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Effects of low-lying excitations on ground-state energy and energy
gap of the Sherrington-Kirkpatrick model in a transverse field
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We present an extensive numerical study of the Sherrington-Kirkpatrick model in a transverse field. Recent
numerical studies of quantum spin glasses have focused on exact diagonalization of the full Hamiltonian for
small systems (≈20 spins). However, such exact numerical treatments are difficult to apply on larger systems.
We propose making an approximation by using only a subspace of the full Hilbert space spanned by low-lying
excitations consisting of one-spin-flipped and two-spin-flipped states. The approximation procedure is carried
out within the theoretical framework of the Hartree-Fock approximation and configuration interaction. Although
not exact, our approach allows us to study larger system sizes comparable to that achievable by state-of-the-art
quantum Monte Carlo simulations. We calculate two quantities of interest due to recent advances in quantum
annealing, the ground-state energy and the energy gap between the ground and first excited states. For the energy
gap, we derive a formula that enables it to be calculated using just the ground-state wave function, thereby
circumventing the need to diagonalize the Hamiltonian. We calculate the scalings of the energy gap and the
leading correction to the extensive part of the ground-state energy with system size, which are difficult to obtain
with current methods.
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I. INTRODUCTION

The study of quantum spin glass has a long history dating
back to the early seminal work of Bray and Moore on
the random quantum Heisenberg model [1]. Many different
models [2–13] as well as theoretical methods [1–14] for
studying it have since been proposed. In most of these earlier
works, the approach is mainly a mean-field one based on
a combination of Suzuki-Trotter decomposition and replica
theory [1]. More recently, quantum spin glasses have attracted
attention within the context of quantum annealing [15,16] and
adiabatic quantum computation [17]. Here, the quantity of
interest is the energy gap between the ground and first excited
states as it determines the success rate of the annealing process
[18,19], especially in the thermodynamic limit [20,21]. To
compute the energy gap, precise calculation of the energies of
the lowest two energy levels is necessary. Earlier mean-field
approaches are no longer sufficient since they give only the
ground-state energy, and even that is, strictly speaking, only
correct in the thermodynamic limit. Furthermore, the first
excited state arises from the excitation of just a few spins and
is very close in energy to the ground state. The energy gap is
therefore very small compared to the ground-state energy and
is not an extensive quantity. One usually resorts to numerical
methods when computing the energy gap in quantum spin
glasses [22–26].

In practice, one is frequently interested in the behavior of
the energy gap when the number of spins is large, and in this
respect the most important difficulty faced in the numerical
study of quantum spin glasses is the apparent lack of conserved
quantities, i.e., operators that commute with the Hamiltonian.
This is in stark contrast to, for instance, a nondisordered spin
system [20,27,28] such as the infinite-range ferromagnetic
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Ising model in a transverse field,
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is a conserved quantity, and the Hamiltonian matrix takes a
block diagonal form. In particular, the ground and first excited
states lie in the block with the largest total angular momentum,
and it is possible to diagonalize this block matrix for large N

because its dimension scales only linearly with N . Figure 1
shows the energy gap of Hferro computed in this way for N =
20,250, and 2000. Unfortunately, S2 is no longer conserved for
quantum spin glasses, and one must work with the full Hilbert
space whose dimension scales exponentially with N .

There are currently three main approaches for computing
the low-lying energy levels of quantum spin glasses. The first
is to diagonalize the full Hamiltonian matrix using standard
numerical routines such as Jacobi’s method or the Householder
reduction [29]. All energy levels are obtained, but the size
of the matrices and computational time involved mean that
this approach is practical only for relatively small systems
(N ≈ 10). The second method is the Lanczos algorithm [30].
This is an algorithm for which only the lowest few eigenvalues
and eigenvectors are computed. The elements of the Hamilto-
nian matrix need not be stored and can be computed only when
needed. Using the Lanczos algorithm, some studies computed
the energy gap [22,25,26] as well as physical quantities such
as the Binder cumulant [31] for up to N ≈ 22, but a further
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FIG. 1. Energy gap of the infinite-range ferromagnetic model in
transverse field for various N . For each N , the bottom curve is the
energy difference between the ground and first excited states E1 − E0,
and the top curve is for that between the first and second excited states
E2 − E1.

increase in N is hampered by the exponential increase in
the dimension of the eigenvectors. The third approach is the
quantum Monte Carlo method (QMC) [23,24,31,32]. Unlike
the previous methods, instead of including all the terms in the
Hilbert space, one instead performs a sampling of the states
of an effective classical model in imaginary time [33]. By
combining a novel zero-temperature QMC with a quantum
annealing schedule, Das and Chakrabarti computed the exact
ground state of quantum spin glasses for up to N = 30 with a
numerical accuracy on par with that of the Lanczos algorithm
[34]. With the traditional QMC, Young et al. were able to study
systems with up to 256 spins [24].

In the Lanczos algorithm and QMC, one seeks to obtain
the energy levels exactly. The two methods can be viewed as
opposite extremes, where the former includes all the terms
in Hilbert space, while the latter seeks only a representative
random sample. In this paper, we propose an intermediate
between the two. We include only a subspace of the full
Hilbert space, but this subspace is constructed not randomly
but systematically by including low-lying excitations from the
ground state. Unlike the previous methods, our approach is not
exact but an approximation. Nevertheless, intuitively speaking,
large excitations should make only minor corrections to the
energies of the lowest few energy levels and might be neglected
if some approximation can be tolerated.

The proposal to describe the system using a smaller basis
consisting of low-lying excited states is well grounded on the
theoretical framework of the Hartree-Fock (HF) approxima-
tion in many-body theory [35] and configuration interaction
(CI) in quantum chemistry [36]. In the HF formalism, one
considers a wave function consisting of a direct tensor product
of single-spin states

|0〉 = |ψ1〉 ⊗ · · · ⊗ |ψN 〉, (3)

where |ψi〉 is the state of the ith spin. Early on, Lipkin
suggested using the HF wave function |0〉 as an approximate
ground-state wave function for the Heisenberg and Ising spin
models with random bonds [37]. More recently, Dusuel and

Vidal also used |0〉 in their study of the Lipkin-Meshkov-
Glick model [38], a nondisordered system. In particular, the
analysis of Dusuel and Vidal showed that the energy obtained
from |0〉 gives just the extensive part of the ground-state
energy. Hence, HF approximation by itself is equivalent to
mean-field approximation. The reason is because the HF wave
function is a direct product, whereas the true ground state
cannot be completely factorized. To improve upon the HF
approximation, CI uses |0〉 as a vacuum state for generating a
basis of excited states. For instance, a basis state where spin 1
is excited is

|1〉 = |ψ̃1〉 ⊗ · · · ⊗ |ψN 〉, (4)

where |ψ̃1〉 arises from exciting spin 1’s “ground-state” |ψ1〉
and the states of all the other spins remain the same. The
ground-state wave function is then expanded in terms of a
basis consisting of |0〉 and such excited states. If all possible
combinations of exciting all the spins are included, the basis
is complete, and all physical quantities calculated using CI are
exact. In this paper, we make an approximation by including
only the one-spin and two-spin excitations.

As mentioned, HF approximation has previously been used
by Dusuel and Vidal to study the Lipkin-Meshkov-Glick model
[38]. Also, the combination of HF approximation and CI is
already a standard technique in the field of quantum chemistry
[36]. However, the two methods combined have not yet been
applied to the study of quantum spin glasses. The purpose
of this paper is to perform an extensive numerical study of
a specific spin-glass model using a combination of the two
methods. Unlike previous approaches based on the full Hilbert
space, focusing on a smaller subspace HF approximation and
CI is computationally less expensive, making it possible to
study system sizes comparable to that achievable by QMC.
Interestingly, even though the dimension of the subspace
spanned by these low-lying excitations is very small relative
to that of the full Hilbert space, significant improvement in
the accuracy of the energies of the levels is achieved by
their inclusion. This means that many physical effects are
captured by these excitations. Hence, in addition to being an
alternative technique for the numerical study of quantum spin
glasses, this approach also provides insights into the relative
importance of different parts of Hilbert space spanned by
different excitations.

In this paper, we apply these methods to the Sherrington-
Kirkpatrick (SK) model in a transverse field,

H = −
N∑

i=1

N∑
j>i

Jij σ
z
i σ z

j − �

N∑
i=1

σx
i . (5)

� is the strength of the transverse field, and the couplings Jij

are drawn from the Gaussian distribution

P (Jij ) =
√

N

2πJ 2
exp

(
−NJ 2

ij

2J 2

)
, (6)

where J measures the strength of the spin-glass term (we
set J = 1 without loss of generality). Several aspects of
this model are already well understood. For instance, its
ground-state energy in the thermodynamic limit is known
(within the replica-symmetric ansatz) [3]. The absence of
replica symmetry breaking in the presence of a transverse
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field has been reported [32]. The phase diagram has also been
obtained using both mean-field methods [3,6,7] and QMC
simulations [31,32]. A recent numerical study of its critical
behavior reveals the existence of two different universality
classes (classical and quantum), with a crossover at a finite
temperature [31]. The behavior of the energy gap for small
system sizes has also been studied in detail [25,26]. However,
the size-dependent behavior of the model is still not very
clear. In particular, at the point of quantum phase transition,
one should observe that the energy gap of an infinite-size
system becomes zero [39]. However, numerical studies of
small system sizes (N ≈ 15) show that the closure of the
averaged energy gap does not coincide with the point of phase
transition, leading to the proposition that the gap is not a useful
quantity to describe phase transition in the SK model [26]. This
is an interesting claim but would require numerical evidence
from larger system sizes to substantiate. With the approach
proposed above, we study larger system sizes and chart the
size dependence of the ground-state energy and energy gap.
Our results show that for large systems, the behavior of these
quantities approaches that predicted by replica theory for
an infinite system [3] and that gap closure is still a good
description of phase transition in the SK model.

This paper is divided into two parts. In the first part we study
the ground-state energy in detail. For small system sizes (from
N = 8 to 14), we compare the results of HF approximation
and CI with the exact results computed using the Lanczos
algorithm. This allows us to understand the error incurred by
our approximations. For larger systems it is no longer possible
to obtain the exact ground-state energy, so we compare with
the free-energy computed using replica theory [3]. An insight
offered by our method is the nature of the leading correction
to the extensive part of the ground-state energy when the low-
lying excitations are included. The scaling of the correction is
“subextensive” in the sense that it varies as ∼N0.733. This is in
stark contrast to the ferromagnetic model (1), whose leading
correction is known from the Holstein-Primakoff transform to
be independent of size [40].

In the second part, we study the energy gap in detail.
Traditionally, the energy gap is obtained by computing the
second lowest eigenvalue of the Hamiltonian matrix. Here,
we take a slightly different approach by deriving a formula
that relates the energy gap to the ground-state wave function.
One does not need to solve the eigenvalue problem for the
second lowest energy level, making it computationally less
expensive. Our gap formula is exact and independent of any
approximation scheme. Approximation enters by substituting
the HF (or CI) instead of the exact ground-state wave function
into the formula. For small system sizes, we compare our
approximation with the exact gap computed using the Lanczos
algorithm. When applied to large systems, our method reveals
that the energy gap of the SK model decreases as ∼N−0.616,
much faster than ∼N−0.316 for the ferromagnetic model.

The rest of this paper is organized as follows. Sections II,
III, and IV form the first part of the paper on ground-state
energy. Section II focuses on HF approximation. We study
the transition from the paramagnetic to the ordered phase
in finite-size systems, the algorithmic aspects of solving
the HF stationary point equations, and the behavior of the
solutions to these equations and perform benchmark studies

of the ground-state energy. Section III presents the theoretical
formulation of CI within the context of spin systems [41].
Section IV presents the benchmark studies of the ground-state
energy when low-lying excitations are included using CI.
Sections V and VI form the second part of the paper on the
energy gap. In Sec. V, we discuss the complex manner in which
the ground state is promoted into the first excited state in the SK
model and derive the gap formula. In Sec. VI, the HF and CI
wave functions are used in the gap formula, and the results
of numerical studies are presented. Section VII discusses
and concludes the paper. For the ferromagnetic model (1),
the HF approximation and CI for both the ground-state
energy and energy gap can be computed analytically in the
thermodynamic limit. These results, together with those of the
Holstein-Primakoff transform, are summarized in Appendix A.

II. HARTREE-FOCK APPROXIMATION

The HF wave function |0〉 is defined as the direct product
of single-spin states,

|0〉 =
N∏

i=1

(
αi

βi

)
, (7)

where αi and βi are the spinor components of the ith spin in the
basis where the Pauli matrix σ z

i is diagonal. HF approximation
uses the variational principle to choose αi and βi such that
the expectation of the Hamiltonian is minimum; that is, we
minimize the function

EHF(α,β) = 〈0|H |0〉, (8)

with respect to α = (α1, . . . ,αN ) and β = (β1, . . . ,βN ) subject
to the normalization conditions

α2
i + β2

i = 1, i = 1, . . . ,N. (9)

For the SK model,

EHF(α,β) = −
∑
j>i

Jij

(
α2

i − β2
i

)(
α2

j − β2
j

)− 2�
∑

i

αiβi .

(10)

Substituting βi =
√

1 − α2
i and differentiating with respect to

αi , the stationary conditions, or HF equations, are

∂EHF

∂αi

= 2�
(
2α2

i − 1
)

√
1 − α2

i

− 4αi

∑
a 	=i

Jia

(
2α2

a − 1
) = 0. (11)

When � is large, the paramagnetic solution

α0 =
(

1√
2
, . . . ,

1√
2

)
(12)

satisfies all N equations of Eqs. (11) and is stable. This solution
becomes unstable (and lower-energy solutions appear) when
the smallest eigenvalue of the Hessian matrix

∂EHF

∂αi∂αj

∣∣∣∣
α0

= 8(�δij − Jij ) (13)

becomes negative. δij is the Kronecker delta, Jii = 0, and
Jij = Jji . Equation (13) is valid for any N , lattice geometry,
and probability distribution of the bonds Jij . For the SK model,
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FIG. 2. 〈�HF〉 (〈�line〉), the average of �HF (�line) over different
realizations of Jij , for various N . Error bars indicate standard
deviation. Connecting lines are only to guide the eye. Inset: Example
of the exact gaps E1 − E0 and E2 − E1 for a specific realization of
Jij (N = 14). �line is defined as the � intercept of the straight line
fitted to E1 − E0, as shown.

we computed �HF, the � at which the smallest eigenvalue of
the Hessian vanishes, for different realizations of Jij [42]. The
average over the different realizations 〈�HF〉 as a function of
N is shown in Fig. 2. The HF solutions below �HF correspond
to symmetry-broken states in the ordered phase, and within
the HF framework these solutions spontaneously appear at
exactly �HF. Symmetry breaking is, however, not well defined
for small systems. The inset of Fig. 2 shows, for a specific
realization of Jij (N = 14), the energy gaps E1 − E0 (for the
paramagnetic regime) and E2 − E1 (for the ordered regime,
where E0 and E1 are degenerate) calculated exactly using
the Lanczos algorithm. We see that it is difficult to pinpoint
exactly where the system changes from the paramagnetic to
the ordered regime. Nevertheless, let us define the transition
into the ordered phase as �line, the � intercept of a straight line
fitted to E1 − E0 (see the inset). The average over different
realizations 〈�line〉 is shown in Fig. 2 [43]. We see that
〈�HF〉 overestimates the transition into the ordered phase. As
N → ∞, 〈�HF〉 → 2, in agreement with replica theory [3].
Analytically, this is also clear because the matrix Jij is drawn
from the Gaussian orthogonal ensemble, and by the semicircle
law its largest eigenvalue approaches 2 as N → ∞.

Below �HF, we solve Eqs. (11) numerically with a gradient
descent algorithm,

αt+1 ← αt − ε
∂EHF

∂α

∣∣∣∣
αt

, (14)

where αt is the estimated solution at step t of the iteration and
ε is the step size. Equation (14) is iterated until convergence,
i.e., ||αt+1 − αt || is smaller than some threshold. For a specific
realization of Jij , the solution for the � immediately below �HF

is obtained by first displacing α0 slightly along the direction
of the eigenvector of the largest eigenvalue of Jij and then
iterating Eq. (14). The solution for the current � is then
used as the initial condition for solving the next lower �.
Figure 3 shows, for N = 10 and a specific realization of Jij ,
the HF solutions of all ten spins below �HF. For comparison,
the HF solution for the ferromagnetic model is also shown.

FIG. 3. Solid lines: HF solutions below �HF for a specific
realization of Jij (N = 10). Dashed lines: HF solution for the
ferromagnetic model of the same N .

For small N , we can check the quality of HF approximation
by comparing EHF to the exact ground-state energy E0. Since
EHF must necessarily be higher than E0 according to the
variational principle, we define the excess energy

�EHF = EHF − E0 (15)

for a realization of Jij . The average over different realizations
〈�EHF〉 is shown in Fig. 4 for N = 8 to 14. HF approximation
recovers the exact ground-state energy when � = 0 and ∞,
where the excess energy becomes zero. Although correct
at these two extremes, HF approximation overestimates the
ground-state energy as soon as � 	= 0 or 	= ∞. 〈�EHF〉 peaks
in the region between � = 1 and 2, where the system “changes
phase” and quantum effects are expected to be strongest.

For large N , it is difficult to compute the exact ground-state
energy even with the Lanczos algorithm due to the large size
of the wave function. Instead, we compare the HF ground-
state energy with the free energy per spin F

N
, calculated using

replica theory [44]. Replica theory is expected to be exact as
N → ∞. Figure 5 shows the average HF energy per spin 〈EHF〉

N

for N = 10 to 1000 and the result of replica theory. It is seen
that 〈EHF〉

N
approaches F

N
for large N .

FIG. 4. Average excess energy 〈�EHF〉 for N = 8 to 14. Error
bars for N = 8 and 14 indicate standard deviation.
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FIG. 5. Average HF ground-state energy per spin 〈EHF〉
N

for various
N and free energy per spin F

N
computed using the replica-symmetric

mean-field equations (β → ∞) of Ref. [3]. Error bars for N = 10
indicate standard deviation. Standard deviations for individual N are
also shown in the inset using the same line type.

A comment on the accuracy of HF approximation in the
limit � → 0 is necessary. The HF energy EHF reduces to the
classical SK Hamiltonian in this limit. This is because when
� = 0, αi must be either 0 or 1 in order for the stationary condi-
tions (11) to be satisfied. Each α2

i − β2
i that appears in Eq. (10)

then becomes a binary variable that is either +1 or −1. Hence,
when � = 0, minimizing EHF is equivalent to minimizing the
classical SK energy. This equivalence might be interesting for
quantum annealing. If the objective is to arrive at the ground-
state configuration of the spin-glass part of the Hamiltonian,
then instead of annealing an actual quantum system [such
as Eq. (5)], one can instead anneal its HF approximate [i.e.,
Eq. (10)], which is simpler and might even be implementable
in a classical manner. However, whether the HF energy is
indeed a more feasible alternative requires further study.

III. CONFIGURATION INTERACTION

The HF energy overestimates the true ground-state energy.
The HF wave function |0〉 is a direct product, whereas the
actual ground state cannot be completely factorized (unless
� = 0 or ∞). To improve upon the HF approximation, let us
first expand the ground state in a complete basis of 2N linearly
independent, direct product states. We create the so-called CI
basis from |0〉 as follows. It is easily shown that σ

y

i flips the
ith spin of |0〉. Define

|i1 · · · ik〉 = σ
y

i1
· · · σy

ik
|0〉, (16)

where |i1 · · · ik〉 (i1 < · · · < ik) is a direct product state
obtained by flipping the i1th, . . . , and ikth spins of |0〉. The α

and β in |0〉 in Eq. (16) are solutions of the HF equations.
The

∑N
n=0(Nn ) = 2N different ways of flipping provide a

complete basis for expanding the trial ground-state wave
function,

|CI〉=c0|0〉 +
∑
{i}

ci |i〉 +
∑
{ij}

cij |ij 〉 +
∑
{ijk}

cijk|ijk〉 + · · · ,

(17)

where
∑

{i1···ik} denotes summing over (Nk ) ways to flip k spins
and ci1···ik are the expansion coefficients. The method of CI
uses the variational principle to minimize the CI energy,

ECI = 〈CI|H |CI〉 − λ[〈CI|CI〉 − 1], (18)

with respect to the expansion coefficients. λ is the Lagrange
multiplier to impose the normalization constraint on |CI〉. The
minimization problem is equivalent to solving the eigenvalue
equation

⎛
⎜⎝

H00 · · · H0a · · ·
· · · · · · · · · · · ·
Ha0 · · · Haa · · ·
· · · · · · · · · · · ·

⎞
⎟⎠
⎛
⎜⎜⎜⎝

C0
...

Ca

...

⎞
⎟⎟⎟⎠ = λ

⎛
⎜⎜⎜⎝

C0
...

Ca

...

⎞
⎟⎟⎟⎠, (19)

where Hab is the (Na ) × (Nb ) block matrix whose elements are

〈i1 · · · ia|H |j1 · · · jb〉 and Ca is an (Na )-dimensional column
vector whose elements are ci1···ia . (If a = 0, then i1 · · · ia is
zero.) The matrix in Eq. (19) is called the CI matrix. The
minimum value of ECI is given by the smallest eigenvalue
of the CI matrix, and the corresponding eigenvector is the CI
ground state.

IV. TRUNCATED CI GROUND-STATE ENERGY

Solving Eq. (19) with the full CI basis is equivalent to exact
diagonalization of the Hamiltonian but also leads to the same
complexity as diagonalizing in any other complete basis set.
In the following, let us include only the one-spin and two-spin
flips in the expansion (17). Hence, we work with a truncated
wave function

|CI′〉 = c0|0〉 +
∑

i

ci |i〉 +
∑
j>i

cij |ij 〉, (20)

with corresponding CI energy ECI′ = 〈CI′|H |CI′〉 −
λ[〈CI′|CI′〉 − 1], and diagonalize a truncated [1 + (N1 ) + (N2 )]-
dimensional CI matrix. The matrix elements of the truncated
CI matrix are given in Appendix B.

For small N , we again compare the truncated CI ground-
state energy ECI′ with the exact ground-state energy E0. We

FIG. 6. Average excess energy 〈�ECI′ 〉 for N = 8 to 14. Error
bars for N = 8 and 14 indicate standard deviation. Inset: Comparison
of 〈�EHF〉 and 〈�ECI′ 〉 for N = 14.
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FIG. 7. (a) 〈r〉, the average over different realizations of the
smallest eigenvalue of R for the SK model. Inset: Eigenvalue r of R

for the ferromagnetic model. (b) Scaling of −〈r〉min. pt. with N for the
SK model. The magnitude of the value of 〈r〉 at the minimum point
of each curve [see (a)] is plotted against N . The red line connecting
the dots is only to guide the eye. The upper blue line is a straight line
fitted to the points for N = 50, 100, and 200.

define the excess energy

�ECI′ = ECI′ − E0 (21)

for a single realization of Jij . The average over realizations
〈�ECI′ 〉 is shown in Fig. 6 for N = 8 to 14. To highlight the
improvement, the inset shows 〈�ECI′ 〉 and 〈�EHF〉 for N = 14.
Although the one-spin- and two-spin-flipped states constitute
only a small portion of the full basis, they give significant
improvements to the ground-state energy, especially in the
paramagnetic phase.

An important difference between SK and the ferromagnetic
model is in the correction to the HF ground-state energy EHF

arising from these low-lying excitations. As shown in Fig. 5,
EHF scales linearly with N and is an extensive quantity. Let
us write the truncated CI matrix as EHFI + R, where I is the
identity matrix and R is the remainder. The smallest eigenvalue
of R, denoted as r , is the correction to EHF. Figure 7(a) shows
the average over different realizations 〈r〉 for N = 8 to 200.
Note the lowering of the curves with increasing N . For the
ferromagnetic model, shown in the inset, the curves are size
independent for large N . The magnitude of 〈r〉 at the minimum

FIG. 8. Distribution of ν, the number of spins in the ground-state
configuration which are flipped in the first excited state, for 10 000
different realizations of Jij . Results are for N = 12, and the spin
configurations are calculated at � = 0.

point of each curve [indicated for N = 200 in Fig. 7(a)] is
plotted against N in Fig. 7(b). Fitting to the last three points,
we see that −〈r〉min. pt. scales as ∼N0.733. This means that the
ground-state energy of the SK model scales as aN + bN0.733 +
· · · , whereas that of the ferromagnetic model scales as a′N +
b′ + · · · (a,b,a′, and b′ are independent of N ).

For the ferromagnetic model, the ground-state energy for
both HF approximation and truncated CI can be calculated an-
alytically in the limit N → ∞. These results are summarized
in Sec. A 2.

V. FIRST EXCITED STATE AND ENERGY GAP FORMULA

The energy gap � is defined as

� = E1 − E0, (22)

where E0 and E1 are the energies of the ground and first
excited states, |E0〉 and |E1〉, respectively. Let us first consider
the ferromagnetic model. When �′ = 0, the first excited state
is N -fold degenerate, but when �′ is turned on slightly the
degeneracy is lifted, and the state

1√
N

N∑
i=1

|i〉 (23)

splits away to become the first excited state. Note that Eq. (23)
is a superposition of states |i〉 which are one spin flip from the
HF ground state |0〉. The situation is slightly more complicated
for the SK model. We computed the exact ground-state and
first-excited-state spin configurations at � = 0 for different
realizations of Jij . For a specific realization, let ν denote
the number of spins in the configuration of the ground state
which are flipped in the first excited state. Figure 8 shows
the distribution of ν computed from 10 000 realizations of
Jij (N = 12). Although ν = 1 for >50% of the realizations, a
significant proportion (≈40%) has ν � 2.

Let us consider a Hermitian operator A that flips the
appropriate spin(s) in the ground state to generate the first
excited state, i.e.,

|E1〉 = A|E0〉. (24)
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We define the generating function as

G(γ ) = 〈E0|e−iγAHeiγA|E0〉, (25)

where γ is a parameter. Expanding the right side of Eq. (25)
to second order in γ , we have

〈E0|e−iγAHeiγA|E0〉
= 〈E0|

[
H + iγ [H,A] − γ 2

2
(HA2 + A2H − 2AHA)

+O(γ 3)

]
|E0〉. (26)

On the left side, the Taylor expansion of G(γ ) is G(0) +
∂G
∂γ

|γ=0γ + 1
2

∂2G
∂γ 2 |γ=0γ

2 + O(γ 3). Equating the γ 2 terms, we
arrive at the gap formula

� = 1

2

1

〈E0|A2|E0〉
∂2G

∂γ 2

∣∣∣∣
γ=0

, (27)

where we have used 〈E0|HA2+A2H |E0〉= 2E0〈E0|A2|E0〉,
E1 = 〈E1|H |E1〉/〈E1|E1〉, and Eq. (22).

The gap formula (27) is an exact relation that depends
only on the exact ground state |E0〉 and an appropriate A.
However, it is, in general, difficult to obtain the exact ground
state, especially for large N . Also, as discussed above, for
the SK model the choice of A depends on the realization of
Jij since ν may be different for different Jij . To overcome
the first difficulty, we propose making an approximation by
replacing |E0〉 with the HF ground state |0〉 or the truncated CI
ground state |CI′〉. Concerning the latter difficulty, as we have
seen that ν = 1 is the most common case, in the following we
shall restrict ourselves to an A that makes one-spin flips to the
ground state.

VI. ENERGY GAP FROM ONE-SPIN-FLIP
FIRST EXCITED STATE

A. One-spin-flip operator

We define the one-spin-flip operator

A1 =
N∑

i=1

yiσ
y

i . (28)

The Pauli matrix σ
y

i flips the ith spin, and the real parameter yi

describes the contribution of the flipped spin to the first excited
state. The yi are constrained by the condition

〈E0|(A1)2|E0〉 = 1, (29)

which normalizes the excited state generated by A1. The
excited state (23) of the ferromagnetic model is a special case
of A1|E0〉 with |E0〉 = |0〉 and yi = 1/

√
N . For the SK model,

the parameters yi are not known a priori and depend on the
realization of Jij . Replacing A in Eq. (27) by A1, the energy
gap becomes a function of yi . The gap is minimized with
respect to yi to determine which spins are flipped in the first
excited state.

B. HF approximation

We first consider the HF approximation of Eq. (27).
Replacing A and |E0〉 in Eq. (25) by A1 and |0〉, we

have

GHF
1 (γ ) = 〈0|e−iγA1HeiγA1 |0〉. (30)

Replacing G, A, and |E0〉 on the right side of Eq. (27) by GHF
1 ,

A1, and |0〉, we have the HF energy gap

�HF
1 = −8

∑
i

∑
j 	=i

Jijαiαjβiβjyiyj + �
∑

i

y2
i

αiβi

, (31)

where α,β are solutions of the HF equations and the subscript
1 in GHF

1 and �HF
1 serves to remind us that A1 is used in place

of A. The constraint (29) becomes

N∑
i=1

y2
i = 1. (32)

The derivation of Eq. (31) is given in Appendix C.
�HF

1 is a quadratic form of yi and is easily minimized subject
to condition (32). Figure 9(a) shows �HF

1 for a realization
of Jij with ν = 1 (N = 8). In the ordered regime (� < 0.5),

FIG. 9. (a) Energy gaps �HF
1 (blue dashed line) and E1 − E0 and

E2 − E1 (red solid lines) for a single realization of Jij with ν = 1
(N = 8). Inset: Same quantities for a realization with ν = 2. (b)
Average energy gaps 〈�HF

1 〉 (blue dashed line) and 〈E1 − E0〉 and
〈E2 − E1〉 (red solid lines) taken over different realizations of Jij

with ν = 1 (N = 14). Error bars indicate standard deviation. Inset:
Average absolute error of the gap, 〈|�HF

1 − (E2 − E1)|〉, in the ordered
regime. Error bars indicate standard deviation.
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FIG. 10. Solutions of yi that minimize Eq. (31) for the realization
of Jij shown in Fig. 9(a) (ν = 1). The absolute value of each
component |yi | is plotted against �. In the ordered regime (� < 0.5),
two of the components, |y1| and |y2| (red dashed lines), contribute
much more than the rest (blue solid lines).

�HF
1 agrees very well with the exact gap E2 − E1 [45]. In

the paramagnetic regime (� > �HF ≈ 1.5), �HF
1 is displaced

below the curve E1 − E0. The inset shows the same quantities
for another realization of Jij with ν = 2. The results are similar
except that �HF

1 does not approach E2 − E1 as � → 0. In this
case, the disagreement in the ordered regime is to be expected
as one should use an A that makes two-spin flips instead of a
one-spin flip.

Figure 10 shows the solutions of yi for the realization
with ν = 1 in Fig. 9(a). In the ordered regime, there are two
large components (red dashed lines), and the first excited state
is a superposition of mainly these two components. In the
paramagnetic regime, �HF

1 is minimized by the eigenvector of
the largest eigenvalue of Jij and is independent of �.

Figure 9(b) shows 〈�HF
1 〉, 〈E1 − E0〉, and 〈E2 − E1〉,

the average of �HF
1 , E1 − E0, and E2 − E1 over different

realizations of Jij with ν = 1 (N = 14) [46]. The results are
similar to that of a single realization. The inset highlights
the region in the ordered regime and shows that the average
absolute error 〈|�HF

1 − (E2 − E1)|〉 and its fluctuation indeed
vanish as � → 0.

For large N , it is no longer possible to compute the energy
gap exactly for comparison. Furthermore, the ν of a particular
realization of Jij is also unknown. Nevertheless, we apply
Eq. (31) to all the realizations of Jij that we sampled, and
the average gap 〈�HF

1 〉 is computed by summing over all
realizations regardless of whether ν = 1 or not. In the ordered
phase, the average gap computed in this way is therefore an
overestimation of the actual gap. This is because applying
A1 to a realization with ν > 1 necessarily promotes the
ground state to a higher state than the first excited state [47].
Figure 11 shows 〈�HF

1 〉 from N = 10 to 1000. As N increases,
the minimum of the energy gap (indicated for the curve
of N = 20 in the figure) approaches asymptotically towards
� = 2, the point of phase transition. Hence, at least within the
HF framework, we verified that at a quantum phase transition
the energy gap goes to zero [39].

FIG. 11. 〈�HF
1 〉, the average of the HF energy gap over different

realizations of Jij for various N . Error bars for N = 1000 indicate
standard deviation. Inset: Scaling of the minimum energy gap with
N for the SK model (blue crosses) and the ferromagnetic model (red
circles). The solid lines are straight lines fitted to the data points.

It is interesting to compare the energy gap between the
SK model and the ferromagnetic model (Fig. 1). First, the
gap of the SK model in the ordered phase decreases to
zero as N → ∞, whereas that of the ferromagnetic model
remains finite. From previous studies, the classical SK model
(i.e., � = 0) is already known to have many energetically
degenerate ground states in the thermodynamic limit. Here,
we observe numerically that when � > 0, the energies of
the two lowest levels remain very close to each other in the
ordered phase all the way to the critical point. Hence, unlike
the ferromagnetic model, the ground state and the first excited
state of the SK model are not well separated in energy, and
this might present difficulties for the quantum annealing of
disordered spin models exhibiting continuous transitions (to be
discussed in Sec. VII). Second, as N increases, the minimum
energy gap of the SK model decreases much faster than that
of the ferromagnetic model. For the former, the minimum
gap is defined as the minimum of the 〈�HF

1 〉 curve (see the
N = 20 curve in Fig. 11). For the latter, it is defined as
the minimum of the E2 − E1 (i.e., top) curve shown in Fig. 1.
The inset in Fig. 11 shows that the minimum gaps of the SK
and the ferromagnetic models scale as ∼N−0.616 and ∼N−0.316,
respectively. Hence, the SK model is much more difficult to
anneal across the critical point than the ferromagnetic model.

C. Truncated CI

We now improve upon the HF approximation by using the
truncated CI wave function as the ground state. The generating
function is

GCI′
1 (γ ) = 〈CI′|e−iγA1HeiγA1 |CI′〉. (33)

The second derivative of GCI′
1 with respect to γ is

∂2GCI′
1

∂γ 2

∣∣∣∣
γ=0

=
8∑

a=1

Ta, (34)

where the terms Ta are derived and summarized in
Appendix D. With the choice of overall phase for |CI′〉 given
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by Eq. (D1), we have

〈CI′|(A1)2|CI′〉 =
⎛
⎝c2

0 +
∑

i

c2
i +

∑
j>i

c2
ij

⎞
⎠(∑

i

y2
i

)

+ 4
∑
j>i

(cicj + c0cij )yiyj + 2
∑
j>i

cij

×
⎛
⎝yj

∑
l 	=i,j

cilyl + yi

∑
l 	=i,j

cjlyl

⎞
⎠, (35)

where in the sum
∑

l 	=i,j if l < i, then cil = cli (similarly
for cjl). Equation (35) gives the constraint 〈CI′|(A1)2|CI′〉 =
1 when minimizing Eq. (34) with respect to yi . Finally, the
truncated CI gap is

�CI′
1 = 1

2

1

〈CI′|(A1)2|CI′〉
∂2GCI′

1

∂γ 2

∣∣∣∣
γ=0

. (36)

We computed �CI′
1 in two ways. In the first way yi from the

minimization of �HF
1 is substituted directly into Eq. (36). As

this yi is not the optimal solution, Eq. (34) is not minimized,
and Eq. (35) deviates slightly from unity. In the second way, we
minimize Eq. (34) subject to the constraint 〈CI′|(A1)2|CI′〉 = 1
[48]. Figure 12 shows the results for the realization of Jij

of Fig. 9(a) (ν = 1). The �CI′
1 calculated in the first and

second ways are labeled “unminimized” and “minimized,”
respectively. In the ordered regime (� < 0.5), the results of
�HF

1 and the two �CI′
1 are almost identical because the gap is

already well reproduced by �HF
1 . In the paramagnetic regime

(� > 1.5), there is significant improvement, and the two �CI′
1

curves are nearly coincident with the actual gap E1 − E0. In
fact, the yi from HF approximation is already quite close to the
optimum, and there is only a slight difference between the two
�CI′

1 curves in the region 1 < � < 2. Hence, one can compute
just the unminimized version of �CI′

1 and still obtain accurate
values of the gap in both the ordered and paramagnetic regimes.

FIG. 12. Energy gaps of the realization of Jij with ν = 1 shown
in Fig. 9(a). The curve for �CI′

1 (unminimized; solid green line) is
obtained by substituting yi from the HF approximation directly into
Eq. (36). The curve for �CI′

1 (minimized; dashed blue line) is obtained
by minimizing Eq. (34) subject to the constraint 〈CI′|(A1)2|CI′〉 = 1.

FIG. 13. Absolute error of the energy gap �CI′
1 (unminimized)

averaged over different realizations of Jij with ν = 1 for N =
14. (a) For large � where the average absolute error is defined
as 〈|�CI′

1 − (E1 − E0)|〉. (b) For small � where it is defined as
〈|�CI′

1 − (E2 − E1)|〉. Error bars indicate standard deviation.

In the intermediate regime 0.5 < � < 1.5, where the
degeneracy of the ground state is gradually lifted, it is difficult
to pinpoint exactly where the gap goes from being E2 − E1

to being E1 − E0. In this regime, the method proposed here
may not be applicable, and perhaps a full quantum treatment
is necessary.

Figure 13 shows the error of �CI′
1 averaged over differ-

ent realizations of Jij with ν = 1 for N = 14 [46]. The
unminimized version of �CI′

1 is used. For large � (>1), we
computed the average absolute error 〈|�CI′

1 − (E1 − E0)|〉,
where a comparison is made with E1 − E0. For small � (<1),
we computed 〈|�CI′

1 − (E2 − E1)|〉, where a comparison is
made with E2 − E1. One sees that as � → ∞ and → 0, the
errors (and their fluctuations) decrease to zero.

To conclude this section, we note that for the ferromagnetic
model the energy gap for HF approximation and truncated
CI can be computed analytically in the thermodynamic limit.
These results are summarized in Sec. A 3.

VII. SUMMARY AND DISCUSSION

This paper presented an extensive study of the Sherrington-
Kirkpatrick model in a transverse field. We proposed using
the theoretical framework of Hartree-Fock approximation and
configuration interaction for the simulation of quantum spin
glasses. The main idea was that low-lying spin excitations
can account for much of the energies of the ground and first
excited states of the system. A truncated CI basis consisting of
one-spin- and two-spin-flipped states was therefore proposed,
thereby avoiding the use of the full Hilbert space. Detailed
numerical studies of the ground-state energy and energy gap
of the SK model were performed. A formula for computing the
energy gap was also proposed. The scaling with system size of
the energy gap at the critical point and the leading correction to
the extensive part of the ground-state energy are two insights
obtained with our approach.

The dimension of the truncated CI basis scales as
O(N2), much smaller than 2N , which is required for full
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diagonalization. Nevertheless, this gain does not necessarily
imply a drastic loss of accuracy. For instance, Fig. 12 shows
that the error incurred in the energy gap in the paramagnetic
phase is actually very small. Furthermore, this method is
simple to implement. There is just a small number of matrix
elements and force terms (see Appendixes B and D) that need
to be derived analytically and hard coded into the program.
These derived terms are then directly applicable for any
parameter values of � and Jij . The usage is simpler than that
of QMC, where, usually, one needs to first run a few trials
to locate the critical point and also to estimate the number of
Monte Carlo steps required to converge the data at different
parameter values. Moreover, near the critical point it can be
computationally expensive to achieve numerical convergence
for large system sizes using QMC [23,24]. These issues do not
arise in our proposed method.

In a spin glass, especially in the thermodynamic limit, there
exist many local minima whose energies are very close to each
other but are separated in configuration space by a macroscopic
number of spin flips. The one-spin- and two-spin-flipped states
provide a basis to expand the wave function centered around
the global minimum. By truncating the CI expansion after the
two-spin-flipped states, we are effectively ignoring the other
local minima (and the states around them) even though their
energies can be very close to that of the global minimum. This
truncation is a valid approximation when the transverse field is
not too strong. When � is turned on from zero, the ground-state
wave function, a δ function located at the global minimum,
starts to acquire a finite width. As the relaxation of this wave
packet is localized around the vicinity of the global minimum,
there is almost no overlap with the wave functions at other local
minima many spin flips away. Hence, truncated CI is sufficient
to describe the ground state during this initial stage. As �

increases further, however, the effects of tunneling become
important. Quantum fluctuations now enable the wave packet
at the global minimum to tunnel across energy barriers and
superpose with the wave packets at other local minima, giving
rise to a ground state that is delocalized in configuration space.
In particular, as � approaches criticality, it becomes necessary
to include states with multiple spin flips, and truncated CI
is no longer accurate. Indeed, Fig. 6 shows that the error
incurred in the ground-state energy goes to zero in the classical
limit (� → 0) and peaks around � ≈ 1.5, where the system
undergoes a change of phase. Hence, an interesting challenge
in the numerical simulation of quantum spin glasses would
be the development of a technique that caters specifically to
the regime near criticality. One could then arrive at the full

picture by patching together results of different regimes (i.e.,
paramagnetic, spin glass, and critical), each obtained using an
appropriate method.

In our study of the energy gap, the one-spin-flip operator
A1 is used for all �. When � is large (paramagnetic regime),
this seems to be a reasonable assumption, as we have seen that
the gap can be accurately calculated by Eq. (36). When � is
small (ordered regime), however, not all realizations of Jij are
ν = 1. Some interesting questions arise. First, for a particular
realization of Jij drawn from, say, the Gaussian distribution
(6), is there any way to determine its ν without comparing the
energies of all possible spin configurations? Even if the actual
ν is unknown, one can still compare the gap computed using
A1 and some other operators and choose the smaller of the two
gaps. For ν = 2, one can consider

A2 =
∑
j>i

yij σ
y

i σ
y

j . (37)

It would be interesting to apply the method presented in this
paper to these more complex scenarios in future work.

The results of the HF energy gap shown in Fig. 11 raise
some interesting questions for the quantum annealing of the
SK model. As system size increases, the gap decreases to
zero in the entire ordered phase, and this might be a problem
for quantum annealing within the ordered phase. Hitherto,
analyses on the feasibility of quantum annealing have focused
on the vanishing of the energy gap at the critical point. Implicit
in the Landau-Zener analysis of the avoided crossing is the
assumption that the two energy levels become well separated
after the crossing. This might not be a valid assumption for the
SK model in the thermodynamic limit. Hence, even though the
gap at the critical point of a continuous transition model does
not decrease exponentially with system size, the feasibility of
quantum annealing even for such models might be affected by
the nature of the gap within the ordered phase. Indeed, such
a caveat has also been briefly mentioned in a recent paper by
Liu et al. [49]. The authors, however, did not further pursue
their line of thought with a concrete example. Figure 11 can
serve as a quantitative illustration of their concern, using the
SK model in a transverse field as an example.
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APPENDIX A: SUMMARY OF ANALYTIC RESULTS FOR THE FERROMAGNETIC MODEL
IN THE THERMODYNAMIC LIMIT

1. Holstein-Primakoff transform

Equation (1) is solved by first performing a Holstein-Primakoff transformation to bosonic operators b and b† [28,38,50],

Sz + iSy = √
s − n b, Sz − iSy = b†

√
s − n, Sx = s − n, (A1)

where Sα = ∑
i σ

α
i , n = b†b, and s is the angular momentum quantum number. One then diagonalizes the transformed

Hferro by first expanding in powers of N , followed by a Bogoliubov transformation to new operators γ and γ † to obtain

Hferro =
{−N�′ + √

�′(�′ − 2J ′) − �′ + 2
√

�′(�′ − 2J ′) γ †γ + O(N−1) if �′ � 2J ′,

−N (2J ′)2+(�′)2

4J ′ +
√

(2J ′)2 − (�′)2 − 2J ′ + 2
√

(2J ′)2 − (�′)2 γ †γ + O(N−1) if �′ < 2J ′,
(A2)
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where �′ � 2J ′ (�′ < 2J ′) is the paramagnetic (ferromagnetic) phase. In Eq. (A2), the first term proportional to N is the extensive
part of the ground-state energy. It is also obtainable by mean-field theory [50]. The second term is the leading correction to the
extensive part. The coefficient of γ †γ gives the energy gap. The two latter terms are of order O(1) and are very small compared
to the extensive term.

2. Ground-state energy: HF approximation and truncated CI

For the ferromagnetic model, the HF equation is

(2α2 − 1)

[
1 − 4J ′

�′
N − 1

N
α
√

1 − α2

]
= 0. (A3)

We consider the limit N → ∞. For �′ � 2J ′, the paramagnetic solution is α = 1√
2
. For �′ < 2J ′, there are two ferromagnetic

solutions,

α± =

√√√√1 ±
√

1 − (
�′
2J ′
)2

2
. (A4)

The solutions ( α+√
1 − (α+)2) and ( α−√

1 − (α−)2) are related to each other by a spin flip. The HF ground-state energy is

EHF
ferro =

{−N�′−J ′ + O(N−1) if �′ � 2J ′,
−N (2J ′)2+(�′)2

4J ′ − (�′)2

4J ′ + O(N−1) if �′ < 2J ′.
(A5)

Comparing with Eq. (A2), we see that the first term of HF approximation recovers the extensive part of the ground-state energy.
To incorporate the effects of one-spin and two-spin flips, we compute the lowest eigenvalue of the truncated CI matrix. In the

limit N → ∞, this can be done analytically. The result is

ECI′
ferro =

⎧⎨
⎩

−N�′ − J ′ + 2(�′ − J ′) −
√

4(�′ − J ′)2 + 2(J ′)2 + O(N−1) if �′ � 2J ′,

−N (2J ′)2+(�′)2

4J ′ − (�′)2

4J ′ + 4J ′ − (�′)2

2J ′ −
√(

4J ′ − (�′)2

2J ′
)2 + (�′)4

8(J ′)2 + O(N−1) if �′ < 2J ′.
(A6)

A summary of the leading correction to the extensive part of the ground-state energy given by the Holstein-Primakoff transform,
HF approximation, and truncated CI is shown in Fig. 14(a). The energies given by HF approximation and truncated CI are both
higher than the true ground-state energy, as required by the variational principle.

3. Energy gap: HF approximation and truncated CI

In the HF approximation, the energy gap for the ferromagnetic model is

�HF
1,ferro =

{
2(�′ − 2J ′) + O(N−1) if �′ � 2J ′,

4J ′ − (�′)2

J ′ + O(N−1) if �′ < 2J ′.
(A7)

For truncated CI, the energy gap in the paramagnetic phase (�′ � 2J ′) is

�CI′
1,ferro = 2(�′ − 2J ′)

(J ′)2 + 2(�′ − J ′)2 − (�′ − J ′)
√

4(�′ − J ′)2 + 2(J ′)2

(J ′)2 + 2�′J ′ + 10(�′ − J ′)2 − (5�′ − 4J ′)
√

4(�′ − J ′)2 + 2(J ′)2
+ O(N−1). (A8)

In the ferromagnetic phase (�′ < 2J ′), it is

�CI′
1,ferro =

(
4J ′ − (�′)2

J ′

) (4J ′ − (�′)2

2J ′ )2 + (�′)4

8(J ′)2 − (4J ′ − (�′)2

2J ′ )
√(

4J ′ − (�′)2

2J ′
)2 + (�′)4

8(J ′)2

5(4J ′ − (�′)2

2J ′ )2 + (�′)4

8(J ′)2 + 2(�′)2 − 2(10J ′ − (�′)2

J ′ )
√(

4J ′ − (�′)2

2J ′
)2 + (�′)4

8(J ′)2

+ O(N−1). (A9)

A summary of the energy gap given by the Holstein-Primakoff transform, HF approximation, and truncated CI is shown in
Fig. 14(b).

APPENDIX B: MATRIX ELEMENTS OF THE TRUNCATED CI MATRIX

〈0|H |0〉 = EHF. (B1)

〈0|H |i〉 = 2iαiβi

∑
a 	=i

Jia

(
α2

a − β2
a

)− i�
(
α2

i − β2
i

)
. (B2)

〈0|H |ij 〉 = 4Jijαiβiαjβj . (B3)
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〈i|H |j 〉 =
⎧⎨
⎩

EHF + 4�αiβi

+2
(
α2

i − β2
i

)∑
a 	=i Jia

(
α2

a − β2
a

)
if 〈i|H |i〉,

−4Jijαiβiαjβj otherwise.
(B4)

〈k|H |ij 〉 =
⎧⎨
⎩

2iαjβj

∑
a 	=i,j Jja

(
α2

a − β2
a

)
−2iJijαjβj

(
α2

i − β2
i

)− i�
(
α2

j − β2
j

)
if 〈i|H |ij 〉,

0 otherwise.
(B5)

〈kl|H |ij 〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

EHF + 4�
(
αiβi + αjβj

)
+2
(
α2

i − β2
i

)∑
a 	=i,j Jia

(
α2

a − β2
a

)
+2
(
α2

j − β2
j

)∑
a 	=j,i Jja

(
α2

a − β2
a

)
if 〈ij |H |ij 〉,

−4Jjlαjβjαlβl if 〈il|H |ij 〉,
0 otherwise.

(B6)

APPENDIX C: DERIVATION OF EQUATION (31)

Since eiγA1 is factorizable, we have

eiγA1 |0〉 =
∏

i

eiγyiσ
y

i

(
αi

βi

)

=
∏

i

(
αi cos γyi + βi sin γyi

−αi sin γyi + βi cos γyi

)

=
∏

i

(
ᾱi

β̄i

)
, (C1)

where ᾱi = αi cos γyi + βi sin γyi and β̄i = −αi sin γyi +
βi cos γyi . Hence,

GHF
1 (γ ) = EHF(ᾱ(γ ),β̄(γ )). (C2)

Differentiating GHF
1 (γ ) twice with respect to γ using the chain

rule, we have

∂2GHF
1

∂γ 2

∣∣∣∣
γ=0

=
⎡
⎣ N∑

i=1

N∑
j=1

yiyj ∂̂ij −
N∑

i=1

y2
i ∂̂i

⎤
⎦EHF(ᾱ,β̄),

(C3)

where

∂̂i =
[
ᾱi

∂

∂ᾱi

+ β̄i

∂

∂β̄i

]∣∣∣∣
γ=0

(C4)

and

∂̂ij =
[
ᾱi ᾱj

∂2

∂β̄i∂β̄j

− ᾱj β̄i

∂2

∂ᾱi∂β̄j

− ᾱi β̄j

∂2

∂β̄i∂ᾱj

+ β̄i β̄j

∂2

∂ᾱi∂ᾱj

]∣∣∣∣
γ=0

. (C5)

Equation (C3) is evaluated by substituting Eq. (10) into the
right side and working out the derivatives. The constraint (29)

becomes

〈0|(A1)2|0〉 = 1 (C6)

and is easily shown to be Eq. (32). Inserting Eqs. (C3) and
(C6) into Eq. (27), we get Eq. (31).

FIG. 14. Comparison of analytic results for the ferromagnetic
model (1) in the thermodynamic limit, between the Holstein-
Primakoff transform (black solid line), HF approximation (blue dotted
line), and truncated CI (red dashed line). (a) Leading correction to
the extensive part of the ground-state energy. (b) Energy gap between
the ground and first excited states.
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APPENDIX D: DERIVATION OF THE TERMS IN EQUATION (34)

With an appropriate choice of phase for the first element c0, Eq. (20) can be written as

|CI′〉 = c0|0〉 + i
∑

i

ci |i〉 +
∑
j>i

cij |ij 〉, (D1)

where c0, ci , and cij are all real. In addition, let us denote the matrix elements listed in Appendix B as

〈n|H |m〉 = Hn,m(α,β), (D2)

where the dependence on α and β is made explicit. For instance, for Eq. (B5), n = k and m = ij . In view of Eq. (C1), it is
apparent that

〈n|e−iγA1HeiγA1 |m〉 = Hn,m(ᾱ,β̄). (D3)

With the above notations, the right side of Eq. (33) is expanded to give

GCI′
1 (γ ) =

⎛
⎝c2

0 +
∑

i

c2
i +

∑
j>i

c2
ij

⎞
⎠H0,0(ᾱ,β̄) + 2ic0

∑
i

ciH0,i(ᾱ,β̄) + 2c0

∑
j>i

cijH0,ij (ᾱ,β̄) +
∑

i

c2
i Ri(ᾱ,β̄)

+ 2
∑
j>i

cicjHi,j (ᾱ,β̄) +
∑
j>i

c2
ijRij (ᾱ,β̄) − 2i

∑
i

∑
j 	=i

cicijHi,ij (ᾱ,β̄) +
∑
j>i

cij

∑
l 	=i,j

[cilHij,il(ᾱ,β̄) + cjlHij,j l(ᾱ,β̄)],

(D4)

where we let cij = cji whenever i > j and Rn(ᾱ,β̄) is defined as

Rn(ᾱ,β̄) = Hn,n(ᾱ,β̄) − H0,0(ᾱ,β̄). (D5)

The second derivative of GCI′
1 with respect to γ is implemented by the same differential operator in Eq. (C3), i.e.,

∂2
γ ≡ ∂2

∂γ 2

∣∣∣∣
γ=0

=
N∑

i=1

N∑
j=1

yiyj ∂̂ij −
N∑

i=1

y2
i ∂̂i . (D6)

Applying ∂2
γ to the right side of Eq. (D4) and noting that it is linear and hence does not affect the coefficients c0, ci , and cij , we

see that we need to compute ∂2
γ for the matrix elements listed in Appendix B. The calculation is similar to that in Appendix C.

The result is Eq. (34), where

T1 =
⎛
⎝c2

0 +
∑

i

c2
i +

∑
j>i

c2
ij

⎞
⎠∂2

γ H0,0(ᾱ,β̄) =
⎛
⎝c2

0 +
∑

i

c2
i +

∑
j>i

c2
ij

⎞
⎠
⎛
⎝−16

∑
i 	=j

Jijαiβiαjβjyiyj + 2�
∑

i

y2
i

αiβi

⎞
⎠, (D7)

T2 = 2ic0

∑
i

ci∂
2
γ H0,i(ᾱ,β̄) = 32c0

∑
i,j

Jijαiβicj

(
α2

j − β2
j

)
yiyj + 16c0

∑
i,j

Jij y
2
i

(
α2

i − β2
i

)
cjαjβj , (D8)

T3 = 2c0

∑
j>i

cij ∂
2
γ H0,ij (ᾱ,β̄) = 8c0

∑
i,j

cij Jij yiyj

(
α2

i − β2
i

)(
α2

j − β2
j

)− 32c0

∑
i,j

cij Jijαiβiαjβjy
2
i , (D9)

T4 =
∑

i

c2
i ∂

2
γ Ri(ᾱ,β̄) = 64

∑
i,j

Jij c
2
i yiyjαiβiαjβj − 8

∑
i,j

Jij c
2
i y

2
j

(
α2

i − β2
i

)(
α2

j − β2
j

)− 4�
∑

i

c2
i y

2
i

αiβi

, (D10)

T5 = 2
∑
j>i

cicj ∂
2
γ Hi,j (ᾱ,β̄) = −8

∑
i 	=j

Jij cicj yiyj

(
α2

i − β2
i

)(
α2

j − β2
j

)+ 32
∑
i 	=j

Jij cicjαiβiαjβjy
2
i , (D11)

T6 =
∑
j>i

c2
ij ∂

2
γ Rij (ᾱ,β̄) = −4�

∑
i 	=j

c2
ij y

2
i

αiβi

− 64
∑
i 	=j

Jij c
2
ij yiyjαiβiαjβj + 16

∑
i 	=j

Jij c
2
ij

(
α2

i − β2
i

)(
α2

j − β2
j

)
y2

i

+ 64
∑
i 	=j

c2
ij yiαiβi

∑
u

Jiuyuαuβu − 8
∑
i 	=j

c2
ij

(
α2

i − β2
i

)∑
u

Jiuy
2
u

(
α2

u − β2
u

)
, (D12)

T7 = −2i
∑

i

∑
j 	=i

cicij ∂
2
γ Hi,ij (ᾱ,β̄) = −32

∑
i 	=j

cicij yj

(
α2

j − β2
j

)∑
u

Jjuyuαuβu + 64
∑
i 	=j

cicij Jij yiyjαiβi

(
α2

j − β2
j

)

+ 32
∑
i 	=j

cicij Jijαjβj

(
α2

i − β2
i

)(
y2

i + y2
j

)− 16
∑
i 	=j

cicijαjβj

∑
u

Jjuy
2
u

(
α2

u − β2
u

)
, (D13)
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T8 =
∑
j>i

cij

∑
l 	=i,j

[
cil∂

2
γ Hij,il(ᾱ,β̄) + cjl∂

2
γ Hij,j l(ᾱ,β̄)

]

= −8
∑
j>i

cij

⎧⎨
⎩
∑
l 	=i,j

cilJlj

[
ylyj

(
α2

l − β2
l

)(
α2

j − β2
j

)− 2αlβlαjβj

(
y2

l + y2
j

)]

+
∑
l 	=i,j

cjlJli

[
ylyi

(
α2

l − β2
l

)(
α2

i − β2
i

)− 2αlβlαiβi

(
y2

l + y2
i

)]⎫⎬⎭. (D14)
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