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Thermal vacancies in random alloys in the single-site mean-field approximation
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A formalism for the vacancy formation energies in random alloys within the single-site mean-filed
approximation, where vacancy-vacancy interaction is neglected, is outlined. It is shown that the alloy
configurational entropy can substantially reduce the concentration of vacancies at high temperatures. The
energetics of vacancies in random Cu0.5Ni0.5 alloy is considered as a numerical example illustrating the
developed formalism. It is shown that the effective formation energy increases with temperature, however,
in this particular system it is still below the mean value of the vacancy formation energy, which would correspond
to the vacancy formation energy in a homogeneous model of a random alloy, such as given by the coherent
potential approximation.
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Concentration of vacancies is one of the key parameters that
determines the kinetics of phase transformation and diffusion
in solids. In spite of the structural simplicity of vacancies, their
energetics has proven to be one of the least reliable physical
properties determined in the first-principles calculations (see,
for instance, Refs. [1–6]). The situation becomes even more
complicated at high temperatures, where anharmonic effects
play an important role [6].

In this paper, we will not, however, deal with those
problems related to different approximations in first-principles
calculations and subsequent modeling of the vacancy ther-
modynamics, but rather consider another important aspect,
namely, the statistical description of vacancies in concentrated
alloys at finite temperature connected with their first-principles
modeling. This topic has recently been recently attracted
attention of several groups doing first-principles simulations
[7–11]. In contrast to those investigations, in this work a
simplified model for the energetics of vacancies will be
presented for completely random alloys with the purpose to
get a qualitative picture of the configurational effects.

It is based on the single-site mean-field approximation, and
thus all the effects related to the vacancy-vacancy interactions
will be ignored, while vacancy-alloy-component interactions
will be indirectly taken into consideration through the account
of the local environment effects next to the vacancy. Although
this is a simplified model, it anyway yields a quite accurate
description of the phenomenon in real systems. To demonstrate
the formalism, we will consider the energetics of vacancies in
Cu0.5Ni0.5 random alloy.

The vacancy formation energy at 0 K in a binary random
AcB1−c alloy can be formally defined as

E0
f = min

dE0(Ac (1−cv)B(1−c)(1−cv)V acv )

dcv

∣∣
cv=0, (1)

where E0 is the total energy per atom of a random
Ac(1−cv )B(1−c)(1−cv )V acv

alloy consisting cv concentration of
vacancies (V a). This definition takes into consideration the
fact that the derivative in (1) is not well defined since in
real random alloys there exist substantial fluctuations of local
compositions, which affect this derivative leading to a wide
spectrum of the local vacancy formation energies connected
to the specific space arrangements of the alloy components

around the vacancy. At 0 K, the vacancy formation energy, E0
f

is apparently determined by the lowest value of the derivative
in (1). Definition (1) also formally implies that the ratio of the
concentrations of A and B alloy components is not changed
during vacancy formation.

The dependence of the vacancy formation energy on the
local environment can be also viewed as interaction energy
between vacancy and alloy components. Nowadays, it can be
obtained in first-principles calculations using, for instance,
the so-called local cluster expansion [7,10]. If a supercell
approach is used to determine local vacancy formation energies
in random alloys, these effects can be naturally reproduced
since the fluctuations of the local environment around each
site are inevitable.

The existence of the local environment effects becomes
important at finite temperatures, where vacancies with higher
formation energies can be also created. For a given alloy
configuration one can introduce the local vacancy formation
energy distribution function, g(E), which determines the
number of sites, Ng(E) in the alloy sample of size N , where
the local vacancy formation energy is E, which satisfies the
following normalization:∫

dEg(E) = 1. (2)

At finite temperatures, g(E) determines the distribution of
vacancies with respect to their local environment. To obtain
it, we first define effective vacancy formation energy or free
energy, which connects the free energy of the system with
concentration of vacancies in a phenomenological way. For a
binary random AcB1−c alloy, it is defined as

GVac = cvḠf − T Sconf, (3)

where cv is the equilibrium concentration of vacancies; Ḡf

is the effective vacancy formation free energy and Sconf the
configurational entropy of an alloy with vacancies:

Sconf = −[cv ln cv + cA ln cA + cB ln cB], (4)

where cA = c(1 − cv) and cB = (1 − c)(1 − cv) are the con-
centration of alloy components, which implies that the ratio of
concentrations of both components remains constant and the
same as in the alloy without vacancies.
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In the single-site approximation, the minimization of (3)
with respect to cv under the condition that the concentration
of vacancies is substantially smaller than that of alloy compo-
nents yields:

cv = exp

[
−Ḡf + T Sall

T

]
≡ exp

[
−G̃f

T

]
, (5)

where Sall = −[c ln c + (1 − c) ln(1 − c)] is the alloy configu-
rational entropy without vacancies, and here, we also define the
renormalized vacancy formation energy, G̃f = Ḡf + T Sall,
which is different from the effective formation energy due to
an additional configurational entropy contribution.

This result shows that the alloy configurational entropy
can substantially reduce the concentration of vacancies in
alloys. For instance, in the equiatomic binary random alloy
(c = 0.5), the equilibrium concentration is reduced by a factor
of 2 compared to that in pure metal. At 1500 K, it corresponds
to an approximate increase of the effective vacancy formation
energy of about 0.09 eV. Let us note that the above derivation
holds for multicomponent alloys, where this effect can be
much more pronounced. For instance, in a four-component
equimolar (frequently called high entropy) random alloy the
concentration of vacancies will be four times lower than that in
pure metal having the same vacancy formation energy, which
corresponds to the additional increase of the effective vacancy
formation energy of about 0.18 eV at 1500 K.

Considering vacancies at different sites as independent, i.e.,
neglecting vacancy-vacancy interaction and assuming that the
vacancy formation entropy, Sf , associated with vibrational,
magnetic and electronic degrees of freedom, does not depend
on the local environment, it is easy to show that

cv = exp(Sf − Sall)
∫

dEg(E) exp

(
−E

T

)
. (6)

Otherwise one should consider the distribution function for the
local vacancy formation free energies, gG(G). The expression
under the integral in (6) is just the concentration of vacancies
for specific energy formation E: cv(E) = g(E) exp (−E

T
).

Comparing (5) and (6), one finds that

Ḡf = −T ln

[∫
dEg(E) exp

(
−E

T

)]
− T Sf , (7)

or the effective vacancy formation energy, Ēf is

Ēf = −T ln

[∫
dEg(E) exp

(
−E

T

)]
, (8)

while the renormalized vacancy formation energies will
have an additional contribution T Sall: G̃f = Ḡf + T Sall and
Ẽf = Ēf + T Sall.

Let us now consider vacancy energetics in Cu0.5Ni0.5

random alloy. It should be stressed again that only a con-
figurational part of the problem will be considered here,
without any complications related to other thermal effects,
such as electronic, vibrational, or magnetic excitations. We
therefore also disregard thermal lattice expansion and perform
calculations for a fixed lattice parameter of 3.56 Å.

To determine the local vacancy formation energies, we
use the exact-muffin-tin orbital locally self-consistent Green’s
function (ELSGF) method [12], which allows relatively

accurate first-principles calculations of the vacancy formation
energies, at least on a rigid lattice without a consideration of the
local lattice relaxations. The latter may decrease the vacancy
formation energy by 0.1–0.2 eV, which is comparable with the
usual error due to the use of different exchange-correlation
approximations. The supercell size has been chosen to be 108
atoms (a 3 × 3 × 3 cell built upon the four-atom cubic fcc
cell [13]).

Every atom in this supercell was exchanged by a vacancy,
and then the local vacancy formation energy at site i, Ei

f , has
been determined as

Ei
f = Ei

vac − N − 1

N
Eall − (N − 1)�cμeff, (9)

where Ei
vac is the total energy of the supercell with vacancy

at site i; Eall the total energy of the defect free supercell; N

is the number of atoms in the supercell; �c is the change
of the supercell composition due to vacancy formation (for
instance, in our case �c = ±(53/107 − 54/108), and μeff is
the effective chemical potential of the alloy determined as

μeff = ∂E0(AcB1−c)

∂c
. (10)

Here, the E0 is the total energy per atom of random AcB1−c

alloy. The latter can be quite accurately (and, what is important,
consistently with the LSGF calculations) obtained by the
EMTO-CPA method [14,15] using the Lyngby version of
the code [16] with the appropriate choice of the electrostatic
screening constants (determined again from the corresponding
ELSGF supercell calculations [17]).

Other details of the calculations are the following. The
partial waves up to lmax = 3 were used in the self-consistent
calculations. The total energies have been obtained using the
full charge density technique [15]. The ELSGF calculations
have been performed using the local interaction zone (LIZ)
which included the first two coordination shells around the
central site. This means that chemical configurational effects
were effectively cut off beyond the second coordination shell
(which is not the case of electrostatic interactions, although
they are relatively weak in this system, and some multisite
interactions for the clusters within the LIZ). The PBE-sol
exchange-correlation potential [3] has been used, which is
partly the reason for the difference of the present results and
those of Ref. [10].

In Fig. 1, the local vacancy formation energies are shown as
a function of the number of Cu atoms next to the vacancy [18].
Although there is a dispersion of the local vacancy formation
energies for every number of Cu nearest neighbors, they almost
linearly decrease with the number of Cu nearest neighbors.
The slope of the average descent of the local energies is in
fact the vacancy-Cu (or vacancy-Ni if taken with the opposite
sign) interaction energy, which is approximately −0.082 eV
for the first and 0.018 eV for the second coordination shells.
The dispersion is due to other type of interactions.

It should be mentioned that there is no apparent dependence
of the local vacancy formation energies on the type of the atom
occupying this site in the defect free supercell. This contrasts
with the results obtained in Ref. [10] where much smaller
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FIG. 1. Local vacancy formation energies in 108-atom supercell
representing a random Cu0.5Ni0.5 alloy. The distribution of the local
vacancy formation energies with respect to the number of the Cu
nearest neighbors is shown in the top panel of the figure, while the
distribution with respect to the number of the next-nearest neighbors
is shown in lower panel. In the latter case only sites having six Cu
nearest neighbors are included in the figure. Straight lines show the
average slopes, which corresponds to the vacancy-Cu interaction at
the first and second coordination shell, respectively.

supercells have been used. From a general point of view, such
a dependence should not exist in the macroscopic limit, unless
a ghost of the removed atom is still in the site. Although in
reality nobody is certain about ghosts, they cannot exist in the
well-determined first-principles calculations.

The spurious dependence can originate from some technical
details of the modeling. For instance, it is clear that small
supercells, of an order of tens of atoms, provide quite a bad
model for investigation of the local environment effects due to
the fact that no good statistics can be obtained just from several
sites. Besides, every exchange of an atom by vacancy leads to
the different (from the initial) on average atomic distribution
correlations functions.

The difference in statistics of the local environment for
different alloy components of course also exists in the case of
the 108-atom supercell used here, where the representation of
the possible local environment effects is also quite restricted.
It can be clearly seen in Fig. 1 that there are no sites in the
supercell completely surrounded by Cu or Ni atoms, and there
is only one site with 11 Cu nearest neighbors, while there are
no sites with 11 Ni nearest neighbors.

In spite of this fact, one can still establish a qualitatively
clear picture of the local environment effects in alloy. In Fig. 2,
the local vacancy formation energy distribution function,
g(E), obtained from the present ab initio calculations is
shown. It was calculated using 0.08 eV energy interval

1.4 1.6 1.8 2 2.2 2.4

Ei
f
 (eV)

0
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g
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)
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FIG. 2. Local vacancy formation energy distribution functions:
squares are the results of the 108-atom supercell calculations;
circles are binomial distribution (see text) and crosses are normal
distribution.

window, which corresponds to the average change of the local
vacancy formation energy when the number of the Cu nearest
neighbors changes by one. As one can see, it can be very well
approximated by the discreet binomial distribution, which for
a binary equiatomic alloy is

gb[E(n)] = 12!

212n!(12 − n)!
, (11)

for n going from 0–12 and Ef (n) = E0
f + nV1 where E0

f is
the lowest local vacancy formation energy [as it is determined
in Eq. (1)], which corresponds to the case n = 0 and V1 is
the positive interaction energy between the vacancy and the
counted by n alloy component. It is clear that such a choice of
interaction, which is positive in this case, can be always made.
In our case, it corresponds to the vacancy-Ni interaction and
thus n is the number of Ni atoms next to the vacancy.

Equally, the local vacancy formation energy distribution
function, g(E), can be approximated by the continues normal
distribution (for the equiatomic composition only) as

gn(E) = 1

σ
√

2π
exp

[
− (E − 〈Ef 〉)2

2σ 2

]
, (12)

where 〈Ef 〉 is the mean local vacancy formation energy, which
is about 1.9 eV in this particular case, and σ = 2|V1|.

Using gn(E) and (8), one can calculate the effective, Ēf ,
and renormalized, Ẽf , vacancy formation energies as functions
of temperature (no thermal lattice expansion and other effects
are included). They are shown in Fig. 3. As one can see,
both vacancy formation energies, effective and renormalized,
exhibit quite strong dependence on the temperature at low
temperatures, while at higher temperatures, Ēf changes quite
little and Ẽf grows linearly with temperature. It is interesting
that at least in this particular case Ēf does not reach the mean
value, 〈Ef 〉 even at relatively high temperatures.
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FIG. 3. Effective (Ēf ) and renormalized (Ẽf ) vacancy formation
energies in random Cu0.5Ni0.5 alloy obtained as a function of temper-
ature neglecting all the possible type of thermal excitations except
configurational in the single-site mean-field approximation. The
dashed line shows the mean value of the vacancy formation energy,
〈Ef 〉, which one, for instance, would obtain in the homogeneous CPA
calculations.

In fact, 〈Ef 〉 corresponds to the vacancy formation energy
obtained in the homogeneous CPA calculations like those in
Ref. [19,20], where all the sites of the supercell are treated as
effective CPA medium of the given alloy composition [21].
This means that such energies do not make much sense in
systems where the local vacancy formation energies strongly
depend on their local environment, such as Cu-Ni calculated
here.

Another energy of interest, which we call here Ed , is the
local vacancy formation energy, which yields dominating con-
tribution to the vacancy concentration at a given temperature.
It is related to the dominating type of the local environment
of vacancies at given T and can be found by maximizing
cv(E). In the case of a binary equiatomic alloy, it can be
approximately obtained using the normal distribution gn(E)
of the local vacancy formation energies:

Ed = 〈Ef 〉 − σ 2

T
= 〈Ef 〉 − 4V 2

1

T
. (13)

This is shown in Fig. 3. As one can see, it is less than the
effective formation energy, although at low temperatures, its
definition (13) breaks down since gn(E) is always nonzero for
all positive energies, while g(E) of a real system is nonzero
only within some specific energy interval above E0

f .
Now, we can estimate the preferential local environment

of vacancies at a given temperature. Since 〈Ef 〉 ≈ E0
f +

(z1/2)V1, where z1 is the number of the nearest-neighbor sites,
the number of Ni atoms next to the vacancy with the local

formation energy Ed at temperature T is

nNi(Ed ) = z1

2
− 4V1

T
. (14)

This is a quite interesting result showing, first of all, that
this number is inverse proportional to the temperature and,
second, it is always less than z1/2, which is just the average
number of Ni atoms of the equiatomic random alloy considered
here, reaching its maximum, z1/2 = cNi, only at infinite
temperature. This again shows that a homogeneous CPA-like
model of vacancies in random alloys corresponds this infinite
temperature limit and thus should always overestimate the
vacancy formation energy if there is non-negligible vacancy-
alloy-component interaction.

It is obvious that the number of Cu atoms next to the
vacancy with the local formation energy Ed at temperature T

is nCu(Ed ) = z1/2 + 4V1/T or in general in high temperature
limit nCu(Ed ) = z1cCu + 4V1/T [22]. This kind of asymptotic
behavior is observed for the average number of Cu nearest
neighbors next to the vacancy as a function of temperature in
Ref. [10] presented in Fig. 12, where one can clearly see inverse
temperature dependence of this number on the temperature and
the fact that the minimal average number of Cu atoms next to
the vacancy in the limit T → ∞ is 3 and which is the average
number of Cu atoms in random Cu0.25Ni0.75 alloy at the first
coordination shell (z1cCu).

In summary, a single-site mean-field theory for thermal
vacancies in random alloys is presented. It shows that the alloy
configurational entropy renormalizes the effective vacancy
formation energy, and this contribution linearly increases with
temperature. As a numerical example, we have calculated the
vacancy formation energies in Cu0.5Ni0.5 random alloy and
demonstrated that configurational effects play important role.
In particular, the effective formation energy is lower than the
mean value of the local vacancy formation energy, and this ef-
fect is proportional to the vacancy-solute/solvent interactions.
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