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Experimental observation of surface states and Landau levels bending in bilayer graphene
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We report on microscopic measurements of the low-energy electronic structures both at the zigzag and armchair
edges of bilayer graphene using scanning tunneling microscopy and spectroscopy (STM and STS). We have found
that, both in the absence and in the presence of a magnetic field, an almost zero-energy peak in the density of
states was localized at the zigzag edges, as expected for the surface states at the zigzag edges of bilayer graphene.
In the quantum Hall regime, we have clearly observed Landau levels bending away from the charge neutrality
point near both the zigzag and armchair edges. Such a result is direct evidence for the evolution of Landau levels
into quantum Hall edge states in graphene bilayers. Our experiment indicates that it is possible to explore rich
quantum Hall physics in graphene systems using STM and STS.
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There are two possible (perfect) edge terminations, i.e.,
zigzag and armchair, in graphene monolayers, and the edge ori-
entations strongly affect the electronic structures of graphene
sheets [1,2]. Very recently, a graphene system with zigzag edge
termination has attracted much attention because its surface
states are believed to be closely related to a gap opening [3–6],
magnetic order [7], and exceptional ballistic transport [8].
These surface states are dispersionless and do not contribute
to the quantum Hall currents. However, in the quantum
Hall regime, both the zigzag and armchair edges could
bend Landau levels (LLs) to produce dispersive edge states
[9–13], which carry the chiral Dirac fermions responsible
for the quantum Hall effect (QHE) in graphene monolayers
[12,13]. Theoretically, it was predicted that the edges of the
monolayer could host crossed dispersive edge states with
spin polarization, which are related to symmetry-protected
quantum spin Hall phases [10,14]. Transport measurements,
however, revealed a strongly insulating behavior with the
gapped edges at charge neutrality of monolayer graphene
under perpendicular magnetic fields [15,16]. Subsequently, the
canted antiferromagnetic edge states, which are due to an edge
gap closing by an angled magnetic field, were observed [6],
and the expected gapless quantum spin Hall state is believed
to be present in a critical value of field [17].

In graphene bilayers, the zigzag edge is also predicted
to host surface states at zero fields, but with an enhanced
penetration into the bulk compared to that of graphene
monolayers [18]. In the presence of high magnetic fields,
unconventional QHEs and an abundance of exotic electronic
behaviors have been observed [19–26] due to the extra
layer degree of freedom, which causes complex edge state
configurations in the bilayers. Though much great success
has been achieved in the study of the electronic properties of
graphene bilayers, considerable work is still necessary to fully
understand the nature of the edge states in novel quantum Hall
phases. Among the fundamental problems of this system, for
example, a direct experimental observation of the surface states
at the zigzag edges of a graphene bilayer and its LLs bending
at the edge terminations are still lacking. The major challenge
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may be boiled down to the fabrication of high-quality bilayer
samples with the desired edge terminations that are suitable for
microscopic investigation. In addition, previous works related
to this subject were mainly addressed by optical and transport
measurements [27–29], which lack atomic-scale spatial reso-
lution that would be indispensable for studying surface states
and LL bending. In this paper, we present scanning tunneling
microscopy (STM) and spectroscopy (STS) measurements of
bilayer graphene on a graphite substrate both in the absence
and in the presence of magnetic fields. The high-quality bilayer
sample with atomically sharped edges (Fig. S1) and ultralow
random potential fluctuations due to substrate imperfections
(Fig. S2) enable us to directly probe the surface states at the
zigzag edges and to measure the LLs bending at both the zigzag
and armchair edges.

We performed STM measurements in a UNISOKU (USM-
1500S) instrument with magnetic fields up to 8 T. The
STS spectra, i.e., differential conductance dI/dV curves,
were measured with a lock-in detection (modulation voltage
5–10 mV; frequency 793 Hz). The STM tips were obtained by
chemical etching from a wire of Pt0.8Ir0.2 alloys. The lateral
dimensions observed in the STM images were calibrated
using a standard graphene lattice and Ag (111) surface.
All the STM and STS measurements were performed in
an ultrahigh vacuum chamber (∼10−11 Torr) at ∼4.4 K. The
bilayer graphene samples used in our experiments were
prepared on ZYA grade (from NT-MDT) highly oriented
pyrolytic graphite (HOPG) substrates. The HOPG samples
were surface cleaved by adhesive tape immediately prior to
experiments. The bilayer graphene flakes were deposited on
the substrate during the process of mechanical exfoliation and,
very importantly, these graphene sheets may decouple from the
graphite surface, as demonstrated in previous studies [30–36].

Figure 1(a) shows a representative STM image of a Bernal
graphene bilayer on a graphite surface. The triangular contrast
in the atomic image arises from the A/B atoms’ asymmetry
generated by the two adjacent layers. To further identify the
bilayer graphene region, we carried out a STS measurement in
various magnetic fields, as shown in Fig. 1(b). In zero magnetic
field, there are two peaks located at about 0 and 25 mV in
the spectrum, which are attributed to the density of states
(DOS) peak generated at the valence-band edge (VBE) and
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FIG. 1. (a) 100 nm × 100 nm STM topographic image of a bilayer graphene region on a graphite surface (Vb = 0.2 V, I = 0.2 nA). Inset
(upper): Atomic resolution image of the graphene bilayer showing the triangular contrasting, which reflects only one of the two sublattices of
the topmost graphene due to the inversion symmetry breaking in Bernal (AB-stacked) bilayers. Inset (lower): Height profile along the black
line shows the height difference of two steps ∼(0.70 ± 0.01) nm, which is slightly larger than the equilibrium spacing of the bilayer step
(∼0.67 nm). (b) Tunneling spectra of the graphene bilayers recorded away from the edges under various magnetic fields. LL peak indices are
labeled (+/− are valley indices) and the data are offset in the Y axis for clarity. (c) The LL peak energies extracted from (b) plotted vs the
magnetic fields B. The solid curves are the fitting of the data with Eq. (1).

conduction-band edge (CBE) of a gapped bilayer, respectively
[33,37]. The finite gap in the low-energy bands is generated
by inversion symmetry breaking of the adjacent two layers
induced by the substrate [33,37–43].

The spectra recorded in high magnetic fields [Fig. 1(b)]
exhibit Landau quantization of massive Dirac fermions, as
expected for gapped graphene bilayers [20,33,35]. The LL
sequences of gapped graphene bilayers can be described by

En = EC ± {(�ωc)2[n(n − 1)] + (U/2)}1/2–ξzU/4,

n = 2,3,4 · · ·
E0 = EC + ξU/2, E1 = EC + ξ (U/2)(1 − z), (1)

where EC is the energy of charge neutrality point (CNP),
ωc = eB/m∗ is the cyclotron frequency, m∗ is the effective
mass of charge carriers, and ξ = ± are the valley indices.
We have z = 2�ωc/t⊥ � 1 for B � 8 T and |U | ≈ Eg (gap
energy) when the interlayer bias U < t⊥. According to the
fitting, as shown in Fig. 1(c), we obtain Eg ≈ 25 meV and
m∗ = (0.035 ± 0.002)me (me is the free-electron mass). Both
the values of Eg and m∗ agree well with the previously reported
range of values in Bernal bilayers [33,36]. Note that the two
lowest levels LL(0,1,+) and LL(0,1,−) are a couple of layer-
polarized quartets, and they are mainly localized on the first
and second graphene layers, respectively. Therefore, the signal
of LL(0,1,+) is much stronger than that of LL(0,1,−) in the spectra
since that the STS predominantly probes the DOS on the top
layer.

The measurements demonstrate explicitly that the two
topmost layers are Bernal stacked and they are completely
decoupled from the substrate. Once a high-quality bilayer
graphene region is identified, the structures and electronic
properties around its edges are carefully studied. Figures 2(a)
and 2(b) show typical atomic-resolution images of a zigzag
edge and an armchair edge of the graphene bilayer, respec-
tively. Away from the edges, the STM images exhibit triangular
contrasting, as expected to be observed in Bernal bilayers.
The types of terminative edges can be determined by the
arrangement of the triangular dots, as schematically shown in
Figs. 2(a)–2(c). Around both the zigzag and armchair edges,

clear interference patterns are observed. Similar interference
patterns have also been observed around the edges of a
graphene monolayer on a graphite substrate [44–46] and
are attributed to the interference between the incident and
scattered electron waves in two Dirac cones at the atomically

FIG. 2. Atomic resolution images of (a) a zigzag bilayer edge
and (b) an armchair bilayer edge. The insets are the the fast Fourier
transforms (FFTs) of the STM images. The outer hexangular spots
and inner bright spots correspond to the reciprocal lattice of the
graphene lattice and the interference of the scattering, respectively.
(c) Schematic of the Bernal bilayer graphene with the zigzag and
armchair edges. The green dots, representing a set of sublattices
imaged in STM topography, can be used to determine the type of
graphene edge. Energy spectrum of (d) an unbiased and (e) biased
bilayer graphene with zigzag edges. The green curves correspond to
the quasilocalized surface states of the two zigzag edges. (f) Energy
spectrum of an unbiased (solid curves) and biased (dotted curves)
bilayer graphene ribbon with armchair edges.
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FIG. 3. (a) Spatially resolved STS spectra recorded along the line
drawn in (b) around the zigzag edge of bilayer graphene under 0 T.
The DOS peaks marked by green arrows correspond to the quasilo-
calized surface states of the zigzag edge in graphene bilayer. The blue
and red dashed lines label the positions of the VBE and the CBE in
the bulk graphene bilayer. (c) The decay of the DOS peak height of
the surface state obtained in (a). The blue and gray curves correspond
to the expected decaying behavior of the surface states in graphene
bilayer and monolayer, respectively.

sharped boundaries (see Fig. S1 in the Supplemental Material
[47] for more experimental data). The graphene bilayers with
zigzag and armchair edges are expected to exhibit quite
different electronic band structures: There are localized surface
states at the zigzag edges but not at the armchair edges
[24,48], as shown in Figs. 2(d)–2(f). In a gapped graphene
bilayer with zigzag edges, the surface states may be layer
polarized [48] and they are predicted to have a much larger
penetration length into the bulk than that in the graphene
monolayer [18].

To study the effect of edges on the electronic properties of
bilayer graphene, we measured the spatially resolved dI /dV

spectra near both the zigzag and armchair edges under zero
magnetic field. Figure 3 shows a representative result obtained
around a zigzag edge (see Fig. S3 in the Supplemental Material
[47] for experimental data recorded around an armchair edge).
Typical tunneling spectra recorded at different distances away
from the edge are shown in Fig. 3(a) [here we define the zero
position at the zigzag edge, as shown in Fig. 3(b)]. When
approaching the edge, the signal of the DOS peaks at the VBE
and CBE [dashed lines in Fig. 3(a)] becomes weak because
the VBE and CBE of a gapped bilayer graphene are exactly
valid in the bulk and they are less well defined around the
edges. The energy spacing between the VBE and the CBE
increases by about 10 meV [Fig. 3(a)], which may arise from
a slightly enhanced band gap around the edge. Beside the
above-mentioned result, another notable feature of the spectra
is the emergence of a new DOS peak around the zigzag
edge, and the signal of the peak increases when approaching
the edge. Such a peak, which is absent around the armchair
edge (Fig. S3), is attributed to a layer-polarized surface state at
the zigzag edge of the gapped graphene bilayer [48]. The pres-
ence of this DOS peak (surface state) is a fundamental result,
and, although it has been anticipated in many theoretical works,
it has not been experimentally observed before in graphene

bilayers [5,7,8,35,36]. Theoretically, the zigzag surface states
are localized at the edge of the bilayers, but its wave function
is considerably extended in real space and decays as a function
of the distance to the edge. Figure 3(c) plots the measured DOS
peak height of the surface state as a function of the distance
from the edge. These DOS peaks reflect the local intensity
of the surface state wave function. Obviously, the surface
state shows a decreasing intensity with increasing distance and
extends over 10 nm away from the edge, consistent with the
expected decaying behavior of the surface states in graphene
bilayers (see the Supplemental Material [47] for details of
the calculation). Here we should point out that the decaying
length of the surface states in graphene bilayers is much larger
than that in graphene monolayers [Fig. 3(c)]. Additionally, the
surface state can also be detected even in the quantum Hall
regime [Figs. 4(a) and 4(d)].

In two-dimensional electron systems, the low-energy band
structures of quasiparticles develop into dispersionless LLs
in the presence of a high magnetic field and give rise to
the insulating behavior in the bulk, while the confining
potential at the edges of the system bends the discrete LLs
to form dispersive edge states that carry charge carriers
in the quantum Hall effect [10,11,27,28]. The high-quality
bilayer sample with crystallographically perfect edges and
the ultralow random potential fluctuations induced by the
substrate, as demonstrated in Figs. 1–3, allow us to directly
probe the LLs bending at the edges.

Figure 4 summarizes the measured result of bilayer
graphene in the quantum Hall regime, and we observe clear
evidence of LLs bending at both the zigzag and armchair
edges (see Fig. S4 in the Supplemental Material [47] for more
experimental data). Away from the edges, the well-defined
LL spectra, as shown in Figs. 4(a)–4(d), follow the sequence
of massive Dirac fermions in gapped graphene bilayers (here
we use lB = √

�/eB to define the distance from the edge).
When approaching the edges, the DOS peaks for the LLs
become weak and the LLs are shifted away from the charge
neutrality point, as shown in Figs. 4(e) and 4(f). At a fixed
energy, the measured local DOS at position r is determined
by the wave functions according to ρ(r) ∝ |ψ(r)|2, while the
wave functions of LLs have their spatial extent, ∼2

√
NlB . It

indicates that there is an important contribution from the bulk
states even for the recorded LL spectra near the edges. The
wave functions of LLs with higher indices have greater spatial
extents (see the Supplemental Material [47] for details of the
calculation), as shown in the inset of Fig. 4(f). Consequently,
the amplitude of high-index LL peaks decreases more slowly
than that of low-index LL peaks [Fig. 4(e)], and the bending
of low-index LLs seems stronger than that of high-index LLs
[Fig. 4(f)] (due to greater contributions from the bulk states to
higher LLs).

Theoretically, the shift length of the LLs bending around
the edges is predicted to be of magnetic length [10,11]. In
Fig. 4(g), we summarize the measured shift length at different
magnetic fields around both the zigzag and armchair edges.
We find that the shift length depends on neither the magnetic
fields nor the edge types, and demonstrate that it is of magnetic
length (see Fig. S5 in the Supplemental Material [47] for more
experimental data). Additionally, the shift length seems to
be dependent on the LL index: The estimated shift lengths
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FIG. 4. (a) and (c) show the spatial variation of the LL spectra measured at 7 T around the zigzag and armchair edges of bilayer graphene,
respectively. The dashed lines indicate the energy positions of the LL(0,1,−) and LL(0,1,+) in the bulk of bilayer graphene. The blue and red
arrows mark the spatial evolution of the LL(0,1,−) and LL(0,1,+) peaks. (b) and (d) show LL spectra maps at 7 T recorded around the zigzag and
armchair edges, respectively. In (a) and (b), the peaks marked by green arrows correspond to the quasilocalized surface states of the zigzag
edge. (e) Evolution of the peak positions and heights at 7 T with distance from the armchair edge on the conduction-band side. The inset shows
LL peak heights extracted from (e) as a function of the distance from the edge. (f) LL bending as a function of distance around the armchair
edge measured at 8 T. It shows an explicit shift of the energy positions for the LL(0,1,+), LL2, and LL3 toward high energy when approaching
the edge. The insets show calculated probability densities for the wave functions of the LL(0,1,+), LL2, and LL3 at 8 T. (g) Shift lengths of
the LL(0,1,+) and LL2 bending from the bilayer edges taken at different magnetic fields. The solid dots (open dots) correspond to the data of
armchair edges (zigzag edges). The dashed lines are the average values of ∼1.4lB and ∼2.0lB for the LL(0,1,+) and LL2, respectively.

for the LL(0,1,+) and LL2 are about ∼1.4lB and ∼2.0lB ,
respectively. Meanwhile, we obtained the average value of the
bending energy for the lowest LL(0,1,+) ∼ 65 meV (see Fig. S6
in the Supplemental Material [47] for more experimental
data). This energy scale is approximately identical to the
depth of the confining potential well at the sample edge
[10,49,50].

In conclusion, we measured the surface state and its spatial
evolution around the zigzag edges of bilayer graphene. Our
result demonstrates an enhanced penetration length of the
surface states in bilayer graphene compared to that in a
graphene monolayer. In the quantum Hall regime, we provided
direct evidence for the LLs bending around both the zigzag and
armchair edges of bilayer graphene, which may open the door

to explore exotic quantum Hall physics in graphene bilayers
using scanned probe techniques.
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