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Structure retrieval with fast electrons using segmented detectors
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We introduce an algorithm for the reconstruction of the complex transmission function of a specimen using
segmented detectors in scanning transmission electron microscopy geometry. The phase of the transmission
function can be related to magnetic and electric fields within the specimen and is sensitive to lighter elements.
The technique is demonstrated for simulated data and also using experimental datasets taken from a MoS,
monolayer and a SrTiO; crystal. We present an extension to the algorithm to account for uncertainties in the
illuminating probe. The algorithm can be implemented using fast Fourier transforms, and this provides the
possibility of reconstructing specimen transmission functions in real time.
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I. INTRODUCTION

Aberration-corrected electron microscopy has ushered in
a new era of imaging at atomic resolution, and this has
become an essential tool for the characterization of functional
nanostructures. Often it is the phase of the wave after the
probe has transited the specimen, i.e., the exit-surface wave,
that encodes significant physical properties of the specimen.
For example, the phase is related to electric and magnetic
fields within the specimen. Consequently, much effort has been
devoted to reconstructing the complex exit surface wave from
one or more images or diffraction patterns, which themselves
do not directly manifest the phase information.

Deterministic retrieval of the exit-surface wave for a CeO,
nanoparticle from the diffraction pattern formed using a
defocused coherent probe was recently demonstrated [1]. An
independent retrieval of the exit-surface wave with the probe
at a second position such that the region of illumination on
the specimen overlapped the first yielded consistency in the
region of overlap. However, there are decided advantages in
scanning a coherent probe, as is done in scanning transmission
electron microscopy (STEM), to obtain a four-dimensional
(4D) dataset (where a 2D diffraction pattern is obtained
for each probe position while scanning the probe in two
dimensions). When treated as a whole, such 4D datasets are
overdetermined if there are regions of overlap of the area
of the specimen illuminated for different probe positions.
The quantity that it is then convenient to work with in such
ptychographic approaches is the transmission function of the
specimen rather than the exit-surface wave, as has been done in
several applications along these lines [2—4]. The transmission
function is defined as the quantity that multiplies the incident
probe wave function to give the exit-surface wave function. If
the specimen is thin enough, then a transmission function in
a single plane will represent the effect of the specimen on the
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probe in a consistent way for overlapping probe positions, and
the transmission function will also represent the structure of
the specimen. This transmission function is the same as the
exit-surface wave when the specimen is illuminated by a plane
wave, assumed to be unity everywhere as it illuminates the
specimen.

The advent of fast-readout 2D electron cameras has greatly
facilitated the acquisition of 4D datasets in STEM [5]. The
use of such a rapid detector enabled Pennycook et al. [6,7]
to demonstrate efficient phase contrast imaging in STEM
using a pixelated detector and to explore the optimization of
imaging conditions by synthesizing different detectors in terms
of the smaller pixels on a charge-coupled device (CCD) [8].
Diffraction contrast imaging using virtual apertures has also
been explored [9]. Such results can also be compared to those
obtained using fixed-configuration segmented detectors. For
example, Shibata et al. [10-13] and Lazi¢ et al. [14] use
fixed-configuration detectors for differential phase contrast
imaging.

In this paper, we present an implementation of segmented
detector ptychography [15-19] (SDP) for the reconstruction
of a transmission function of a specimen. The present ap-
proach is akin to the generalized holography method outlined
in Ref. [4]. Measurements recorded in the diffraction plane
using a focused coherent atomic scale probe are used to
construct images corresponding to segmented detectors. These
are used, in conjunction with the known illumination, to
reconstruct the transmission function. The approach is deter-
ministic, it can be implemented in a memory-efficient way
in terms of fast Fourier transforms, and it can efficiently
handle very large 4D datasets. However, we note that a 4D
dataset taken using a fast-readout 2D electron camera is not
a requirement to apply the SDP algorithm. The technique
is also applicable to datasets recorded using segmented
detectors [10,14,20,21]. The technique is demonstrated for
simulated data and also using experimental datasets recorded
for a MoS; monolayer and a SrTiO3 crystal for two different
thicknesses.
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II. THEORETICAL FRAMEWORK

We assume that we have a specimen that is sufficiently
thin to represent the scattering of the incident electrons by a
transmission function 7'(r) in a single plane, which, for what
follows, will be convenient to write in the form

T(r) =1+ O(r), ()

where we will refer to O(r) as the object function. An atomic-
scale, focused coherent electron probe placed at position R on
the specimen is denoted by vijum(r,R). The exit-surface wave
after scattering by the specimen is then given by

Vexit(t,R) = T () Yijjum (r, R)
= [1 + O(™)]¥inum(r.R). @

The exit-surface wave in the far-field diffraction plane can be
written as

Vexit(@.R) = Frs g {Yinam @, R)[1 4 O ()]}
= Yitam (@, R) + Yium(q,R) * O(q)
= Yinum(@R) + Y ¥ium(q — 2. RO(@), (3)
g

where F;_.q denotes a Fourier transform from real space
to the reciprocal (diffraction) space, and the hat symbol (")
emphasizes a reciprocal-space quantity. The convolution of
O(q) and Iﬁmum(q,R), denoted by the operator =, is a result
of the Fourier convolution theorem, and a reciprocal-space
coordinate g has been introduced when explicitly writing out
this convolution in discretized form in the final line of the
equation.

Assume now that we have acquired a 4D dataset using
a pixelated detector. We can synthesize detectors in terms of
sets of pixels that define each detector, and we can construct an
image as a function of probe position R for each such detector
Jj in the following way:

I(R) = / Wea(@RD, (@)da, @

where D;(q) is a binary function defining the region of the
diffraction pattern spanned by the synthesized detector.

Inserting Eq. (3) into Eq. (4), we obtain an expression for
the segmented detector signal,

I,(R)= / Diam(@I2D;(@)dq
+ 32 0@ [ i@ iinta - 9D (@i
g

+ 320" @e > [[finan(@iun(a- 1D @ da
g
2
Dj(q)dq,

“f
)

where we have used the decomposition xl?mum(q,R) =
Vinum(q)e~27"9R Examining Eq. (5), we can identify the
first term as the wave component that is not scattered by

Y Yim(@ — ge 7 ERO(g)
g
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the specimen. The next two terms are cross terms (and are
the complex conjugate of one another) that are linear with
respect to the function O(g). The final term, nonlinear with
respect to the function O(g), is assumed to be negligible and is
ignored in subsequent equations. This is equivalent to making
a weak phase approximation, but it is possible to correct for
this after an initial solution, without the nonlinear term, has
been obtained [22]. With this approximation, and defining

bi(g) = / Virum(@Vinam(q — €)D;(q)dq, (©6)

we can rewrite Eq. (5) in the form
i) = LR = [ i @FD; (@)

~ Y 0@ R$;(g) + O*(g)e " ERPr(g)
g

=2) Re{O(®)e”™ "4, (2)). 0
g

where the quantities b;(R) are constructed from the synthe-
sized images and the illumination. The illumination is assumed
known, but if it is inadequately characterized at the outset, the
Appendix suggests a scheme whereby corrections can be made
to areasonable guess of the illumination function. Equation (7)
is a set of linear equations for the unknown Fourier coefficients
O(g), afact that is made more manifest by the following matrix
formulation:

[2Re{e’™#R4, ()]
[2Re{e*™ &R y(g)}]

[~2Im{e>™R4, ()]
[—2Im{e*"& Ry (g)}]

[2Re{e?#Rp, (g)}] [—2Im{e*™8Rp, (2)}]

[b1(R)]
Re{O@} T _ | [2R)]

X[[Im{é(g)}] }‘ ks ®
[ba(R)]

This is a set of linear equations of the form Ax =b. For
each of the np detectors, there is a “row” of two subblocks
written in terms of real and imaginary parts in the coefficient
matrix A. Within the subblocks of A, the columns vary
with the reciprocal-space coordinate g and the rows by the
probe position R. Each subblock has dimension ng, the
number of probe positions, by ng, the number of Fourier
coefficients Og, which is half the dimension of the vector of
unknowns x (since we are solving for the real and imaginary
parts of Og separately). The vector b contains the different
b;(R) from Eq. (7) and has dimension np x ngr. To have an
overdetermined set of equations, we require np X ng > 2ng,
which is ensured by sampling above the Nyquist frequency
where nr > 2ng. It may be possible to overdetermine the
problem with sampling less than the Nyquist frequency by
using a sufficient number of detectors.

The details of the probe, which define the matrix on the left-
hand side of Eq. (8), via Eq. (6), are important in determining
contrast. The probe aperture should contain the significant
Fourier coefficients pertinent to the structure of the object
we are seeking to retrieve. However, making the probe much
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narrower than the features of interest is likely to reduce the
sensitivity of the technique. In the extreme case of a §-function
probe, perfect phase objects give no contrast, irrespective of
the segmentation of the detector.

Equation (8) can be solved using conventional approaches
such as QR or LU decomposition or singular value decompo-
sition (SVD) [23]. However, there can be both memory and
speed advantages in using the conjugate gradient least-squares
(CGLS) algorithm. Furthermore, the CGLS algorithm has
some favorable properties for regularization in the presence
of noise. The CGLS method proceeds by constructing a series
of vectors (in a so-called Krylov subspace) that are dependent
on both the matrix A and the experimental data b. As a result,
the Krylov subspace is able to adapt itself optimally to the
input data, i.e., it is more accommodating of noise [24].

The CGLS algorithm [23] begins with the following
initialization:

Xo=0,dy=b,ro=A"b, po =10, to = Apy.  (9)

Here the initial guess is xo = 0, but any starting guess produces
the same least-squares solution within a number that is equal
to the number of unknowns (2 x ng). For each iteration i,
the intermediate quantities that are constructed in the CGLS
algorithm are defined by

2 2
ap = I llI7/It-all”, X = X271 +oypi-i,
T
d=d_; —aoti;, r,=A"d;,
2 2
Bi = lIxill*/llci—(I”, pi =1; + Bipi—1, and

t; = Ap;. (10)

Numerically, x might be solved by explicit construction of A
and b and by following the algorithm in Eq. (10). Alternatively,
in this case, due to the structure of A, explicit construction of
A can be avoided by casting the operations Ap; and A”d,
in terms of Fourier transforms, as was done in Ref. [1]. We
note that multiplication by the matrix A maps a complex
object, O(g) in Eq. (8), to a set of real images for each
detector j. Multiplication by the matrix’s transpose A’ maps
a set of real images back to a complex object. Consider the
multiplication of p; ;, the portion of vector p; corresponding to
¢3 ;(r), by the relevant subblock of matrix A in Eq. (10). From
Eq. (7), the multiplication by this subblock of matrix A may be
expressed as

Apij =) P (@7 5" + pr (e T ER(g),
g

= 2Re{Fy_rlPij (@) (2)]}. D

With reference to Eq. (8), the transpose operation of A may be
written as

Ty 2Re{e?8RG (g)) } R
Aldy; = ;[_zlm{ezmg-‘wg)} L)

_ [Relri(@)
= [Im{n(g)}]‘ 12

The rows of the matrix in Eq. (12) now vary with respect to
g, and the columns now vary with R. Expanding the matrix
multiplication and noting that d; ;(R) is a purely real quantity,
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FIG. 1. Reconstruction of a model transmission function using
a focused coherent probe for the imaging conditions described in
the text. (a) Model transmission function intensity (top) and phase
(bottom). (b) Segments in the bright field are used to construct
the images in (c). (d) The band-pass-limited transmission function
intensity (top) and phase (bottom) can be compared with the retrieved
transmission function in (e) after 10 and 75 CGLS iterations and also
with the latter as corrected for neglect of the nonlinear term in Eq. (5).

the matrix multiplication may be expressed explicitly as

ri(g) =2 ) Re[e™#R$;(g)d; ;(R)]
Jj.R

— i Im[e*"&R G (2)d; ;(R)]
=2 4@ e ¥R R
- R

J

=2 $i@d: (@) (13)
J

As is well known, consideration of Eq. (5) shows that the
maximum resolution in the image /;(R) is twice the magnitude
of the maximum reciprocal-space frequency, gmax, allowed
by the probe-forming aperture. Then both ¢ j(g) and b;(R)
will be band-pass-limited by 2gm.x. The object function O(g)
will be calculated from b;(R) through successive convolution
and correlation operations with @ ;(g) according to Egs. (11)
and (13), which will preserve this band-pass limit. The maxi-
mum reciprocal space resolution of the retrieved transmission
function will also be 2g,ax.

Before applying the algorithm to experimental data, let
us demonstrate how this algorithm works using simulated
data that are free of noise. An arbitrarily chosen complex
transmission function 7'(r) is shown in Fig. 1(a) in terms of
its intensity (above) and phase (below). We scale this to have
typical values representative of elastic scattering potentials in
condensed matter, and we assume we are imaging using a
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200 keV probe with a convergence semiangle of 15 mrad, a
field of view of 53.5 A, and a defocus of 100 A. Data from pixel
detectors offer much flexibility in the detector configurations
used to synthesize segmented detector STEM images. The
averaging implied in integrating over larger detector segments
reduces noise effects, but it leads to fewer constraining images.
Using smaller segments leads to more constraints, but it
increases the dimensions of the A matrix and makes the data
more sensitive to noise. A detailed analysis of how to optimize
the contrast transfer function in the presence of noise has been
provided by Yang et al. [8]. For the present test, however, we
choose to partition the bright-field disk into three wedges as
shown in Fig. 1(b), the minimal number of segments needed
such that the contrast transfer functions adequately sample the
2D object [19]. (Increasing the number of segments does not
substantially alter the results.)

Using the procedure described above, the model transmis-
sion function was retrieved from the images in Fig. 1(c).
There is a band-pass limit imposed by the probe-forming
aperture, and we can thus only expect to retrieve the band-
pass-limited transmission function shown in Fig. 1(d). After
only 10 iterations, the basic phase structure is evident in
the reconstruction. By 75 iterations, convergence has been
reached in the phase. However, the intensity contains a larger
admixture of phase information than what is present in the
band-pass-limited transmission function in Fig. 1(d). This is
a consequence of the reconstruction algorithm neglecting the
nonlinear terms in Eq. (5). We seek to correct for this following
the procedure described in Ref. [22]. The values of O(g)
obtained from the reconstruction can be used to estimate the
nonlinear term in Eq. (5). This nonlinear term is then subtracted
from the right-hand side of Eq. (8), and a second inversion is
performed. The results, labeled “Cor” in Fig. 1(e), show a
much improved reconstruction of the amplitude as well as
the phase. The nonlinear correction procedure can be further
iterated, though our experience is that this is not generally
convergent. Note, however, that the specimen information of
most interest in electron microscopy is primarily contained in
the phase, which was successfully reconstructed here without
need of the nonlinear correction procedure.

With the inversion cast in terms of fast Fourier transforms,
the results shown are obtained in seconds using less than a
MB of memory (working on a 128 x 128 pixel grid). The
fidelity of the retrieved transmission function with respect to
the band-pass-limited transmission function in Fig. 1(d) is
shown as a function of iteration number in Fig. 2 [without any
correction for the neglect of the nonlinear term in Eq. (5)].
A cross indicates the fidelity of the object after correction for
the nonlinear term that is displayed in Fig. 1(e). The fidelity is
defined as

L_ZIT-TP

== 14
2 IT? (19

where T’ is the comparison transmission function and T is
the retrieved transmission function. For the perfect data of
our test case, Fig. 2 shows the fidelity to continually decrease
with increasing iteration number. As we shall see later, in the
presence of noise the CGLS algorithm is “semiconvergent,”
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FIG. 2. Fidelity as a function of CGLS iteration number for
the results shown in Fig. 1(e). The “x” indicates the fidelity after

correction for neglect of the nonlinear term.

meaning that beyond a certain number of iterations the fidelity
metric increases again [24].

Lastly, in this section we consider a practical issue that
will be pertinent when applying SDP to experimental datasets,
namely spatial incoherence due to a finite source size.
The effect of the spatial incoherence may be represented
by the convolution of a STEM image with a Gaussian
distribution, G(R),

I(R) = G(R) * I;(R)
= / G(R —R)I;(R)dR’. (15)

This may be integrated into the theoretical framework by
multiplying the matrix subblocks on the left- and right-hand
sides of Eq. (10) by the Toeplitz matrix,

G () GR)) GR,)
G(-R)  G(0) G, - R))

= : : : . (16)
G(-R,) G, —R,) G(0)

where the set {0,R|,R;, ... ,R,} represents the probe positions
in the image. We assume here periodic boundary conditions
on the real-space grid on which G(R) is evaluated, that is,
G(—R;) = G(R, — R;). Rather than inverting the matrix A,
which describes the case of perfect spatial coherence, we
instead invert the matrix product GA. Then we are able to
correct for spatial incoherence to the extent allowed by the
information transfer. This is implemented by replacing ¢ i(g)
in Egs. (12) and (13) with G(g)¢; (g).

III. RETRIEVAL OF THE TRANSMISSION FUNCTION
OF A MoS; MONOLAYER

A 4D dataset was taken on a thin MoS, sample (one
monolayer) down the [001] axis using a 300 keV STEM probe
with a 17.1 mrad convergence angle at the National Centre for
Electron Microscopy (NCEM) in Berkeley, CA. Diffraction
patterns were recorded for each probe position using a Gatan
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K2-IS direct detection camera. A finite source size of a half-
width at half-maximum (HWHM) of approximately 0.45 A
was deduced by comparing a high-angle annular dark field
(HAADF) image that was recorded simultaneous with the 4D
dataset with forward simulations using the freely available
USTEM software package [25]. Similarly, a probe defocus
of —20 A (underfocus) was deduced by comparing images
synthesized using different detector configurations from the
4D dataset with equivalent images simulated with the £STEM
package for arange of different defocus values. Since the MoS,
sample is a true monolayer, the multiplicative approximation
holds—since all scattering occurs within one spatial plane—
and the weak phase approximation also holds—since electrons
focused to a point on the specimen will scatter off at most one
molybdenum atom or two sulfur atoms. Therefore, we expect
the linear approximation of Eq. (7) to hold.

The bright-field disk was segmented as shown in Fig. 3(a)
and images synthesized using each of these detectors. To
correct for scan drift and distortion in the synthesized images,
the simultaneous ADF image was used to identify atomic
peaks at the vertices of unit cells. The deviation of these
peaks from their known positions was used to determine
the transformation that was then applied to the synthesized
images. Since this specimen was known to be periodic, we
have averaged over the unit cells in the scan to obtain the
results shown in Fig. 3(b). The reconstruction algorithm
works equally well on the raw data. However, increasing the
signal-to-noise ratio and decreasing scan distortion via the
averaging procedure facilitates comparison with the simulated
transmission function. Faster acquisition speed, either via
fixed-configuration segmented detectors or the next generation
of 4D pixel detector technology, would reduce distortions and
render this correction procedure unnecessary. The phase of
the transmission function reconstructed from the segmented
detector images is shown in Fig. 3(c) with a schematic of
the MoS, unit cell overlaid on the 2D map. Importantly,
both molybdenum and sulfur atoms are clearly visible in
the retrieved phase. While molybdenum atoms are clearly
visible in each of the segmented detector images of Fig. 3(b),
the sulfur atoms are barely evident. This is consistent with
the prediction that phase imaging is sensitive to light atoms.

A plot of the fidelity, using the calculated transmission
function displayed in Fig. 3(c) as the comparison transmission
function, is shown in Fig. 3(d) as a function of CGLS iteration.
The best match with the calculated transmission function (best
fidelity) is achieved after six CGLS iterations. For subsequent
iterations the quality of the retrieval declines, and this is
consistent with the semiconvergence of the CGLS algorithm
observed for cases in which the b vectors contain errors due to
noisy experimental measurements. The corresponding L-curve
is also displayed in Fig. 3(d). The sixth CGLS iteration is
found just before the subsequent iterations cause rapid growth
of ||x||%. Figure 3(d) shows how selecting a number of CGLS
iterations just prior to this point of inflection on the L-curve
can be used as a criterion to select an appropriate number of
CGLS iterations. Such an approach is necessary because in
practice a reliable comparison transmission function 77 will
not be available from which to evaluate the fidelity in Eq. (14).

A line scan taken along the (red) arrow, over columns of
molybdenum and sulfur atoms, is shown on the right-hand

PHYSICAL REVIEW B 93, 134116 (2016)

e
#'#'#u

Pl 0.4
Pt N

oMolybdenum

Sulfur

(d) 104

0.9
2 10° 1\ 64
T 06 o
- Xq02| O 3
(0] =
@ 2
T 03 . 10! ]

00 L 100

6 12 18 24 20 25 30
CGLS iteration no. [|AX-b]|

®) 020 — —Sim 1S ——-Sim 28 Exp

_0.15

®

£0.10

[0

[72]

T0.05

o

0.00

Distance (A)

FIG. 3. Results for the MoS, sample. (a) Detector segments in
the bright field used to synthesize the images in (b). (c) Retrieved
phase of the transmission function. The method to deconvolve the
blur associated with spatial incoherence (estimated to be 0.45 A)
described in Sec. Il was employed to achieve the phase map shown in
(c). The adjacent plot compares a line scan taken from the phase map
(Exp 1), as indicted by the (red) arrow, with a line scan from a
result (not shown) where spatial incoherence is not taken into account
(Exp 2) and a transmission function simulated using ©uSTEM with
one sulfur atom per unit cell (Sim). Both Exp 1 and Sim were
convolved with the Gaussian associated with the spatial incoherence
for comparison with Exp 2. (d) Plot of the fidelity, where the reference
transmission function is Sim, and the L-curve as a function of CGLS
iteration. (e) Plot of the phase of the transmission function calculated
in uSTEM assuming both 1 (Sim 1S) and 2 (Sim 2S) sulfur atoms
per primitive cell to that retrieved in (c) convolved with a Gaussian
associated with the spatial incoherence for the sake of comparison.

side of Fig. 3(c). This plot further shows the phase predicted
from a MoS, monolayer with the lower plane of sulfur atoms
removed, assuming the independent atom approximation. The
excellent agreement shown in Fig. 3(c) for the phase of the
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©Molybdenum © Sulfur

FIG. 4. (a) Before and (b) during ADF images for the MoS,
sample. Arrows in images (a) and (b) indicate sites of sulfur atoms. For
the uppermost arrow, the sulfur intensity is not appreciably reduced
between images (a) and (b), while for the bottommost arrow, the
change in intensity indicates sputtering of one or both sulfur atoms.

transmission function that is retrieved from the experimental
data and the simulated transmission function may only be
had if a plane of sulfur atoms is assumed to be missing.
This is demonstrated clearly in Fig. 3(e), which compares the
experimental result with the phase of simulated transmission
functions assuming two sulfur atoms per primitive cell (2S)
and one sulfur atom per primitive cell (1S). This apparent
deviation from the expected stoichiometry of the manufactured
MoS; sample is attributed to damage caused by the electron
irradiation. This interpretation is reinforced in two ways.

First, an estimate can be made of the probability of the
electron beam knocking a sulfur atom out of the monolayer
specimen. Komsa et al. [26] predict the cross section for sputter
of a sulfur atom from MoS, for 300 keV incident electrons to
be about 150 barns. With four sulfur atoms per 1.7 x 1071°
m? projected unit cell, the probability of an electron incident
upon one unit cell sputtering a sulfur atom is 3.4 x 1077,
The 48 pA beam current and 2.5 ms dwell time mean that
7.5 x 107 electrons are incident upon the sample per probe
position. As a crude estimate, this would lead us to expect that
on average 0.26 sulfur atoms were sputtered per probe position.
The probe is not uniformly distributed across the unit cell—for
most probe positions the irradiation of the sulfur locations will
be small—but this crude estimate nevertheless makes it likely
that significant sputtering of sulfur atoms is taking place due
to electron irradiation.

Second, compare the rapid ADF scan shown in Fig. 4(a)
obtained prior to recording the 4D dataset with the ADF scan
shown in Fig. 4(b) obtained during the 4D data acquisition
at a much slower scan rate (specifically, a dwell time of
2.5 ms per probe position). While the latter shows some
drift distortion due to the slower scan, it also shows clear
evidence of localized beam damage. Closer inspection reveals
that the intensity at the sulfur sites is, by and large, smaller
in Fig. 4(b) than Fig. 4(a). Note, though, that there is much
site-to-site variation, suggesting that in some cases both sulfur
atoms might be sputtered, in others one might be sputtered,
while in others both may remain intact. It should be reiterated
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that the reconstruction in Fig. 3(c) was based on repeat unit
(Fourier) averaged data: the fact that the reconstructed phases
is consistent with one rather than two sulfur atoms at the sulfur
site should be understood to be an average, and the fact that
this average is close to unity is coincidental rather than exact.

IV. RETRIEVAL OF THE TRANSMISSION FUNCTION
OF A SrTiO3; CRYSTAL

A 4D dataset was taken on a SrTiOz sample down the
[001] axis using a 300 keV STEM probe with a 21.3 mrad
convergence angle at NCEM, using the same apparatus as in
Sec. III.

Position-averaged convergent beam electron diffraction
(PACBED) patterns were synthesized for two scan areas of
interest by adding the recorded diffraction patterns together.
Comparison with simulated PACBED patterns enables the
thickness of a specimen to be determined with an accuracy
better than 10% [27]. PACBED patterns were simulated using
USTEM [25], and the L, norm was used to decide which
thickness provided the best fit to the experimental data. The
thickness of the specimen was found to be 35.1 A for the
first region and 78.1 A for the second region. This suggests
that this dataset will be a good test of the validity of the
approximation, made in Sec. I, that the scattering from the
specimen can be represented by a transmission function in
a single plane. (In the context of differential phase-contrast
imaging, the breakdown of this approximation with thickness
has recently been systematically explored through simulation
by Close et al. [12], though the manner in which it breaks
down need not be the same when analyzed via SDP.)

A finite source size of a HWHM of 0.5 A was deduced from
an independently taken HAADF image. As with the dataset in
Sec. 111, a defocus of —30 A for the 35.1-A-thick sample and
a defocus of —20 A for the 78.1-A-thick sample was deduced
by comparing the data with the results of £STEM simulations
for different defocus values and detector geometries.

The results for the 35.1-A-thick sample are shown in
Figs. 5(b)-5(d), and the results for the 78.1-A-thick sample are
shown in Figs. 5(e)-5(g). The bright-field disk was segmented
as shown in Fig. 5(a). Images synthesized using each detector
are shown in (b) and (e). The phase of the transmission
function obtained from these images is shown in (c) and (f)
with a schematic of the SrTiO; unit cell overlaid. A line scan
taken along the (red) arrow, over columns of strontium and
oxygen atoms, is shown on the right-hand side. This line scan
also shows the phase for the projected transmission function
of the relevant structure for comparison, as calculated using
the wSTEM [25] software package. Finally, for comparison,
Figs. 5(d) and 5(g) show for both thicknesses of SrTiO; the
bright-field STEM images that were synthesized from the same
experimental data (a schematic of the SrTiO3 unit cell is also
overlaid on these images). In both cases, oxygen atoms are not
visible in the bright-field image but are clearly visible in the
retrieved phases shown in Figs. 5(c) and 5(f).

Unlike the line scan for Fig. 3(c), i.e., the case of the MoS,
monolayer, line scans in Fig. 5 comparing the retrieved phase
of SDP with a calculated transmission function do not show
reasonable quantitative agreement. This is partly due to the fact
that both the weak phase approximation [see Eq. (5)] and the
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FIG. 5. Results for 35.1- and 78.1-A-thick SrTiOs samples.
(a) Detector segments in the bright field used to synthesize the images
in (b) for the 35.1-A-thick SrTiO; sample. (c) Retrieved phase with
a line scan as indicated by the (red) arrow. Sim is the simulated
projected transmission function, Exp is the retrieved transmission
function, and Cor is the retrieved transmission function corrected for
neglect of the nonlinear term. The method to deconvolve the blur
associated with spatial incoherence (estimated to be 0.5 A) described
in Sec. II was employed to achieve the phase map shown in (c).
The results in (c) are convolved with this blur for the purposes of
comparing to the simulated transmission function in the line scan.
(d) A bright-field image synthesized from the same dataset using a
detector with the same radius as the bright field disk. The results
displayed in (e)—(g) are the same as those displayed in (b)—(d) except
that they are for the 78.1-A-thick sample.

multiplicative approximation [see Eq. (2)] are no longer valid
for either case. Note that agreement between the simulated and
experimentally retrieved transmission functions is generally
better in Fig. 5(c), which is a thinner sample and so represents
a less serious breach of both approximations, than it is
in Fig. 5(f). Regardless, the SDP phase map is a useful tool that
very clearly identifies the presence of oxygen—an element that

PHYSICAL REVIEW B 93, 134116 (2016)

is not easily inferred from any of the raw segmented detector
images or the bright-field images in Figs. 5(d) and 5(g).

V. ACCOUNTING FOR PROPAGATION THROUGH THE
SPECIMEN—THE M-PLANE INVERSION

The multiplicative approximation that was employed to
write Eq. (2) is correct in the limit of an infinitesimally thin
imaging specimen. We note that factorization into a probe and
object function for realistic thicknesses has been discussed
in Ref. [28]. A focused coherent electron probe will evolve
rapidly for propagation through thick specimens, and it is
therefore necessary to investigate methods to better account
for thickness in the retrieval.

Scattering by a thick object may be modeled using the
multislice method [29,30] by projecting the scattering potential
into a finite number of slices, T;(r), and propagating the
resulting elastically scattered wave between these slices. A
weak phase (linear) approximation at each slice may also
be assumed [31-34]. Scattering through a single slice is
calculated by integration with the function,

Si(r,r) =P(r' — 0 T;(r)

=P — )l + 0,(r)], (17)

which is the multiplication by the transmission function
followed by a convolution with the propagator P(r). Scattering
through M layers of the sample would entail integration of
Yitum (1) With S;(r,r’) M times,

Yexit(T) =/"'/SM(I‘,I‘MA)“'Sz(r27r1)51(1’1,1'/)

X Yittam(X)dry—y - - - drydr’.

(18)

Within the paraxial approximation, the propagator may be
written in reciprocal space as

P(g) = exp[—mig*rAz], (19)

where A is the wavelength of the electron wave function and
Az is the slice thickness. With a linear approximation for the
object functions, Eq. (18) may be expanded to give

M—1
Vexit (0, R) =itum (0, R)  PY (1) + Y {[Yinum (r,R)
i=0
* PO)]0;(r)}  PM(r). (20)
In Fourier space, this is
&exil(‘LR) Z&illum(q)672Nig.RpM(q)
M—1
+ Z Z Vitum(q — gle 77 AOR
i=0 g
x P(q—g)0:(®) PV (q). @1

For a sample that is periodic in the z direction, i.e., O;(r) =
O(r), and if ¢(g) is redefined,

M—1
di@ =) / Vinm(q — 2)PY(q - 2)
i=0

x P*Y(@rm(@D;j(q)dq, (22)
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FIG. 6. Application of the M-plane inversion to the SrTiO;
dataset. For the 35.1-A-thick sample, the retrieved amplitude (a)
without using the M-plane inversion and (b) using the M-plane
inversion. A line scan comparing the retrieved intensity to the intensity
of the simulated transmission function for a layer of SrTiO; with a
thickness of one unit cell (3.905 A) is shown in (c). The results
without M-plane inversion are labeled “Exp” and the results with
M -plane inversion are labeled “Cor.” Parts (d)—(f) are the same as
(a)—(c) except that they are for the 78.1 A case. The intensity of
the simulated transmission function for a layer of SrTiO; with a
thickness of one unit cell is shown in (g) for comparison. The effect
of the M-plane inversion on the retrieved phase is displayed in (h)
for the 35.1-A-thick sample of SrTiO; and in (i) for the 78.1-A-thick
sample of SrTiO;.

then the equation solved to retrieve O(g) will be exactly the
same as Eq. (8) in Sec. II. This method is dubbed the M-plane
inversion since the retrieval assumes scattering of the probe by
M distinct planes.

To test this modification to the algorithm, the M-plane
inversion is applied to the SrTiO3 datasets explored in Sec. IV.
The number M of planes used in the retrieval was set equal
to the thickness in terms of SrTiO; unit cells for each
specimen. It was found that applying the M-plane inversion
generally improved agreement with the simulated transmission
function for both the intensity and phase of the retrieved
transmission function. The intensity results are displayed
in Fig. 6 for the 35.1 A sample in (a) without the M-plane
inversion and (b) with the M-plane inversion. A line scan
that compares both results with the simulated transmission
function intensity for a layer of SrTiO; with a thickness of
one unit cell is shown in Fig. 6(c). Figures 6(d)-6(f) show
the same results as Figs. 6(a)—6(c) except for the 78. 1-A-thick
SrTiO; sample. Figure 6(g) shows the transmission function
intensity for a layer of SrTiO; with a thickness of one unit
cell for comparison with the experimental retrievals. It can
be seen that the M-plane inversion improves qualitative and
quantitative agreement between the experimental retrieval
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and the simulated transmission function intensity for both
thicknesses of SrTiOj3, but the improvement is most marked
for the 78.1-A-thick SrTiOs sample. The phase retrieved
for the transmission function of a SrTiO; sample with a
thickness of a single unit cell is shown in Fig. 6(h) for the
35.1 A sample and Fig. 6(i) for the 78.1 A sample using both
the approach described in Sec. II (“Exp”) and the M-plane
inversion (“Cor”), and this is compared with the simulated
transmission function (“Sim”). In both cases, there is a very
small change in the phase associated with the oxygen column
and a larger increase in the phase associated with the strontium
column such that the overall agreement with the simulated
transmission function is improved.

A different approach to that described in this paragraph
would be to parametrize the channeling with a limited number
of structural parameters, such as in the S-state model [28].

VI. CONCLUSION

We have demonstrated a method for phase retrieval based
on diffraction patterns acquired as a function of probe position
in STEM using fast readout detectors (so-called 4D datasets).
The approach allows the complex transmission function of a
thin specimen to be retrieved from images synthesized from
the diffraction patterns taken as a function of probe position for
assumed virtual segmented detectors in the diffraction plane.
This approach provides maximum flexibility in the choice
defining the images. However, the approach introduced here
can also be applied to data obtained from “fixed-configuration”
segmented detectors, where each segment is a bucket detector
rather than being defined in terms of a number of pixels on
a fast-readout 2D electron camera [10,14,20,21]. In cases in
which the full 4D dataset is recorded, the relative simplicity
of SDP—a small number of Fourier transform operations
is applied to a reduced 2D projection of the dataset—can
complement other ptychographic approaches such as ePIE [3]
and Wigner distribution deconvolution [35].

We have demonstrated SDP using model data and three
experimental 4D datasets. The first application was to a MoS;
monolayer. The retrieved phase of the transmission function
was in good agreement with that simulated from within an
isolated atom approximation, assuming that damage under the
beam had led to approximately 50% of the sulfur atoms being
removed from the specimen. The second application was to
two separate regions of a SrTiO; sample, with different thick-
nesses. As expected, better agreement was obtained between
theory and experiment for the thinner region. Importantly,
sulfur and oxygen atoms, which have relatively low atomic
numbers and are therefore difficult to see in conventional
STEM images, were easily visible in the retrieved phase maps.

For all of the simulated and experimental cases, the complex
transmission function can be retrieved using the signal from a
small number of segmented detectors. Only two fast Fourier
transforms need to be performed per CGLS iteration, and this
means that real-time phase retrieval is feasible.
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APPENDIX: SIMULTANEOUS RECONSTRUCTION
OF THE ILLUMINATION FUNCTION

We have assumed that the probing illumination is well
known. If refinement of our knowledge of the probe is required,
then we can proceed as follows. We consider the scattering of
the illumination ijum(r) = ¥ (r) + ¥°(r). The quantity ¥ (r)
is our initial guess of the probe wave function, and /*(r) is a
correction. A first estimate of 7'(r) is retrieved using ¥ (r) and
is used to calculate °(r). For scattering of Yium(r) by T(r),
the exit surface wave is

Yexit(0,R) = TO[Y(r — R) + ¢°(r — R)]. (AD)
In Fourier space, we have
Vexit(@.R) = [ (e %]+ T(q)
+W@e R« T, (A2)
For brevity, we introduce the reference wave
rer(@.R) = [ (@]« T(q). (A3)
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The convolution with ¥°(q) in Eq. (A1) is written explicitly
as

Ve (@ R) = Yrer(@R) + Y (@) "R T(q — g). (A4)
g

We now define
2i(@R) = / Vi (@, RT(q — 2)D;(q)dq

= [y R)D;(@] * T(—g). (AS)

We now follow the work in Sec. II. If Eq. (A4) is substituted
into Eq. (4) and the final nonlinear term is ignored, the quantity
b;(R) may be written as

b;(R) =I;(R) — / et (@B)2D;(@)dq

=2 Z Re[°(g)e "8 7 :(g,R)]. (A6)
g

If it is assumed that an estimate of the transmission function,

T(q), is known, then we can solve for 1/?(g). To illustrate how

this proceeds, Eq. (A6) is expressed as a matrix equation,
[2Rele "R 2, (g R)]]  [~2Im[e 2" #R 7, (g, R)]]
[2Re[e &R 2, (g, R)]]  [—2Im[e >8R %,(g R)]]

[2Re[e™ &R 2,(g,R)]]  [~2Im[e >8R 33(g,R)]]

[b1(R)]

Re[lﬂ‘s(g)]:|_ [b2(R)]
X [ImW(g)l = (A7)

[ba(R)]

Once again, this is of the form Ax = b. However, we are
prevented from an efficient implementation of the CGLS
method using Fourier transforms, similar to that in Sec. II,
by the dependence of % (g,R) on both g and R.
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