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Dynamic compression of copper to over 450 GPa: A high-pressure standard

R. G. Kraus,1 J.-P. Davis,2 C. T. Seagle,2 D. E. Fratanduono,1 D. C. Swift,1 J. L. Brown,2 and J. H. Eggert1
1Lawrence Livermore National Laboratory, Livermore, California 94550, USA

2Sandia National Laboratories, Albuquerque, New Mexico 87185-1195, USA
(Received 15 November 2015; revised manuscript received 1 March 2016; published 12 April 2016)

An absolute stress-density path for shocklessly compressed copper is obtained to over 450 GPa. A magnetic
pressure drive is temporally tailored to generate shockless compression waves through over 2.5-mm-thick copper
samples. The free-surface velocity data is analyzed for Lagrangian sound velocity using the iterative Lagrangian
analysis (ILA) technique, which relies upon the method of characteristics. We correct for the effects of strength
and plastic work heating to determine an isentropic compression path. By assuming a Debye model for the heat
capacity, we can further correct the isentrope to an isotherm. Our determination of the isentrope and isotherm of
copper represents a highly accurate pressure standard for copper to over 450 GPa.
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I. INTRODUCTION

The high-pressure and low-temperature equation of state is
critical to a number of natural science and engineering studies.
For example, the equation of state of hydrogen is the dominant
source of uncertainty in our understanding of the structure
and composition of Jupiter’s core [1], which has significant
implications for our understanding of the formation of planets
in our solar system. The abundance of extrasolar planets in
the 1–10 Earth mass range is generating significant interest in
the high-pressure properties of planetary minerals due to their
effect on the structure and thermal evolution of super Earths
and correspondingly potential planetary habitability. Central to
these low-temperature high-pressure studies is the existence of
a standard method of determining the stress state being studied.
Attempts to develop accurate isothermal absolute-pressure
standards using Brillouin scattering and x-ray diffraction have
been limited to below 60 GPa [2], and therefore at higher
pressures shock Hugoniot data are often used to constrain
the low temperature isotherm due to the exact nature of the
Rankine-Hugoniot relations, e.g., Refs. [3,4]. However, these
shock-wave reduced isotherms (SWRI) require significant
corrections from the measured Hugoniot states as the shock
pressure and shock heating increases. Furthermore, the models
for the thermal pressure are oftentimes not constrained by ex-
perimental data but determined from theoretical calculations,
inhibiting rigorous error propagation. With the advancement of
single stage diamond anvil cells reaching pressures of 375 GPa
[5] and the advent of two-stage diamond anvil cells capable
of reaching pressures greater than 770 GPa [6,7], there is a
tremendous need for accurate pressure calibrants and rigorous
error analysis in the range accessible to this novel diamond
anvil cell technology.

Copper is commonly used as a pressure standard within the
high-pressure community due to the availability of accurate
shock wave data [3,4,8,9]. However, as discussed in Ref. [4],
the shock wave reduced isotherm for copper is only valid to
200 GPa. The high-pressure behavior of copper is also critical
to the capabilities at the Sandia Z machine [10], where copper
is used as an electrode material in shockless compression
experiments and as a flyer plate for ultrahigh velocity plate
impact experiments [11]. Copper is also starting to be utilized
as an ablator material for shockless compression experiments

at the National Ignition Facility e.g., Ref. [12], and validation
or improvement of the available equation of state models is
critical to the design of future experiments.

Shockless compression experiments have previously been
used to determine the high-pressure and low-temperature
response of aluminum [13], diamond [12,14], and tantalum
[15,16]. In this paper, we determine the stress-density response
of shocklessly compressed copper. Copper is an excellent
material to study by shockless compression experiments as
it is expected to have no high-pressure phase transitions and
low shear strength.

Using the Z pulsed-power accelerator at Sandia National
Laboratories [10], magnetically driven uniaxial compression
waves were generated in copper samples that ranged in
thickness from ∼2.4 to 3 mm thick. The Z accelerator produces
a temporally shaped current pulse, of up to 20 MA and
1200 ns in duration that flows along the inner surface of
the copper electrodes, generating a time-varying magnetic
field. The interaction of the magnetic field and the current
flux produces a time varying force on the inner surface of
the copper electrodes, see schematic diagram in Fig. 1. In the
stripline geometry, the samples on opposing sides of the short
circuit loop undergo identical loading conditions, making this
an excellent platform for shockless compression experiments.

II. EXPERIMENTAL METHOD

Two separate experiments, each with four sample pairs,
were performed on copper: experiments Z2689 and Z2791.
The OFE-OK grade copper electrodes were 99.998% pure
with an average grain size of 80 μm and a measured HRF
hardness of 43. The electrodes were 43.5 × 11 × 8 mm and
slightly tapered at the base. Rectangular copper steps were
diamond milled into the solid electrode to generate samples of
the desired thickness, between ∼2.4 and 3 mm thick and 9.0 ×
7.7 mm in lateral dimension. The thickness of each copper
sample was measured to an accuracy of ∼3 μm.

The multipoint quadrature velocity interferometer system
for any reflector (VISAR) operated at 532 nm. Three separate
VISAR sensitivities were used on each sample, with fringe
sensitivities that ranged from 257 to 483 m s−1 fringe−1.
After correcting the absolute timing of each VISAR channel
for the etalon delay, individual free-surface velocities were
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FIG. 1. Schematic stripline geometry used for the shockless
compression experiment on copper. The current density (J) flows on
the inner surface of the anode to the cathode, creating a magnetic field
vector (B), which interacts with the current density and accelerates
the anode and cathode away from each other. VISAR probes measure
the free surface velocity of the copper anode and cathode and are
shown in green.

averaged to reduce random uncertainties in the timing of
individual VISAR channels, ∼0.2 ns, and the random phase

uncertainty in the fringe count, ∼5% of the fringe sensitivity.
Two-dimensional magnetohydrodynamic (MHD) simulations
were performed to confirm that the 200 μm bare optical
VISAR fibers were probing regions only undergoing uniaxial
strain.

The averaged free-surface velocities from each sample pair
for experiment Z2689 and Z2791 are presented in Figs. 2
and 3, respectively. One can see that in shot Z2689, Fig. 2,
shockless compression data were obtained on all of the pairs
up to a free-surface velocity of ∼3.5 km s−1. In shot Z2791,
Fig. 3, the current pulse shape was modified in order to avoid a
shock forming in the middle of the pulse shape and shockless
compression data were obtained on two of the pairs, N01-S01
and N02-S02, up to the peak free-surface velocity.

Due to the high electrical conductivity of copper, diffusion
of the magnetic field through the copper samples is relatively
slow. However, on shot Z2791, the pair N01-S01 shows that
the peak velocity on N01 increases beyond the peak velocity
of S01. This deviation is caused by the reverberation of the
free-surface release wave with the magnetic diffusion front,
which limits the range of analyzable data [17].

III. RESULTS

A. Stress-density analysis during shockless
compression experiments

In an ideal shockless compression experiment, one would
measure the in-material particle velocity as a function of
time at multiple positions within the compressed sample [18].

2900 3000 3100 3200
0

2

4

6

8

10

u fs
 [k

m
/s

]

Time [ns]

N04:2601 μm
S04:3001 μm

2900 3000 3100 3200
0

2

4

6

8

10

u fs
 [k

m
/s

]

Time [ns]

N01:2405 μm
S01:2802 μm

2900 3000 3100 3200
0

2

4

6

8

10

u fs
 [k

m
/s

]

Time [ns]

N02:2604 μm
S02:2802 μm

2900 3000 3100 3200
0

2

4

6

8

10

u fs
 [k

m
/s

]

Time [ns]

N03:2502.5 μm
S03:2901 μm

FIG. 2. Average free-surface velocity profiles for each of the four pairs of samples on shot Z2689. Shown within each subplot are the
thickness measurements for both of the samples.
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FIG. 3. Average free-surface velocity profiles for each of the four pairs of samples on shot Z2791. Shown within each subplot are the
thickness measurements for both of the samples.

From the in-material particle velocity profiles, the Lagrangian
sound speed is determined by the difference in measurement
positions divided by the time it takes for a perturbation to travel
from one position to the next, where a perturbation could be
defined as an incremental increase in velocity. In this optimal
shockless compression experiment, one could determine the
Lagrangian sound speed CL as a nearly continuous function
of the in-material particle velocity up where CL = CE

ρ

ρ0
and

CE is the Eulerian sound velocity.
While in-material particle velocity profiles can be measured

on insulators using techniques such as magnetic particle veloc-
ity gauges [19], for opaque metals one cannot measure a true
in-material particle velocity and velocity profile measurements
are limited to interfaces or free-surface velocity measurements.
The iterative Lagrangian analysis (ILA) method [20,21] was
developed to correct for the effect of the free surface reflection,
or map the free-surface velocity profiles to in-material velocity
profiles.

One way to consider the ILA method is that there is a unique
solution to the isentropic equation of state for the problem
where samples of two different thickness are shocklessly
compressed by the same pressure boundary condition and the
free surface velocity profiles are the problem constraints. The
numerical techniques optimize over the equation of state and
the pressure boundary condition until a solution matching the
free surface velocity profiles is achieved. A more detailed
description of the ILA method can be found in Ref. [15].

Recent work has shown that small shocks have a weak
effect on the determination of the stress-density response
using the ILA technique [22]; however, the data presented

here are of sufficiently high accuracy to be sensitive to the
small systematic error induced by analyzing data with small
shocks. Therefore, only data without shocks are included in
the analysis of the free-surface velocity measurements; this
includes all the pairs from shot Z2689 up to 3.5 km s−1. The
data from Z2791 N01-S01 are included up to 8 km s−1 and
Z2791 N02-S02 up to 8.8 km s−1. The sound speeds and
residuals from the weighted mean for each sample pair are
presented as a function of free-surface velocity in Fig. 4.

The uncertainty in CL is determined from the uncertainty
in the slope of a fit to the Lagrangian thickness versus time for
each particle velocity,

(
δCL

CL

)2

= 2

(
δX

X2 − X1

)2

+ 2

(
δt

t2 − t1

)2

+
[

δup,1

(t2 − t1)dup,1/dt

]2

+
[

δup,2

(t2 − t1)dup,2/dt

]2

,

(1)

where δX = 3 μm is the measured thickness uncertainty for
each step height X2 and X1, δt = 0.12 ns is the absolute timing
uncertainty of the free-surface velocity profile, t2 and t1 are the
in-material times where the steps reach the particle velocity
of interest, δup,i ≈ 0.01 km s−1 is the velocity uncertainty
for profile i, and dup,i/dt is the acceleration at the time
of interest. Consequently, the uncertainty in CL is ∼1% for
each sample pair. The weighted average Lagrangian sound
velocity is determined as a function of free-surface velocity,
weighted by 1/δC2

L. The uncertainty in this weighted average
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FIG. 4. Measured Lagrangian sound velocity as a function of the
free-surface velocity for two pairs on shot Z2791 (solid lines) and
4 pairs on shot Z2689 (dashed lines). Below are plotted the residuals
for each of the sound velocity measurements relative to the weighted
average sound velocity of all the traces.

CL is conservatively determined as the maximum of either the
mean uncertainty in CL, as determined by equation (1), or the
standard deviation in CL at each free-surface velocity.

The weighted average CL can then be directly integrated to
obtain the longitudinal stress σx and density ρ as a function of
particle velocity up

σx = ρ0

∫ up

0
CLdup (2)

and

ρ = ρ0

[
1 −

(∫ up

0

dup

CL

)]−1

. (3)

The uncertainties are propagated through the integrals to obtain
uncertainties in longitudinal stress and density,

δσx = ρ0

∫ up

0
δCLdup, (4)

and

δρ = ρ2

ρ0

∫ up

0

δCLdup

C2
L

, (5)

where the uncertainties are propagated linearly rather than in
quadrature because the errors appear to be correlated rather
than random.

A more complete description of the ILA technique can be
found in Ref. [15]. Reference [15] also describes some of the
issues facing the assumption of reversibility and isentropic
flow inherent within the ILA technique, particularly for high-
strength materials that exhibit significant time dependence. As
copper is expected to have relatively low strength and to stay
within the thermally activated regime over the stress range and
strain rates considered in this study [23], the effects of rate de-
pendence or irreversible flow should be negligible for copper.
To test this assumption, we performed forward simulations of
the ramp compression experiments using the ARES hydrocode
[24]. These simulations utilized the SESAME 3325 equation
of state for copper [25] and two different strength models: the
standard time-independent Steinberg-Guinan strength model
[26] and the Preston-Tonks-Wallace (PTW) strength model
[23], which includes strain-rate dependence on the yield
surface. We find that the ILA of simulated data generated
with the PTW strength model disagrees with the simulated
in-material stress density response by a small systematic
difference of 0.3% in stress over the entire density range
of interest, which is well below the experimental errors
and thermomechanical corrections described here. The ILA
of simulated data generated with the standard Steinberg-
Guinan strength model is in nearly perfect agreement with
the true in-material stress density response over the entire
range of interest. Consequently, the ILA technique accurately
determines the in-material stress-density response and any
systematic contributions due to the ILA technique itself are
small and can be ignored for copper.

B. Correcting shockless compression data for strength effects

Here we present a method for determining the principal
isentrope and 298 K isotherm from the stress-density states
that are determined from a shockless compression experiment.
A correction is necessary because the stress-density path
obtained by the ILA technique does not represent an isentrope
due to strength and plastic work heating. For relatively low
strength materials like copper, we find these corrections from
the shockless compression data are small, ∼2–3%, but because
of the high accuracy of the experimental measurements, 2–4%,
these corrections are now significant.

At this point forward we are considering an analysis of the
thermodynamic states at constant density, consequently, the
uncertainty in density is accounted for in the uncertainty in the
stress state,

δσx(ρ)2 = δσx(up)2 +
(

∂σx

∂ρ
δρ(up)

)2

. (6)

Under uniaxial strain conditions, the longitudinal stress σx

deviates from the mean hydrostatic stress Phyd by an amount
sx , referred to as the stress deviator,

σx = Phyd + sx. (7)

The work done by the stress deviators against plastic deforma-
tion of the material increases the entropy and temperature of
the system. This source of dissipation is referred to as plastic
work heating. For uniaxial strain conditions, and assuming
a von Mises yield criterion [27], the differential amount of
plastic work heating dWp can be determined by the following
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equation, derived in Ref. [28],

dWp = 1

ρ0

2

3
Y [dεx − (dY/2μ)], (8)

where Y is the yield strength, and μ is the shear modulus. For
conditions of uniaxial strain, the natural strain εx is determined
by the relative compression of the system according to

εx = ln(ρ/ρ0). (9)

Assuming the material behaves quasiharmonically, the
plastic work heating causes the mean hydrostatic pressure to
deviate from an isentrope by

Phyd − Ps = γρ

∫ εx

0
βdWp, (10)

where γ is the Grüneisen parameter, Ps is the pressure on
the principal isentrope, and β is the Taylor-Quinney factor,
which describes the fraction of plastic work that partitions
into thermal energy of the system [29]. Reference [29] found
that for copper, β = 0.9. More recently, Ref. [30] found
that for polycrystalline copper the Taylor-Quinney factor
increases linearly with strain rate from 0.5 to 0.7 over a strain
rate of 3000 to 8000 s−1. The experiments considered here
are at significantly higher strain rate, 106 s−1, and a linear
extrapolation of the results by Ref. [30] would suggest β = 1
at our high strain rates. In this paper, we assume a β of 0.9;
however, because the strength of copper is low, the amount
of plastic work is also small and the choice of β is relatively
insensitive, as to decrease β by 50% only changes the final
pressure on the isentrope by 0.3%.

Here we have made the simplifying assumption that only
the fraction of plastic work that goes into thermal energy
contributes to the pressure of the system. The other (1 − β) of
plastic work contributes to the potential energy of the lattice
by creating defects, which in keeping with the assumption of
deriving Eq. (8), is volume conserving.

1. Thermal pressure model

To determine the correction from the mean hydrostatic
stress along the shockless compression path, Phyd to the
isentrope, Ps , we require a model for the Grüneisen param-
eter. The Grüneisen parameter is also useful for calculating
the temperature change along an isentrope. Fortunately, the
shockless compression data obtained here can be combined
with porous Hugoniot data [31,32] and solid Hugoniot data
[33–35] to constrain a Mie-Grüneisen equation of state for
copper over the entire density range of interest. The Grüneisen
parameter is determined at the density of each shock data point
by the ratio of the difference in pressure to the difference in
internal energy between the shock state, PH and EH , and the
pressure and internal energy along an isentrope at the same
density, PS and ES , respectively,

γ = (PH − PS)

ρ(EH − ES)
, (11)

where the internal energy on the Hugoniot is given by the
Rankine-Hugoniot equations [36] and the internal energy
along the isentrope is determined by integrating the first law
of thermodynamics at constant entropy.
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FIG. 5. Grüneisen parameter determined from comparison of
principal and porous Hugoniot data with measured isentrope. Also
included is our best fit.

The Grüneisen parameter data are fit to the Al‘tshuler form
of the density dependence of the Grüneisen parameter, which
assumes the Grüneisen parameter is temperature independent,

γ = γ∞ + (γ0 − γ∞)

(
ρ0

ρ

)η

, (12)

where γ∞ is the infinite compression limit, η describes the
density dependence, and γ0 is the ambient pressure value,
which we have fixed at the standard temperature and pressure
value of 2.0(0.1) [37]. In Fig. 5, we present the Grüneisen
parameters obtained using Eq. (11) for a range of initially
porous and solid density Hugoniot data on copper. Also
presented in Fig. 5 is our weighted nonlinear least squares
fit to Eq. (12), where we find γinf = 1.41 and η = 13.6. As
mentioned earlier, here we have made the assumption that the
Grüneisen parameter is temperature independent. We find that
this is a valid assumption based upon the agreement between
the results of this technique and that of a local technique
relating the sound speed along the Hugoniot to the slope of
the Hugoniot, where Ref. [38] measured a γ of 1.55(15) at a
density range of ∼14 − 15 g cm−3 on the Hugoniot.

The standard deviation in the residuals and the average
absolute residual between the experimental Grüneisen param-
eter and the best fit model are 0.68 and 0.38, respectively,
which we believe to be overestimates of the uncertainty in
the model as these metrics are dominated by a few data
points with large scatter at low compressions. However, for
the purposes of uncertainty propagation, we assume a ∼25%
uncertainty in the Grüneisen parameter, which propagates to
a 0.2% uncertainty in the pressure on the isentrope. Unlike
for shock-wave reduced isotherms, where the stress at high
pressures becomes extremely sensitive to the thermal pressure
model, here we find the pressure along the isentrope to be
insensitive to the thermal model because of the relatively small
amount of heating in the shockless compression experiment.
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2. High pressure strength

The high-pressure yield strength of copper has been
measured on the shock Hugoniot by Refs. [39] and [40],
and the data are presented in Fig. 6. The high-pressure yield
strength of copper has also been calculated using molecular
dynamics simulations by Ref. [41], which is in excellent
agreement with the experimental data. We use a scaled
Steinberg-Guinan model to fit the experimental yield strength
of copper [26], where we scale the ambient pressure yield
strength parameter, Y0 and find the best fit to the yield strength
data for 1.82Y0. In this case, the yield strength measurements
on the copper Hugoniot achieve a similar strain rate to the
shockless compression experiments. Consequently, we feel it
is adequate to use a strain rate independent strength model,
calibrated by gas gun data, to correct for the yield strength in
the shockless compression experiments.

In order to correct for the yield strength over the entire
range of pressures accessed by the shockless compression ex-
periments, a significant extrapolation of the scaled Steinberg-
Guinan is required. To account for this extrapolation in the
correction at high pressures and at low temperatures along the
shockless compression path, we assume a 50% uncertainty to
the yield strength at high pressures. As copper is not expected
to undergo a phase transition, and the experimental data and
theoretical predictions are well represented by this empirical
strength model, it is likely that we are overestimating the
uncertainty in the yield strength. However, even such a large
estimate in the uncertainty of the yield strength at high pressure
only corresponds to an ∼1% uncertainty in the pressure on the
isentrope. For comparison, the magnitude of the individual
corrections from the shockless compression data to the 298 K
isotherm are presented in Fig. 7.
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reducing shockless compression data to the 298 K isotherm of copper.
Plotted are the corrections for the deviatoric stress (black), thermal
pressure due to plastic work heating (red), and thermal pressure
correction from the principal isentrope to the 298 K isotherm (blue
solid line).

3. Hydrostatic Hugoniot states

Although it is not often discussed in the literature, Hugoniot
measurements should not be compared directly to equation of
state models. One must correct Hugoniot data, at least within
the solid phases, for the deviatoric stress and the thermal
pressure generated due to plastic work heating. The plastic
work heating along the Hugoniot can be calculated based
upon the waste heat generated along the Rayleigh line by the
longitudinal deviatoric stress, sx [42],

Wp,Hug = sx

(
1

ρ0
− 1

ρ

)
. (13)

The hydrostatic Hugoniot for a material is then given by

PHug = σx,Hug − sx − γρβWp,Hug, (14)

where σx,Hug is the longitudinal stress at the Hugoniot state.
For copper, this correction is equivalent to reducing the shock
wave velocity in the solid by ∼0.025 km s−1 or ∼0.5%.

In order to correct all the porous Hugoniot and solid
Hugoniot for strength effects, we must first determine the
critical shock pressures for incipient melting of copper along
the porous and solid density Hugoniots. We fit a Simon
equation to the high-pressure melt curve of Ref. [43],

Tmelt = TRef

(
P − PRef

a
+ 1

)1/c

(15)

and find Tref = 1351 K, a = 16.304 GPa, and c = 1.8331.
To calculate the shock temperatures along the principal and
porous Hugoniots, we use our data along the isentrope
as a reference curve and we assume copper behaves as a
quasiharmonic Debye solid [44], with θ0 = 343.5 K. We
find that the principal Hugoniot intersects the high-pressure
melt curve at 224 GPa, which is in good agreement with
the measured critical shock pressure for incipient melting of
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232 GPa [38]. This agreement is surprisingly good, given that
we did not apply any anharmonic or electronic contributions to
the heat capacity. We then assume that copper loses all strength
for shock temperatures above the melt curve. These corrected
hydrostatic Hugoniot points are used in the calculation of
the Grüneisen parameters and the stress along the principal
isentrope.

4. Summary of the method for reducing shockless
compression data to an isentrope

At this point, all aspects of correcting the shockless com-
pression data to the principal isentrope have been described
in Secs. III B 1, III B 2, and III B 3. However, the procedure
is slightly complicated as some of the terms in the correction
require information about the isentrope. Therefore, we use an
iterative procedure to self-consistently solve for the pressure
along the isentrope. This iterative procedure is as follows:

(1) Determine a model for the density dependence of the
Grüneisen parameter using available Hugoniot data and as-
suming our shockless compression data represent an isentrope,
see Sec. III B 1.

(2) Fit the strength data on the Hugoniot of copper to the
Steinberg-Guinan model by scaling Y0. Model the strength
along the ramp compression path based upon the fit to
Hugoniot strength data and corrected for the lower temperature
along the shockless compression path, see Sec. III B 2.

(3) Calculate the plastic work heating and the thermal
pressure from plastic work heating along the shockless
compression path using Eqs. (8) and (10).

(4) Determine the pressure along the isentrope by sub-
tracting the deviatoric stress and the thermal pressure from the
shockless compression path, Eqs. (7) and (10).

(5) Calculate the plastic work heating at each Hugoniot
point below the melt curve using Eq. (13).

(6) Determine the pressure along the hydrostatic Hugoniot
states by subtracting the deviatoric stress and thermal pressure,
Eq. (14).

(7) Repeat steps 1–6 with the revised model for the isen-
trope, hydrostatic Hugoniot points, and Grüneisen parameter.

The corrections for the strength, and thermal pressure due
to plastic work heating are only a few percent, Fig. 7, and
consequently, this procedure converges in only two iterations.
To determine the pressure along the 298 K isotherm, one must
subtract the thermal pressure from the isentrope at the elevated
temperature along the isentrope, Ts ,

P298 = Ps − γρ[Eth.(Ts) − Eth.(298))], (16)

where Eth. is the thermal energy at density ρ determined from
the Debye integral [44] and the temperature along the isentrope
is determined from integrating the thermodynamic derivative,
γ = ∂lnTs

∂lnρ
.

As in Ref. [4], a higher order Vinet equation of state was
then fit to the isentrope, isotherm, and shockless compression
paths. The fitting form is

P (X) = 3K0[(1 − X1/3)/X2/3] exp[η(1 − X1/3)

+β(1 − X1/3)2 + ψ(1 − X1/3)3] (17)

where X = ρ0/ρ, and the best fit parameters K0, η, β, and
ψ are described in Table I. The maximum deviation between

TABLE I. Best fit parameters for the third order Vinet fit, Eq. (17),
to the shockless compression data, the principal isentrope, and the
298 K isotherm starting at an initial density of 8.939 g cm−3. For the
purposes of error propagation, also shown are fits to the upper and
lower 1-σ uncertainty bounds on each fit.

Thermodynamic K0

Path [GPa] η β ψ

Shockless Expt. 143.39 6.109 2.1348 4.567
Shockless: Upper 151.52 4.9902 12.858 −23.575
Shockless: Lower 135.4 7.2838 −9.1176 34.055

Principal Isentrope 136.35 7.1173 −7.1245 30.58
Isentrope: Upper 144.01 6.0987 2.5918 5.2783
Isentrope: Lower 128.8 8.1918 −17.365 57.209

298 K Isotherm 127.61 8.151 −14.452 49.034
Isotherm: Upper 134.69 7.1621 −5.0546 24.726
Isotherm: Lower 120.62 9.1941 −24.357 74.617

the fits and the data is 3 GPa at the peak stress state and
significantly better at lower pressures; however, the fits are to
be used as interpolating functions and are not necessarily valid
in extrapolation.

In Figs. 8 and 9, we present the 298 K isotherm determined
from this study. One can see that the isotherm agrees within
2% of that of Ref. [9] up to 65 GPa, where the thermal pressure
on the Hugoniot is starting to no longer be negligible. Beyond
65 GPa, our 298 K isotherm is slightly stiffer than the results
of Refs. [9] and [4], by about 6 GPa at 150 GPa, which is
just outside our 1-σ uncertainty of 5 GPa. It is interesting
to see that careful fitting of high-accuracy but low-pressure
thermodynamic data on copper by Holzapfel [45], with a
smooth extrapolation to the Fermi gas limit yields a nearly
perfect agreement with the isotherm determined in this paper.
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FIG. 8. Equation of state data for copper on the principal
Hugoniot and the 298 K isotherm. Shown are Hugoniot data from
Mitchell and Nellis [34], Altshuler et al. [33], and Nellis et al. [35];
and isotherms from Dewaele et al. [9], Holzapfel [45], and this paper.
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FIG. 9. Equation of state data for copper up to 120 GPa. Shown
are Hugoniot data from Mitchell and Nellis [34], and isotherms from
Dewaele et al. [9], Chijioke et al. [4], Holzapfel [45], and this paper.

C. Ruby R1-line calibration

The most common pressure standard within the high
pressure diamond anvil cell community is the ruby R-line lumi-
nescence [46,47]. Utilizing the quasihydrostatic compression
data on copper and ruby presented in Ref. [9], we are able
to recalibrate the high-pressure ruby scale using our 298 K
isotherm for copper. Here we assume the standard power law
expansion for the hydrostatic pressure as a function of the shift
in the Ruby R1 line [3],

P = A

B

[(
λ

λ0

)B

− 1

]
(18)

where we find the best fit parameters A = 1915.1 GPa and
B = 10.603.

The main source of uncertainty in this ruby calibration is the
uncertainty in the copper isotherm, ∼3% in stress at 150 GPa,
see Table I for upper and lower bounds. Reference [48] notes
the possibility of a 1−2% systematic uncertainty in the stress
due to potential nonhydrostatic stresses in the medium used in
the diamond anvil cell (DAC) experiments of Ref. [9], which
also contributes to the uncertainty in our ruby calibration.
Other sources of uncertainty, such as the determination of the
R1 line position and the density of copper as determined by
XRD in the DAC, are small [9].

In Fig. 10, we present a comparison of our ruby calibration
with the ruby calibrations of Mao et al. [46], Aleksandrov et al.
[49], Holzapfel et al. [50], Dewaele et al. [9], and Chijioke et al.
[48]. The comparisons are plotted to 200 GPa to show how each
of the fits extrapolates, however, the data upon which these fits
are based only extend to pressures as high as 150 GPa [9].
One can see that the ruby calibration fits from Refs. [45,48,51]
are well within the error bars of this work and that the ruby
calibration from Refs. [9,49] are 1-σ away from this revised
fit.
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FIG. 10. Comparison of fits to the pressure dependence of the
ruby R1 line by Mao et al. [46], Aleksandrov et al. [49], Dewaele
et al. [9], Holzapfel [51], Chijioke et al. [48], Dewaele et al. [52],
Holzapfel [45], and this paper. Also shown as black dashed lines are
the 1-σ uncertainty bounds on the ruby R1 line calibration of this
work. Above 150 GPa, these fits are no longer constrained by data
and are presented as extrapolations for comparison purposes.

IV. DISCUSSION

The dominant contribution to the uncertainty in the
isotherm of copper is the random experimental errors as-
sociated with the uncertainty in the step thicknesses, the
uncertainty in the relative timing of the free-surface velocity
profiles, and the uncertainty in the measured free-surface
velocity of the shockless compression experiments. These
separate uncertainties all contribute relatively equally to the
total random experimental uncertainty in stress at a given
density, ranging from ∼2% at 50 GPa to ∼4.5% at 450 GPa.
The other major sources of uncertainty are the high-pressure
strength of copper, ∼1%, the Taylor-Quinney factor, ∼0.3%,
and the Grüneisen model, ∼0.2%.

These uncertainty contributions are not, however, unique
to shockless compression experiments. For shock experiments
below the melt temperature, there will be a deviatoric stress
contribution to the longitudinal stress and also thermal pressure
generated from plastic work heating. The amount of plastic
work that goes into thermal energy, and therefore thermal pres-
sure, is still parameterized by the Taylor-Quinney factor. For
shock temperatures above the melt curve, there is significant
uncertainty in the latent heat of melting at constant volume.

Where this thermomechanical reduction technique for
obtaining isotherms from shockless compression data becomes
much more accurate than shock wave reduced isotherms is at
pressures well above the bulk modulus, where several tens
of percent corrections are required from the pressure at the
Hugoniot state to the pressure on the isotherm. As an example,
at a density of 17 g cm−1, the pressure on the 298 K isotherm
is ∼450 GPa, whereas the pressure on the principal Hugoniot
is ∼780 GPa, consequently, a thermal pressure correction of
330 GPa is required for the shock wave data. For an assumed
10−25% uncertainty in the Grüneisen parameter and a 5%
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FIG. 11. Sum total of the required corrections and associated
uncertainties for reducing shock compression data (red) and shockless
compression data (blue) to the 298 K isotherm of copper.

uncertainty in the Hugoniot pressure [34], the total uncertainty
in the SWRI would range between 50 and 100 GPa, or two
to four times the uncertainty in the isotherm obtained from
reducing shockless compression data. A comparison of the
required corrections for the SWRI-technique and the technique
described here are presented in Fig. 11. The specific crossover
pressure where isotherms reduced from shockless compression
experiments becomes more accurate than SWRI’s depends
most sensitively on the uncertainty in the Grüneisen parameter.
If one assumes a 10% uncertainty in the Grüneisen parameter,
the SWRI will be more accurate up to 250 GPa on the isotherm;
however, if one assumes a 25% uncertainty in the Grüneisen
parameter then the SWRI will be more accurate only up to
∼70 GPa.

Furthermore, as two-stage diamond anvil cells become
more prevalent in the static high-pressure community, the
materials used as pressure standards will reach densities
where the SWRI technique is no longer viable. Shockless or

multishock techniques will be the only means of obtaining
accurate pressure calibrations in the terapascal regime.

V. CONCLUSIONS

We have obtained shockless compression data on copper
to over 450 GPa using a magnetically applied pressure drive
at the Sandia Z Machine. The free-surface velocity data were
analyzed using the ILA technique to obtain the Lagrangian
sound speed as a function of particle velocity. The Lagrangian
sound speed was then integrated to determine an absolute
stress-density path. The available data on the high-pressure
strength of copper was combined to constrain a modified
Steinberg-Guinan strength model. A Mie-Grüneisen Debye
thermal model was then iteratively fit to the shockless compres-
sion data and the available principal and porous Hugoniot data.
The shockless compression stress-density data were corrected
for the deviatoric stress and thermal pressure due to plastic
work heating to generate a nearly absolute principal isentrope.
The principal isentrope was then corrected using our best fit
Mie-Grüneisen Debye model to obtain the room temperature
isotherm of copper to 450 GPa with an uncertainty of less than
5% at the highest pressures obtained. A high precision fit to
the shockless compression data, the isentrope, the isotherm,
and a ruby calibration are presented for immediate use for the
purposes of pressure calibration within a diamond anvil cell.
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