition [6]. Taking
into account both correlations and disorder remains an open
problem of condensed matter theory [7,8].

Thermodynamic measurements prove the presence of lo-
calized magnetic moments in the metallic regime in the excess
specific heat and a low-temperature divergence of the magnetic
susceptibility [1,2,9,10]. Indications of magnetic moments
can also be seen in transport measurements, such as the
thermoelectrical Seebeck coefficient [1,2]. These experiments
have been interpreted by assuming that up to 10% of all
P atoms contribute localized paramagnetic moments at the
MIT [11–14], which originate from the localized states in
the tails of the impurity band. Thus, it is an essential step in
understanding the MIT in doped semiconductors to understand
the influence of magnetic impurities on the AMIT.

Since the work of Hikami et al. [15] it is known that
weak localization is suppressed in the presence of a finite
concentration of localized magnetic moments because the
exchange interaction with the spins of the conduction electrons
breaks time-reversal invariance. The breaking of time-reversal
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symmetry (TRS) is known to weaken Anderson localization,
so the localization length ξ is enhanced. In quasi-one-
dimensional (quasi-1D) disordered wires this leads to an
enhancement ξ = sβξ0, with β = 1 (β = 2) when TRS is
unbroken (broken) and s = 1 (s = 2) when spin-rotational
symmetry (SRS) is unbroken (broken) [16,17]. Here, ξ0 =
Mtle, where Mt is the number of transverse channels and le
is the elastic mean-free path [16]. With SRS intact, there are
independent channels for the localization of up and down spins.
Otherwise the spin-up and spin-down channels are mixed, and
the electrons have effectively twice as many channels, which
enhances ξ accordingly.

Three-dimensional disordered systems are known to bear
an AMIT. It can be expected that the breaking of TRS and
SRS shifts the critical disorder Wc towards stronger disorder
amplitudes W , which is a measure of the width of the distri-
bution of the disorder potential. Likewise, the critical electron
density nc in doped semiconductors is decreased [18,19]. The
symmetry class of the transition is thereby changing from
orthogonal to unitary [18,19]. In the presence of an external
magnetic field, this change of symmetry class of the conduction
electrons is governed by the parameter XB = ξ 2/l2

B, where
lB is the magnetic length. Therefore, in analogy, the spin
scattering rate due to magnetic impurities τ−1

s is expected
to enter through the symmetry parameter Xs = ξ 2/L2

s , where
Ls = √

Deτs is the spin relaxation length, De is the diffusion
coefficient, and ξ is the correlation (localization) length on the
metallic (insulating) side of the AMIT [15]. When Xs � 1, the
electron spin relaxes before it can cover the area limited by ξ

and the system is in the unitary regime.
The crossover at the mobility edge can be studied through

a scaling ansatz for the conductivity σ on the metallic side, as
done in Ref. [18] for the case of an external magnetic field.
Following this approach, using the spin scattering rate τ−1

s
yields σ (τ−1

s ) = e2f (Xs)/(hξ ). As a function of the energy
difference �E = E − EM to the mobility edge EM one then
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obtains [19]

σ
(
τ−1

s

) = �E(d−2)ν f̃
(
τ−1

s �Eϕ
)
. (1)

Simple scaling theory yields ϕ = 2ν [18], with ν being the
critical exponent describing the divergence of ξ at the mobility
edge [in the three-dimensional (3D) orthogonal universality
class]. Wegner argues that, while an external magnetic field
yields ϕa = 2ν, the additional SRS breaking by magnetic
impurities rather yields

ϕs = 2ν + 3 (2)

in a second-order d = 2 + ε expansion [19,20]. Thus, a
numerical analysis of ϕ in the presence of magnetic moments is
called for. The value of ϕa in a magnetic field has been studied
in Ref. [21], and they find good agreement with ϕa = 2ν within
their numerical accuracy for Wc. A random magnetic field
should yield the same value. On the other hand, if a finite
concentration of classical magnetic impurities nM with spin S

is present, the spin relaxation rate is finite, resulting in a shift
of the critical disorder amplitude Wc that can be obtained from
the scaling ansatz for the conductivity (1). For classical spins
with a Heisenberg exchange coupling of strength J , it follows
that [22]

Wc = W 0
c + W 0

c

(
a2

c

Deτs

) 1
ϕ

, (3)

where W 0
c is the critical disorder strength without magnetic

impurities, De = v2
Fτ/d, vF is the Fermi velocity, and τ−1 is

the total elastic scattering rate. ac is a constant representing the
smallest length scale, which is identical to the lattice spacing
here.

We start from the Anderson model Hamiltonian [23],

Ĥ0 = t
∑

〈i,j 〉,σ
|j,σ 〉 〈i,σ | +

∑
i,σ

Vi |i,σ 〉 〈i,σ | , (4)

where |i,σ 〉 denotes an electron state with spin σ located at site
i of a 3D cubic lattice with N = L3 sites and periodic boundary
conditions. For the local potential Vi , random values are drawn
from a box distribution of width W , Vi ∈ [−W/2,W/2], while
the hopping amplitude t between neighboring lattice sites
remains constant.

We add another term to the Hamiltonian, describing a local
coupling of the conduction electron spin σi to a classical
spin Si (two-fluid model) [10,11,24] with S2

i = S2 = 1 and
random orientation (Heisenberg like), given by the (polar and
azimuth) angles θi and ϕi . The angles are drawn uniformly
from the intervals cos θi ∈ [−1,1] and ϕi ∈ [0,2π ]. σi are
the Pauli matrices, so the general form of the coupling term,∑

i Jiσi · Si , can be written as

Ĥs = S
∑

i

Ji

(
cos θi

∑
σ=±1

σ |i,σ 〉 〈i,σ |

+ sin θi

∑
σ=±1

exp(iσϕi) |i,σ 〉 〈i,−σ |
)

. (5)

We fix the concentration of sites carrying a magnetic moment
to nM = 5%. Note that this is a realistic value for real materials
like Si:P [11–14]. Ji is drawn from a binary probability

distribution, Ji ∈ {J,0}, taking a nonzero value with proba-
bility nM, for which it conforms to the exchange coupling
strength J . Equation (4) by itself leads to a nonmagnetic
scattering rate τ−1

0 = 2πW 2ρ(εF)/(6�). The scattering from
the magnetic impurities enhances the total scattering rate to
τ−1 = τ−1

0 + τ−1
s .

The spin-resolved local density of states (LDOS) is given by
ρi,σ (E) = ∑2N

k=1 | 〈i,σ |k〉 |2δ(E − Ek), where |k〉 denotes the
eigenstate with eigenenergy Ek of the Hamiltonian Ĥ = Ĥ0 +
Ĥs. We use the kernel polynomial method (KPM) [25–27] in
combination with the Jackson kernel which is known to yield
optimal results for the calculation of the LDOS, as it smooths
Gibb’s oscillations most efficiently [25]. The KPM expands
the target function in a series of Chebyshev polynomials that
are only defined on the interval [−1,1], so a rescaling of the
original spectrum of Ĥ is necessary, which we achieve by
applying a factor a = 24t to all energies, E = aẼ. The Jackson
kernel comes with an energy broadening of η̃ = π/M at the
center of the considered interval (E = 0), which is rescaled by
the same factor, η = aη̃ [28].

We consider two ensemble averages: The arithmetically
averaged local density of states (ALDOS),

ρav(E) = 1

NS

NS∑
n=1

ρn(E), (6)

which corresponds to the average density of states (ADOS) in
the thermodynamic limit (large number of samples NS) [29],
and the geometrically averaged local density of states
(GLDOS),

ρtyp(E) = exp

(
1

NS

NS∑
n=1

ln ρn(E)

)
, (7)

which is also known as the typical density of states [30]. Here,
the index n takes into account both site index i and spin σ

of the conduction electrons. NS denotes the total number of
considered local densities ρn(E) (in this work, NS = 8000).
Although the LDOS is known to be spatially correlated, to save
some computation time, we take into account p = 32 random
lattice sites from each disorder realization in the geometric
mean.

In contrast to the ALDOS, the GLDOS is sensitive to
the localization character of quantum states. It is reduced by
both increasing disorder and increasing system size within
the whole energy spectrum [26]. In the thermodynamic limit
(L → ∞), the GLDOS approaches zero in energy regions of
localized states, and a positive value in the case of extended
states [30]. For finite system sizes the GLDOS stays positive,
even for perfectly localized states. In Ref. [30], localized
states are detected by defining a threshold value for the
GLDOS, which is adjusted to previously known values for
the critical disorder Wc. For a quantitative analysis of the
critical parameters (including Wc), it is necessary to perform a
finite-size scaling (FSS) analysis of the GLDOS. To this end,
we use the scaling ansatz [31]

�(W,L) = Ld−α0F (ψL1/ν, ηρavL
d ) (8)

for the GLDOS at half filling (E = 0), where �(E) =
ρtyp(E)/ρav(E), d = 3, ψ = (Wc − W )/Wc is the reduced
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FIG. 1. Demonstration of the scaling ansatz (8) at half filling
(E = 0) for three different values J and nF = 2. The error bars
correspond to 95% confidence.

disorder, ν is the correlation or localization length expo-
nent [5], and α0 is a multifractality parameter [5,32,33]. We
neglect the disorder dependence of ρav(E). By fixing the
ratio G = Ld/M = 1, the function F (x,y) (8) only depends
on the first argument, x = ψL1/ν . We expand the function
F̃ (x) ≡ F (x,ρavπG) to order nF in x by using the power
series F̃ = ∑nF

n=0 F̃nx
n so our fit model (8) possesses NP =

nF + 4 parameters, (Wc,α0,ν,F̃0,F̃1, . . . ,F̃nF ). The scaling (8)
is demonstrated in Fig. 1 for nF = 2.

Table I summarizes the fit results. Considering five system
sizes L ∈ {10,20, . . . ,50} and eight disorder strengths W/t ∈
{15,15.5, . . . ,18.5}, each fit has access to ND = 40 data
points [34]. To assess the quality of the fit, the χ2 statistic and
the goodness of fit (GOF) probability Q are computed [28].
For every J , we select an optimal series expansion order
nF ∈ {2,3,4} so that |Q − 1/2| is minimized, as Q = 0.5
indicates an optimal fit [35].

Figure 2 shows how the fit parameters Wc, α0, and ν

depend on the coupling strength J by using different series
expansion orders nF. Our result for Wc at J = 0 (corresponding
to the original Anderson model) is WA′

c /t = 16.52 ± 0.17,
which agrees with established, more precisely measured
values [32,33,36] like WA

c /t = 16.530(16.524,16.536) [32].
As the coupling strength J is increased, the critical disorder Wc

approaches a higher value of WU
c /t ≈ 19.4. This tendency is

expected, as the symmetry class is changing from orthogonal

TABLE I. Fit parameters Wc, α0, and ν for different exchange
coupling strengths J with their standard errors, found by expanding
the function F̃ (x) to order nF. To assess the quality of the fit, we
provide the χ 2 statistic and the goodness of fit probability Q [28].

J/t nF Wc/t α0 ν χ 2 Q

0.00 4 16.52 ± 0.17 4.07 ± 0.04 1.48 ± 0.06 30.5 0.54
0.05 4 18.12 ± 0.28 4.43 ± 0.08 1.37 ± 0.08 29.0 0.62
0.10 3 18.19 ± 0.21 4.33 ± 0.06 1.40 ± 0.06 45.5 0.07
0.15 4 18.56 ± 0.31 4.39 ± 0.09 1.32 ± 0.08 41.4 0.12
0.20 3 19.02 ± 0.25 4.53 ± 0.07 1.32 ± 0.07 54.1 0.01
0.25 4 18.92 ± 0.26 4.47 ± 0.08 1.29 ± 0.07 30.6 0.54
0.30 4 19.42 ± 0.31 4.47 ± 0.06 1.50 ± 0.09 34.6 0.34
0.35 4 18.47 ± 0.25 4.27 ± 0.07 1.25 ± 0.07 28.0 0.67
0.40 4 19.39 ± 0.21 4.51 ± 0.06 1.31 ± 0.07 33.5 0.39
0.45 4 19.15 ± 0.32 4.41 ± 0.09 1.34 ± 0.10 38.1 0.21

FIG. 2. Dependence of the fit parameters (a) Wc, (b) α0, and
(c) ν on the exchange coupling J , using different series expansion
orders nF. The dashed horizontal marks established values for the pure
Anderson model (A, realized by our model for J = 0) [32], a model
considering an external magnetic field (M) [21], the 3D orthogonal
(O) [33,37], and the 3D unitary (U) universality class [33], and the
experimental value (expt.) [1]. For Wc(J ), the data with minimal
|Q − 1/2| (d) is fit to Eq. (9) by using ν = 1.571 [37] (see also
Table II). The error bars correspond to 95% confidence.

to unitary. Another study considering an external magnetic
field has found a value of WM

c /t ≈ 18.35 [21]. We conclude
that the additional SRS breaking of the magnetic impurities
causes a further increment. This can qualitatively be expected,
since the mixing of the spin-up and spin-down channels by the
SRS breaking enhances the number of available spin channels
and thereby weakens the localization [16,17].

As can be seen in Fig. 2(b), the value of α0 undergoes a
gradual transition to a larger value by tuning up the coupling
strength J . Remarkably, this value is larger than that of a recent
study using multifractal analysis of the 3D Anderson model
in a magnetic field, αM

0 = 4.094(4.087 . . . 4.101) [33]. This
suggests that the additional spin-symmetry breaking enhances
α0 beyond the unitary value as obtained when only TRS is
broken. For J = 0, our value is in agreement with other studies,
for example αO

0 = 4.048(4.045,4.050) [32].
Our result for the localization length exponent ν in

the orthogonal regime (J = 0) agrees within the achieved
accuracy with established values [32,33,36,37] like νO =
1.571(1.563,1.579) [37]. However, the error obtained within
our method is about eight times larger than that obtained within
the well-established transfer matrix method [37]. During
preliminary calculations we observed that ν is increasing when
lowering the ratio G = Ld/M [28]. This is expected since
G is proportional to the ratio between the KPM broadening
and the average level spacing. For G = 0.1 the broadening
should be of the order of the mean level spacing, while our
calculations for G = 1 could still mix critical and noncritical
states [28]. Since the computational effort scales inversely
linear with G, we are forced to make a trade-off between the
largest considered system size N = L3, the chosen value of
G, and the resulting computation time, so we have decided
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TABLE II. Fit results for Wc(J ). In the top row, μ is a free fit
parameter. Otherwise, μ = 2/ϕ is fixed to values (shown in bold)
according to the given analytic formulas for ϕ [22,38], using either
ν = 1.571(1.563,1.579) [37] or our own value for J = 0, ν̄ = 1.48 ±
0.06.

ϕ = · · · a μ b χ 2 Q

Free fit 3.40 ± 0.46 0.27 ± 0.09 16.52 ± 0.21 11.3 0.13
2ν + 3 3.61 ± 0.34 0.33 16.57 ± 0.19 12.0 0.15
2ν 4.52 ± 0.70 0.64 16.89 ± 0.26 28.4 4e − 04
2ν̄ + 3 3.64 ± 0.35 0.34 16.58 ± 0.19 12.2 0.14
2ν̄ 4.62 ± 0.75 0.67 16.93 ± 0.27 30.9 1e − 04

to choose G = 1 for this analysis. Note that experimental
investigations have always yielded values of ν considerably
smaller than theoretical predictions, partly because they face
a similar problem of low energy resolution [1], just like our
numerical method does.

For disordered systems in a magnetic field (3D unitary
universality class), values ν smaller than that of the 3D
orthogonal universality class have been reported [33,36], like
νM = 1.437(1.426,1.448) [33] [marked in Fig. 2(c)]. Note that
within the achieved accuracy, our results for ν with magnetic
impurities (J > 0) are of similar or smaller magnitude and in
good agreement with the experimental value νexpt. ≈ 1.3 [1]
of real materials in which magnetic impurities are known to
exist at the MIT.

The scaling of Wc with J has been analyzed in Fig. 2(a).
Equation (3) suggests a scaling Wc(J ) ∼ J 2/ϕ . Hence, we use

Wc(J ) = aJμ + b (9)

for the fit, with μ = 2/ϕ. The fit results are summarized in
Table II. The best fit (smallest |Q − 1/2|) is found for Wegner’s
scaling (2) with ε = 1 [19]. Also, the free fit of the parameter
μ shows good agreement with this analytic prediction. Our
results clearly do not support the relation ϕ = 2ν [18,22],
which results in GOF probabilities that are orders of magnitude
away from an acceptable range (e.g., Q ∈ [0.1,0.9]). This
interpretation remains intact even when using our own value
for the localization length exponent ν̄ = 1.48 ± 0.06 (for
J = 0) instead of the value ν = 1.571(1.563,1.579) [37].

To conclude, we have shown numerically how local
magnetic moments which break TRS and SRS affect the
metal-insulator transition in the 3D Anderson model. We found
that the critical exponent ν decreases for increasing coupling
strength J and determined its value as νS ≈ 1.3 ± 0.1 for 5%
magnetic impurities. Within the obtained accuracy, this value
agrees with experimental results obtained from conductivity
scaling at the MIT in phosphor-doped silicon [1]. We also find
the multifractality parameter αS

0 ≈ 4.4 ± 0.1 when both TRS
and SRS are broken, a value larger than the unitary value when
only TRS is broken [33]. We considered the scaling of the
critical disorder amplitude Wc(J ) and confirm an analytical
prediction by Wegner [19]. Thus, the present investigation
may relate the systematically lower values for the critical
exponent ν found in experiments to the presence of a finite
density of localized magnetic moments. We note that magnetic
moments are known to form due to the local interaction in
localized states [3,14]. Recently, it has been shown that the
interplay between the Kondo screening of magnetic moments
and Anderson localization may result in a novel quantum
phase transition [22,39,40]. It remains to combine this effect
with long-range Coulomb interaction in disordered electron
systems [41,42] in order to achieve a complete understanding
of the experimental results [1]. Furthermore, we established
a method to obtain critical properties of disordered electron
systems by a finite-size scaling ansatz for the geometric mean
of the local density of states, which enables us to make use
of the kernel polynomial method to efficiently calculate the
LDOS. This method should be further developed in order to
reach an accuracy comparable to more established methods
like the transfer matrix method [43].
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