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Toroidal dipole excitations in metamolecules formed by interacting plasmonic nanorods
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We show how the elusive toroidal dipole moment appears as a radiative excitation eigenmode in a metamolecule
resonator that is formed by pairs of plasmonic nanorods. We analyze one such nanorod configuration—a toroidal
metamolecule. We find that the radiative interactions in the toroidal metamolecule can be qualitatively represented
by a theoretical model based on an electric point dipole arrangement. Both a finite-size rod model and the point
dipole approximation demonstrate how the toroidal dipole moment is subradiant and difficult to excite by
incident light. By means of breaking the geometric symmetry of the metamolecule, the toroidal mode can be
excited by linearly polarized light and appears as a Fano resonance dip in the forward scattered light. We provide
simple optimization protocols for maximizing the toroidal dipole mode excitation. This opens up possibilities
for simplified control and driving of metamaterial arrays consisting of toroidal dipole unit-cell resonators.
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I. INTRODUCTION

The static toroidal dipole, also known as anapole, was first
considered by Zel’dovich in 1957 [1]. The toroidal dipole
has since been acknowledged in nuclear and atomic physics,
where it is held responsible for parity violations in electroweak
interactions [2–6], as well as in solid-state physics, where it
leads to a special type of ordering in multiferroics [7–10].

The notion of the tororidal dipole was eventually extended
to the dynamic case, where it generated a whole family of
radiating toroidal multipoles [2,11–13], commonly omitted
from standard literature on the electrodynamics [14–16].
While electric and magnetic multipoles are respectively linked
to the oscillations of charges and transverse currents, the
toroidal multipoles result from the oscillations of radial
currents, which tend to be neglected in the long wavelength
limit [11,15]. The lowest-order toroidal multipole—toroidal
dipole—is produced by currents circulating on a surface of an
imaginary torus along its meridians [17].

The toroidal response in natural materials is weak and usu-
ally masked by conventional electromagnetic (EM) effects, but
with the advent of metamaterials and modern nanofabrication
technology, materials composed of subwavelength particles
may be designed and constructed to exhibit an enhanced
toroidal dipole response. Various metamaterial designs have
already been utilized experimentally to promote a toroidal
dipole response in the microwave and optical part of the spec-
trum: circular apertures in a metallic screen [18], asymmetric
split rings [19], split rings [20,21], and double bars [22].
In numerical simulations, also other resonator configurations
[23–27] have shown notable toroidal dipole responses.

Thus far, the theoretical understanding of the toroidal
dipole response in resonator systems has been limited and the
conditions under which the toroidal moment may be excited
on the microscopic level have not been well known. In this
paper, we show theoretically how a simple structure formed
by interacting plasmonic nanorods can support a collective
excitation eigenmode that corresponds to a radiating toroidal

moment. The toroidal mode is subradiant which could be
important, e.g., for the applications of the toroidal moments in
nonlinear optics [28,29] and in surface plasmon sensors [30].
We analyze the light-induced interactions between the closely
spaced plasmonic rods using a finite-size rod model as well as
a model where the metamolecule is represented by a simple
arrangement of point electric dipole emitters. We find that the
point dipole model provides an accurate description of the
radiative properties, except at very short inter-rod separations.

The generally weak coupling of the toroidal dipoles to
external radiation fields makes it difficult to excite the
toroidal mode. The structural symmetry of the mode in-
hibits the coupling to EM field modes that do not possess
a similar “vortexlike” symmetry. We show how a simple
linearly polarized incident light beam, however, can drive the
toroidal dipole excitation when the geometric symmetry of
the metamolecule is broken. The method is related to the
double-resonator configuration introduced in Ref. [22] and
we provide simple optimization protocols for maximizing the
toroidal dipole mode excitation. The emergence of the toroidal
dipole excitation is shown in the forward scattered light as a
Fano resonance, indicating a destructive interference between
the broad-resonance electric dipole and narrow-resonance
toroidal dipole modes. Using linearly polarized beams for
the excitation of the toroidal dipole mode can be especially
beneficial in driving and controlling large metamaterial arrays
of toroidal unit-cell resonators, since the coupling in this case
is independent of the array or the beam symmetries.

The structure of this paper is as follows: in Sec. II, a brief
review of metamaterial dynamics as formulated in Ref. [31] is
presented. In Sec. III, the general model is applied to the case
of cylindrical nanorods. Two models are developed: a point
dipole model; and a finite-size resonator model. In Sec. IV, we
investigate a toroidal metamolecule comprised of plasmonic
nanorods. The collective radiative excitation eigenmodes, and
their resonance linewidths and line shifts for the toroidal
metamolecule are calculated. We then show how a toroidal
dipole response may be excited with linearly-polarized light
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by introducing a geometric asymmetry in the metamolecule.
Some concluding remarks are included in Sec. V.

II. DYNAMICS OF METAMATERIAL SYSTEMS

In order to analyze the EM interactions between plasmonic
rods in a toroidal metamolecule and the excitation of toroidal
dipole mode by an incident field we first briefly introduce the
basic formalism of radiatively coupled rods. We show how
in a simple model the incident field and the scattered EM
fields from the other rods excite normal modes of current
oscillations in each rod. A more detailed derivation of the
formalism, also including magnetodielectric systems, can be
found in Ref. [31].

In the general model of circuit resonator interactions with
EM fields, we assume that the charge and current sources are
driven by an incident electric displacement field Din(r,t), and
magnetic induction Bin(r,t) with frequency �0. When analyz-
ing the EM fields and resonators, we adopt the rotating wave
approximation where the dynamics is dominated by �0. In the
rest of the paper, all the EM fields and resonator amplitudes
refer to the slowly-varying versions of the positive frequency
components of the corresponding variables, where the rapid
oscillations e−i�0t due to the dominant laser frequency has
been factored out.

The state of current oscillation in the resonator j may be
described by a single dynamic variable with units of charge
Qj (t) and its rate of change Ij (t), the current. The current
oscillations within each resonator j behave in a manner
analogous to an LC circuit with resonance frequency ωj :

ωj = 1√
LjCj

, (1)

where Cj and Lj are an effective self-capacitance and self-
inductance, respectively. In Ref. [31], a general theory was
formulated to derive a coupled set of linear equations for
the EM fields and strongly coupled resonators. In order to
express the coupled equations for the EM fields and resonators,
we introduce the slowly varying normal mode oscillator
amplitudes bj (t),

bj (t) = 1√
2ωj

[
Qj (t)√

Cj

+ i
φj (t)√

Lj

]
. (2)

Here, the generalized coordinate for the current excitation
in the resonator j is the charge Qj (t) and φj (t) represents
its conjugate momentum. In the rotating wave approxima-
tion, the conjugate momentum is linearly-proportional to the
current [31]. The dynamic variable in Eq. (2) can be used
to describe a general resonator with both polarization and
magnetization sources. The oscillation of Qj (t) and Ij (t)
within each resonator are proportional to the corresponding
polarization Pj (r,t) and magnetization Mj (r,t) sources [31].
The electric Esc,j (r,t) and magnetic Hsc,j (r,t) fields scattered
by emitter j , are a result of the oscillating polarization and
magnetization sources.

We approximate the resonators as cylinders (nanorods) with
the radius a and length Hj , see Fig. 1. In this work, we only
consider a single radius for all nanorods, see Appendix A.
In Sec. IV B and IV C, we vary the length of each nanorod

Hj

2a

FIG. 1. Geometry of a single nanorod with length Hj and radius a.

about a fixed length H0. For simplicity, the charge and current
oscillations within the cylinder are assumed to be linear along
its axis. The magnetization of such a system is negligible
Mj (r,t) � 0. The scattered EM fields are thus determined by
the polarization Pj (r,t) within each nanorod alone, resulting
in accumulation of charge on the ends of the rod.

The scattered electric field is then given by

Esc,j (r) = k3

4πε0

∫
d3r ′ G(r − r′) · Pj (r′) , (3)

where k = �/c. The radiation kernel G(r − r′) determines
the electric field at r, from the polarization source at r′ [14].
The total electric fields external to resonator j comprise the
incident fields and those scattered from all other emitters,

Eext,j (r,t) = 1

ε0
Din(r,t) +

∑
j �=j ′

Esc,j ′ (r,t). (4)

Equation (3) gives the total scattered electric field as a function
of the polarization density, and is not readily solved for P(r,t).
When the relative separation between emitters is less than, or
of the order of a wavelength, a strongly coupled system results.

We write the polarization density of the nanorod as [31]

Pj (r,t) = Qj (t)pj (r) , (5)

where we assume that the charge profile function pj (r) may
be considered to be independent of time. The driving of the
charge oscillations within the nanorod is then provided by the
external electric field Eext,j (r,t) aligned along the direction of
the source, providing a net electromagnetic force (emf) [31],
Eext,j ,

Eext,j (t) = 1√
ωjLj

∫
d3r pj (r) · Eext,j (r,t) . (6)

For a system, which comprises N resonators, the collective
interactions of the resonators with each other and the external
field is represented by the linear set of equations [31]

ḃ = Cb + Fin , (7)

where b is a vector of normal oscillator variables and Fin is
a vector describing the interaction of resonator j with the
incident EM field. The incident electric displacement field
Din(r,t) with polarization vector êin, is

Din(r,t) = Dinêine
iky . (8)

The exact form of C depends on solving the scattered electric
field, Eq. (3), for the polarization sources. The diagonal
elements are a result of the resonator interacting with its self-
generated EM fields, giving rise to the resonance frequency
and decay rate of a single rod. The off-diagonal elements are
the result of interactions between different resonators.
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III. RESONATOR INTERACTIONS

In the previous section, we briefly introduced the model for
radiative coupling between different emitters that we will apply
to the analysis of the toroidal metamolecule consisting of plas-
monic rods. In this section, we focus on two approximations: a
point emitter model and a finite-size model. The finite-size
model is an extension of the previous treatment [31] and
incorporates the corrections due to a finite-size polarization
distribution that modifies the EM interactions between closely
spaced rods. For the nanorods in Fig. 1, the electric field can
be obtained using Eq. (3) with a suitable choice of the spatial
profile of the charge excitations pj (r).

A. Point dipole approximation

In the point dipole approximation, each resonator is
modeled as a point electric dipole located at the center of
mass of the resonator. The mode function pj (r), of the electric
dipole is defined as

pj (r) = Hj d̂j δ(r − rj ) , (9)

where the proportionality constant Hj has units of length
and the unit vector d̂j indicates the dipole orientation.
The interaction of the resonator with its self-generated EM
fields causes radiative damping to occur. The rate at which
resonators radiate in the dipole approximation is �E,j [31],
where

�E,j = CjH
2
j ω4

j

6πε0c3
. (10)

We account for nonradiative losses by adding the phenomeno-
logical decay rate �O,j . The total decay rate is then the sum of
the radiative emission rate and ohmic losses

�j = �E,j + �O,j . (11)

The point dipole approximation, with the inclusion of magnetic
dipoles, has previously been successfully applied to the
studies of collective effects in planar resonator arrays, e.g.,
the transmission properties [32,33] and the development
of an electron-beam-driven light source from the collective
response [34].

B. Finite-size resonator model

Next, we consider the scattering of EM fields from a
collection of finite-size nanorods, described earlier (see Fig. 1),
by integrating over a constant density of atomic dipoles over
the nanorod’s volume.

The scattered electric field from nanorod j due to polariza-
tion sources alone is, using Eqs. (3) and (5),

Esc,j (r,t) = Qjk
3

4πε0

∫
d3r ′ G(r − r′) · pj (r′) . (12)

In the limit a,H � λ, the analytic solution for the scattered
EM fields from the nanorod in the far field zone yields the result
of an oscillating point dipole, with the corresponding radiative
linewidth of a point dipole of Eq. (10). In Appendix A, we will

d3r

d3r

FIG. 2. Schematic of the interaction between two nanorods,
which comprise a uniform distribution of electric dipoles (arrows)
aligned along the axis of the cylinder.

describe how we estimate the radiative and ohmic decay rates
for gold nanorods.

Whilst the far field radiation of a small nanorod behaves
like that of a point dipole, the near and intermediate fields are
much more complex, with the spatial dependence contributions
varying as 1/r3 and 1/r2, respectively. The full field solution
to Eq. (12) must be integrated numerically, also taking into
account the finite thickness of the rods. The driving of nanorod
j is provided by an external emf Eq. (6), which can be
broken into contributions from the incident and scattered EM
fields

Eext,j = Ein,j +
∑
j �=j ′

E sc
j,j ′ . (13)

The incident emf Ein,j follows from Eq. (6) using the incident
EM field Eq. (8). The emf driving the rod j by the scattered
fields from the rod j ′, E sc

j,j ′ , is obtained from Eqs. (6) and (12):

E sc
j,j ′ = Qj ′k3

4πε0
√

ωjLj

∫
d3rd3r ′ pj (r) · G(r − r′) · pj ′ (r′) .

(14)

Equation (14) consists of the integral over the volume of the
nanorod located at r and the volume of the nanorod located at
r′, see, e.g., Fig. 2.

IV. TOROIDAL METAMOLECULE

In this section, we will use the theoretical models introduced
in Secs. II and III to analyze the radiative interactions between
plasmonic nanorods that form the toroidal metamolecule. We
first show how a toroidal metamolecule composed of nanorods
may exhibit a toroidal dipole response and calculate the eigen-
modes of radiative excitations in the toroidal metamolecule.
We then show how the toroidal metamolecule can be excited
by incident EM fields when the symmetry of the metamolecule
is broken.

Toroidal dipoles are formed by oscillating poloidal currents.
The weakness of the toroidal dipole in comparison to its
electric and magnetic counterparts in natural materials mean
it is often neglected in classical physics [14–16].

We introduce a toroidal metamolecule that generally com-
prises N nanorods distributed over two layers. Each layer
has Nθ = N/2 emitters orientated radially outwards from the
central axis of the metamolecule and equally spaced in the
azimuthal direction. The second layer of emitters, identical
to the first, is positioned a distance 2y above the first layer.
The orientation of both layers is such that there are Nθ pairs
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of parallel emitters. The symmetry of the metamolecule is
therefore CN

2 h, a combination of N/2 rotations about the
N/2-fold symmetry axis CN

2
and the reflection in a horizontal

plane σh (a plane perpendicular to the principal axis of
rotation).

In Cartesian coordinates, the orientation vectors of the
nanorods are d̂j = x̂ cos θj + ẑ sin θj . The density of the
metamolecule is determined by �θ = θj+1 − θj . As �θ → 0,
the metamolecule approaches a torus.

In the present section, for simplicity, we analyze the
radiative properties of a toroidal metamolecule consisting
of N = 8 nanorods, where �θ = π/2. Although an eigen-
mode of such a metamolecule only approximately describes
a toroidal dipole, the characteristic properties of the res-
onator interactions and the toroidal dipole excitation by
an incident field are already evident. As the density of
the structure increases, the analysis can be easily extrap-
olated to account for the increased number of resonators
as illustrated in the toroidal mode excitation shown in
Figs. 8(a) and 8(b).

We first study a symmetric toroidal metamolecule (where all
the rods are of equal length) and then break the geometric sym-
metry of the metamolecule in order to excite the toroidal mode
using a simple light beam. In the symmetric metamolecule, we
identify the associated collective modes of current oscillation
and compare the resonance linewidths and line shifts obtained
both in the point dipole approximation and in the finite-size
resonator models. Finally, we determine how the toroidal
dipole response of a toroidal metamolecule with some inherent
asymmetry may be driven by linearly polarized light.

A. Eigenmodes of a symmetric toroidal metamolecule

A schematic illustration showing the arrangement and
labeling system for the nanorods is shown in Fig. 3. In
Cartesian coordinates, the locations of the point dipole and

2a

13

4

Hj

2

5sj

2y

7

8

6

x̂

ẑ
ŷ

FIG. 3. Toroidal dipole mode of an eight symmetric rod meta-
molecule. The shading of the rods indicates those rods in a shared
plane, the arrows indicate the phase of current oscillation. The radial
position of the center of mass for an individual rod is sj . The
separation between parallel layers is 2y.

the center of mass of the finite-size nanorods are

r1,5 =
⎡
⎣s1,5

±y

0

⎤
⎦, r2,6 =

⎡
⎣ 0

±y

s2,6

⎤
⎦,

r3,7 =
⎡
⎣−s3,7

±y

0

⎤
⎦, r4,8 =

⎡
⎣ 0

±y

−s4,8

⎤
⎦ . (15)

In a symmetric system then sj = s (for all j ). Because the
nanorods are symmetric, the radiative emission rate, ohmic
loss rate and total decay rate of each rod are identical,
i.e., �E,j = �E ,�O,j = �O, and �j = �. In Appendix A, we
calculate the resonance frequency ω0 and relative decay rate
�O/�E as a function of the rod length for a finite-size rod using
formulas for resonant light scattering from metal particles
developed in Ref. [35], where ohmic losses are incorporated
in the analysis by the Drude model. In order to simplify
the comparisons between the point dipole approximation and
the finite-size model, we use in the both models the same
values for the decay rates. We choose the parameters for the
gold nanorods of the symmetric metamolecule so that the
length H0 = 1.5λp � 209 nm, where λp denotes the plasma
wavelength for gold (see Appendix A). This yields H0 �
0.243λ0 and a � 0.0324λ0, where λ0 = 2πc/ω0 � 859 nm
denotes the resonance wavelength of the nanorod. We use
these dimensions as those of a reference nanorod throughout
the paper. The corresponding decay rates are �E � 0.83� and
�O � 0.17�, see Fig. 12 and Appendix A. The choice of
these parameters ensures that the decay rates are only weakly
sensitive to the small changes of the rod length.

The incident light, tuned to the resonance frequency of the
nanorods �0 = ω0, drives the charge oscillations within the
nanorods. Each nanorod scatters light due to its polarization
density that results from the charge oscillations. The light
can multiply scatter between different resonators. Strong
multiple scattering results in collective excitation modes in
the system of nanorods. The collective eigenmodes can then
exhibit different resonance frequencies and linewidths and line
shifts [31–33]. We calculate the collective eigenmodes of the
interacting rod configuration by analyzing the light-induced
interactions in the equations of motion for the resonator
excitations, Eq. (7). The collective modes of current oscillation
within the system are described by the eigenvectors vn of the
interaction matrix C. The corresponding eigenvalues ξn have
real and imaginary parts corresponding to the decay rate and
resonance frequency shift of the mode,

ξn = −γn

2
− i(�n − �0) . (16)

The number of individual resonators determines the number of
collective modes. The different modes may have superradiant
or subradiant characteristics. The former occurs when the
emitted radiation is enhanced by the interactions of the
resonators (γn > �), the latter occurs when the radiation is
suppressed (γn < �).

The classification of the different eigenmodes of the toroidal
metamolecule comprising of symmetric nanorods is shown in
Fig. 4. In Table I, we list the character table for the symmetry
group Cnh (for n = 4) [36,37], where the eigenmodes are

125420-4



TOROIDAL DIPOLE EXCITATIONS IN METAMOLECULES . . . PHYSICAL REVIEW B 93, 125420 (2016)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4. Representation of the eigenmodes of a symmetric eight-
rod metamolecule. The red arrows represent the electric dipole
moments and the blue arrows effective magnetic dipole moments.
The modes are classified as (a) vertical and (b) horizontal electric
dipole (E1) modes, (c) vertical and (d) horizontal magnetic dipole
(B1) modes, (e) a magnetic quadrupole (B2) mode, (f) an electric
quadrupole (E2) mode, (g) a symmetric (sy) mode, and (h) the toroidal
dipole (t) mode. For shading and axis properties, see Fig. 3.

related to the corresponding Mulliken symbols of the point
group.

The two modes depicted in Figs. 4(a) and 4(b) correspond to
vertical and horizontal electric dipole (E1) modes, respectively.
In the E1 modes, the responsive nanorods oscillate in phase
and there is an effective electric dipole. Each of the E1 modes
is a rotation of the other, consequently they experience the
same resonance frequency shift and decay rate. In a similar
manner to the E1 modes, Figs. 4(c) and 4(d) depict vertical and
horizontal magnetic dipole (B1) modes, respectively. In the B1
modes, pairs of responsive nanorods oscillate out of phase, and
the metamolecule forms an effective magnetic dipole. The B1
modes are also rotations of each other, thus experience the
same resonance frequency shift and decay rate.

The remaining modes are all independent. Figure 4(e) cor-
responds to a magnetic quadrupole (B2) mode. Each parallel
pair of emitters oscillates out-of-phase, and four independent
effective magnetic dipoles form. Figure 4(f) depicts an electric
quadrupole (E2) mode. In this mode, parallel pairs of emitters
oscillate in phase with each other, but out of phase with

TABLE I. Character table of Cnh, for n = 4. The terms in
parentheses are our physical multipole designation, see Fig. 4, for
the equivalent Mulliken symbols.

C4h Ea C4 C2 C3
4 ib S3

4
c σh S4

c

A (sy) 1 1 1 1 1 1 1 1
B (E2) 1 −1 1 −1 1 −1 1 −1
E (E1) 2 0 −2 0 2 0 −2 0
A′ (t) 1 1 1 1 −1 −1 −1 −1
B′ (B2) 1 −1 1 −1 −1 1 −1 1
E′ (B1) 2 0 −2 0 −2 0 2 0

aIdentity.
bInversion.
cImproper rotation Sn = Cnσh.

their opposite parallel pair. Four independent effective dipoles
combine to form an effective electric quadrupole. Figure 4(g)
is the symmetric mode, where all nanorods oscillate in phase.
The toroidal dipole mode is shown in Figs. 4(h) and 3. In this
mode, parallel pairs of emitters oscillate out of phase in such
a way that the effective magnetic dipoles form a circular loop.
The orientations of the nanorods lead to the orientation vectors
for their corresponding electric dipole moments: d̂1,7 = x̂,
d̂2,8 = ẑ, d̂3,5 = −x̂, and d̂4,6 = −ẑ.

We calculate the collective eigenmodes of the dynamic sys-
tem described by Eq. (7), using the point dipole approximation
and the finite-size resonator model discussed in Secs. III A
and III B. In Figs. 5–7, the line shifts and the corresponding
resonance linewidths are shown, for the collective modes, as
functions of the metamolecule varying parameters s and y (in
the former the layer spacing is fixed at y = λ0/6 and in the
latter the radial spacing is fixed at s = λ0/4). These modes are
depicted in Figs. 4(a)–4(g), respectively.

We find that the point dipole model qualitatively agrees
with the finite-size model. The agreement becomes very good
for larger rod separations. The toroidal dipole mode and the
symmetric mode are subradiant for all parameter values we
considered. This is also true for the magnetic quadrupole mode,
B2, except for some specific values of the rod positions. The
toroidal dipole mode is always the most subradiant mode, indi-
cating a very weak coupling to external light fields. Magnetic
dipole and electric quadrupole modes can generally exhibit
both superradiant or subradiant characteristics depending on
the precise details of the metamolecule’s construction, while
the electric dipole modes are almost always superradiant.

Specifically, for small radial separation s = λ0/6 (and the
layer separation is fixed at y = λ0/6), the superradiant modes,
E1 and B1 [Figs. 5(b) and 6(a)], have decay rates γE1 ≈ 1.8�

and γB1 ≈ 1.15�. The toroidal dipole mode has γt ≈ 0.3�.
When s ≈ λ0/4, the E2 mode also becomes superradiant
(γE2 ≈ 1.25�), while the decay rates of the E1 and B1 modes
reduce to γE1 ≈ 1.5� and γB1 ≈ �, respectively. Even for the
larger separation the toroidal dipole mode is still strongly
subradiant (γt ≈ 0.4� at s ≈ λ0/4 and γt ≈ 0.6� at s ≈ λ0/2).
For large radial positions, s ≈ λ0/2, only the E1 and E2 modes
are superradiant (γE1 ≈ 1.2� and γE2 ≈ 1.65�, respectively)
and the B2 mode becomes subradiant (γB1 ≈ 0.75�).

When we reduce the layer spacing to y < λ0/16, with
the radial separation fixed at s = λ0/4, several of the modes
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(a)

δωE1
Γ

(b)

π π π

(c)

ks

δωB1
Γ

π π π

(d)

ky

FIG. 5. The radiative resonance linewidths and line shifts for the
collective electric dipole (E1) and magnetic dipole (B1) excitation
eigenmodes, as a function of the metamolecule parameters s and y.
We show the line shift in the point dipole model (blue dashed line)
and finite-size model (red solid line), the linewidth in the point dipole
model (light shading about the blue dashed line), and the linewidth
in the finite-size model (dark shading about the red solid line). In (a),
the E1 mode, and in (c), the B1 mode, are shown as functions of the
radial position s, with layer position y = λ0/6. In (b), the E1 mode,
and in (d), the B1 mode, are shown as functions of the layer position
y, with radial position s = λ0/4. The finite-size rods have lengths
H0 = 0.243λ0 and radii a = 0.0324λ0. The radiative losses of each
nanorod are �E = 0.83�, the ohmic losses are �O = 0.17�.

(a)

δωB2
Γ

(b)

π π π

(c)

ks

δωE2
Γ

π π π

(d)

ky

FIG. 6. The radiative resonance linewidths and line shifts for the
collective magnetic quadrupole (B2) and electric quadrupole (E2)
excitation eigenmodes, as a function of the metamolecule parameters
s and y. In (a), the B2 mode, and in (c), the E2 mode, are shown
as functions of the radial position s. In (b), the B2, and in (d), the
E2 mode, are shown as functions of the layer position y. For the rod
parameters and plot descriptions see Fig. 5 caption.

(a)

δωsy
Γ

(b)

π π π

(c)

ks

δωt
Γ

π π π

(d)

ky

FIG. 7. The radiative resonance linewidths and line shifts for
the collective symmetric and toroidal dipole excitation eigenmodes,
as a function of the metamolecule parameters s and y. In (a), the
symmetric mode and (c) the toroidal dipole mode are shown as a
function of the radial position s. In (b), the symmetric mode and (d)
the toroidal dipole mode are shown as a function of the layer position
y. For the rod parameters and plot descriptions see Fig. 5 caption.

become subradiant, except the E1 and E2 modes (γE1 ≈ 1.6�

and γE2 ≈ 2.2� at y ≈ λ0/16). The toroidal dipole decay rate
at y ≈ λ0/16 is reduced to γt ≈ 0.25� from γt ≈ 0.45� at
y ≈ λ0/6.

Figures 5–7 also display the resonance line shifts of the
modes, δωn = −(�n − �0). As the radial separation becomes
large, these asymptotically approach a constant. This is due to
the large separations resulting in the relatively close parallel
pairs of nanorods interacting independently as dipoles. The B2
mode has the biggest shift with δωB2/� ≈ 0.3. The line shift
of the toroidal dipole and E1 modes are small δωt/� ≈ 0.1 and
δωE1/� ≈ 0.05. As the separation becomes small, s < λ0/4,
the line shifts of the finite-size model begins to deviate from
those calculated in the point dipole approximation. At this
range the total length of the metamolecule is 0.75λ0 and finite
lengths of the nanorods become increasingly important to their
interactions.

When the layer spacing parameter y is varied there is a more
pronounced deviation in line shifts for small y. The line shift
of the point dipole model begins to deviate when y ≈ 2λ0/15.
Here the total width of the metamolecule is λ0/6, and the
rods’ finite radii begin to affect their interactions. In the region
shown for y in Figs. 5–7, the line shifts of the different modes
do not approach constant values.

B. Driving the toroidal dipole response

A natural method of driving the toroidal dipole response
in a toroidal metamolecule is to use radially polarized light.
In the paraxial approximation, an incident displacement field
Din(r,t) = Din(ρ,y,t)(cos φẑ + sin φx̂), can be estimated in
terms of complex vectors ê+ and ê−, where ê± =∓(ẑ±ix̂)/

√
2,
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by

Din(r,t) = Din(ρ,y,t)√
2

[eiφ ê− − e−iφ ê+]. (17)

Equation (17) is a superposition of Laguerre-Gaussian beams
with one unit of angular momentum which can couple directly
to the toroidal dipole mode.

Employing radially polarized light, the toroidal dipole
response may be driven in a symmetric toroidal metamolecule.
When linearly polarized light is shone on the symmetric
toroidal metamolecule the toroidal dipole response is sup-
pressed; the dominant responses driven are the E1 responses.

Here, we analyze in detail how a toroidal dipole mode can
also be excited using linearly polarized light and provide a
simple protocol how to optimize the toroidal dipole excitation.
Linear polarization has an advantage that it is readily available
in an experiment and can easily be employed to drive toroidal
dipole modes in large arrays of metamolecules, independently
of the symmetry of the array or the beam.

Rather than spatially varying the light field to alter the
excitation of individual rods (as done in the case of radial
polarization) we alter the responses of individual rods to
linearly polarized light by tailoring the length of the rods.
Introducing the asymmetry in the rod lengths, according to
Fig. 12(b), shifts the resonance frequencies and introduces
a geometric asymmetry in the metamolecule. A similar
principle was phenomenologically introduced in Ref. [22]
where asymmetric pairs of nanorods were experimentally
employed to produce a toroidal dipole response.

To see how the rods should be altered, we consider an
incident linearly polarized light wave tuned to the resonance
frequency �0 = ω0 of our reference nanorod. The length
of each rod j is then changed by δHj , while the radius
is fixed. For sufficiently small δHj , the alteration shifts the
rod’s resonance frequency by δωj in proportion to δHj , as
we demonstrate using the Drude model in Appendix A, see
Fig. 12. In this section, we will derive the pattern of rod
length asymmetries required for linearly-polarized light to
excite a toroidal dipole in the limit that the incident field
is far detuned from resonance with any individual nanorod,
i.e., δωj 
 �j . In this limit, interactions between nanorods
can be neglected. We demonstrate how this scheme functions
with smaller asymmetries in the presence of interactions in
Appendix B.

We assume that the two layers are separated by a distance
much less than a wavelength, hence the phase difference of the
incident field between layers is negligible. In order to couple
the field to all nanorods, we choose the polarization of the
incident field to be such that the it bisects the angle created
by two adjacent nanorods in the same plane, as depicted in
Fig. 8. For a symmetric metamolecule, a field propagating into
the plane of the metamolecule induces an emf [described by
Eq. (6)] driving each nanorod j with an amplitude

Fsym,j = F0 cos θj e
ikyj , (18)

where F0 is the driving amplitude of a rod oriented parallel to
the incident field polarization, and yj is the position coordinate
of rod j along the incident field’s propagation direction. The
strength of interaction between the driving field and a nanorod
varies with the angle θj between the nanorod and polarization

E

B

θ

(a) E

B

θ

(b)

E

B

θ

(c) E

B

θ

(d)

FIG. 8. The excitation of the toroidal dipole mode by linearly
polarized light. The length of the arrows indicate the rod lengths
which, together with the angle θ each rod makes with the polarization
of the incident light, ensures each rod is equally excited. The arrow
direction indicates the state of the current oscillation within each
nanorod. In (a), the top layer and (b) the bottom layer of the more
general N = 16 case is shown. In (c), the top layer and (d) the bottom
layer of the N = 8 case is shown. The N = 8 case is considered in
the numerical simulation.

of the incident light. Because the emf induced by the incident
field along a rod is proportional to its length, the asymmetry
in rod lengths perturbs the driving strength of each rod j in
proportion to δHj , so that the rod driving is

Fj = (F0 + δFj ) cos θj , (19)

where δFj ∝ δHj is the change in driving amplitude rod j

would experience if it were parallel to the incident field.
Under these circumstances, when δωj 
 �j , interactions

between resonators can also be ignored (i.e., δωj 
 Cjj ′ for
j �= j ′) in the dynamics of nanorod j , and

ḃj ≈ iδωjbj + (F0 + δFj ) cos θj . (20)

Thus, to lowest order in δHj , nanorod j has the steady-state
response to the incident field

bj � i
cos θj

δωj

F0 . (21)

Therefore, in the noninteracting limit, one could engineer the
response of a metamolecule simply by adjusting the resonance
frequencies of its individual rods.

In a toroidal dipole excitation, all resonators in the layer
+y oscillate radially outward (inward) in phase with each
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other, while those resonators in the layer −y oscillate radially
inward (outward) in phase. Such an excitation corresponds to
the toroidal dipole eigenmode of the completely symmetric
metamolecule. This is indicated by the arrows in Fig. 3. To
obtain this excitation profile, Eq. (21) suggests that the rod
lengths should be modified such that

δHj =
{

δH0 cos θj for j = 1, . . . ,N
2−δH0 cos θj for j = N

2 + 1, . . . ,N
, (22)

where δH0 is a reference change in rod length, and we
have assumed that δH0 is sufficiently small that δωj ∝ δHj .
Although this profile of rod lengths was arrived at in a regime
where interactions are neglected, we show that a similar
distribution of lengths can also be effective in producing a
toroidal dipole from a linearly-polarized light wave driving
in Appendix B. We illustrate the dependence of a nanorod’s
length, and hence resonance frequency, on its position within
the metamolecule for the cases of N = 16 and N = 8 nanorods
in Fig. 8.

For a toroidal metamolecule, which comprises eight
nanorods, only two distinct lengths (resonance frequencies)
are required in order to produce a toroidal dipole excitation
from linearly polarized light. This equates to a difference
in rod length ∓δH about a mean rod length H0. We define
Hl,s = H0 ± δH with H1,2,7,8 = Hl and H3,4,5,6 = Hs , such
that each parallel pair of rods is composed of a long and short
rod, see Figs. 8(c) and 8(d), whose center’s of mass are located
at sj = s. The polarization vector of the incident field, Eq. (8),
that will excite the toroidal dipole mode is êin = (x̂ + ẑ)/

√
2.

The eigenmodes and line shifts and widths for a symmetric
toroidal metamolecule comprising rods with length H0 were
discussed in Sec. IV A. When the radial position of the
reference rod is fixed, i.e., sl = λ0/3, and some asymmetry
in rod length is introduced, the response of the metamolecule
becomes a function of the relative rod lengths Hs/Hl .

C. Excitations of the toroidal dipole mode

The eigenmodes in Fig. 4 are those of a symmetric
toroidal metamolecule. When analyzing the amplitudes of the
eigenmodes, of an asymmetric metamolecule, we do so using
the symmetric metamolecule basis. The coupling matrix C is
decomposed as

C = Csym + A , (23)

where Csym is the coupling between rods whose lengths are the
mean rod length H0. The matrixA contains the detail on asym-
metry. The variation of the resonance frequencies between the
rods generally suppresses the light-mediated interactions in
the metamolecule [38]. For the point dipole model, we define
this as a diagonal matrix whose elements are the resonance
frequency shifts of the different nanorods, see Appendix B. In
the finite-size resonator model, in addition to the resonance
frequency shifts in the diagonals, the off-diagonal elements
give the difference in the finite-size resonator interactions of a
symmetric system and an asymmetric system, see Appendix B.

0.6 0.8 1
0

1
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3

4

5

Hs/Hl

|ct|2

0.6 0.8 1
0

1
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4

5
(a) (b)

Hs/Hl

|ct|2

FIG. 9. The intensity of the collective toroidal dipole excitation
as a function of the ratio of rod lengths Hs/Hl . The center of mass of
the longer rods is at sl = λ0/3 and the layer position is y = λ0/10. We
show the point dipole model (blue dashed lines) and finite-size model
(red solid lines). The nanorod mean length and radius are those of the
reference nanorod. The radiative emission rate in (a) is �E = 0.83�.
In (b), there are no ohmic losses.

The amplitude of the different modes may be analyzed by
expanding the vector of dynamic variables b(t) as

b(t) =
∑

n

cn(t)vn , (24)

where cn(t) is the amplitude of the eigenmode vn of Csym. We
denote the toroidal dipole amplitude as ct. In the absence of
any asymmetry, the only modes driven by linearly polarized
light are the E1 modes. When the asymmetry depicted in Fig. 8
is introduced to the metamolecule, the toroidal dipole mode
(in addition to the E1 modes) is also driven.

In Fig. 9, we show the maximum intensity of the toroidal
dipole mode as a function of the asymmetry between the
cylindrical rods, for the point dipole approximation and
for the finite-size model, when the metamolecule is driven
at the resonance of the toroidal mode of the symmetric
metamolecule. If there are no ohmic losses, the finite-size
model shows a maximum intensity when Hs/Hl ≈ 0.8, and
the intensity here of the point dipole model is approximately
four times that of the finite-size model. As the asymmetry
between the rods increases, the intensity of both the finite-size
model and the point dipole approximation decreases.

When ohmic losses are accounted for, the maximum
intensity is when Hs/Hl ≈ 0.75 before decreasing. The
incorporation of losses significantly affects the point dipole
approximation, the maximum intensity is approximately 50%
less than when no losses were present. Conversely, the effect
on the finite-size model is negligible.

In Fig. 10, the relative occupation of the toroidal dipole
mode is shown as a function of the ratio of rod lengths. Al-
though we consider a nonunitary, open system, the eigenmodes
have periodic boundary conditions and in the studied cases
form a well-behaving orthonormal pseudo-basis. We define
the overlap between an eigenmode vj with an excitation b by

Oj (b) ≡
∣∣vT

j b
∣∣2

∑
i

∣∣vT
i b

∣∣2 , (25)
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FIG. 10. The relative amplitude of the collective toroidal dipole
excitation as a function of the ratio of rod lengths when driven on the
toroidal dipole resonance. The parameters as in Fig. 9.

where the summation runs over all the eigenmodes. In both
cases, when losses are present and when they are neglected,
the relative occupation of the point dipole approximation over-
estimates the finite-size model. In the absence of ohmic losses,
the relative occupation of the point dipole model saturates at
Hs/Hl ≈ 0.8, where the total excitation of the metamolecule
is in the toroidal dipole mode. In the finite-size model when
�O = 0, saturation occurs when Hs/Hl ≈ 0.7 and the relative
occupation is approximately 0.8. When losses are present, the
relative occupation at the maximum intensity of the toroidal
dipole excitation (Hs/Hl ≈ 0.75) is 0.95 for the point dipole
approximation. The finite-size model here shows a relative
occupation of 0.75.

In the absence of asymmetry between the rods Hs/Hl = 1,
both the intensity plots in Fig. 9, and the relative occupation
plots Fig. 10, show that there is no toroidal dipole excitation.
However, even a small asymmetry in rod lengths produces
a toroidal dipole excitation. Although the intensity of the
toroidal mode excitation can be maximized at a relatively small
value of the rod asymmetry, the fidelity of the toroidal dipole
mode keeps increasing when the asymmetry is increased.

D. Scattered light intensity in the far field

It is also interesting to study the scattered light from a
toroidal metamolecule in the far-field response. We again
assume that the incident field propagating normal to the
plane of the metamolecule excites the current oscillations
in the nanorods. We calculate the collective excitations of
the metamolecule by including all the radiative interactions
between the nanorods. In Fig. 11, we show the intensity
of the scattered light in the forward direction (without
the incident field contribution) from a symmetric toroidal
metamolecule and from a toroidal metamolecule with the
asymmetry designed to promote the toroidal dipole response.
Two cases are displayed corresponding to two layer separations
y. In the symmetric case, only the E1 collective modes are
excited, displaying broad resonances.

For large y, the E1 resonance is close to the resonance fre-
quency, ω0 of our reference nanorod, for small y the resonance
is blue-shifted. In the asymmetric case, the light excites the E1
modes and the toroidal dipole mode. A destructive interference

-4 -2 0 2 4
(Ω− ω0)/Γ

I
(a.u)

-4 -2 0 2 4

(a) (b)

(Ω− ω0)/Γ

I
(a.u)

FIG. 11. The scattered light intensity in the forward direction
I , as a function of the detuning of the incident light from the
resonance frequency ω0 of our reference nanorod. We show the
responses of a symmetric toroidal metamolecule (a) and a toroidal
metamolecule with asymmetry promoting a toroidal response (b).
The radial position of the nanorods s = λ0/3, the layer position
y = λ0/20 (black dashed lines) and y = λ0/10 (magenta solid line),
Hs/Hl = 0.75, and �E = 0.83�. The intensity dip in (b) indicates a
Fano resonance due to the interference between the E1 and toroidal
dipole modes. The calculations are performed in the point dipole
approximation.

between the broad-resonance E1 and the narrow-resonance
toroidal modes produces a Fano resonance [39]. For the case
of a large layer separation y, the Fano resonance clearly shows
up as a dip in the spectrum of the scattered light intensity at the
resonance of the toroidal dipole mode, indicating suppressed
forward scattering. This is because a toroidal dipole excitation
on a plane normal to the propagation direction does not
contribute to the far-field radiation.

The interference of the Fano resonance has an analogy in
atomic physics in the interference of bright and dark modes in
the electromagnetically-induced transparency [40]. Here the
subradiant toroidal mode (t) acts as a dark radiative mode
and the superradiant electric dipole mode (E1) as a bright
mode; in the excitation of the E1 mode, the different scattering
paths, →E1, →E1→ t →E1, etc., destructively interfere at the
Fano resonance peak. The Fano resonances may also appear
in other complex metamolecules, such as in oligomers [41],
or as a result of a collective behavior of the metamaterial
array [33]. The existence of more than one subradiant mode in a
toroidal metamolecule and the possibility to employ collective
effects in ensembles of toroidal metamolecules is particularly
promising for tunable control of the resonances [33] and for
sensing applications.

Our simple model of the radiative intensity provides a
qualitative description of the Fano resonance of the toroidal
dipole mode in the forward-scattered far-field spectrum.
For 2D metamaterial arrays of asymmetric split-ring meta-
molecules, the point dipole radiation model provides a good
qualitative agreement with the experimental findings due to
weak higher-order multipole radiation of individual split-ring
arcs [32]. In the studied cases of the resonances of individual
nanorods, higher-order multipole radiation is similarly weak.
Comparisons between multipole expansions and complete
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field calculations were performed in Ref. [25] between the
far-field radiation patterns of toroidal dipole resonances in a
noninteracting resonator system.

V. CONCLUSIONS

We theoretically studied light-induced interactions in
a toroidal metamolecule that consists of closely-spaced,
strongly-coupled plasmonic nanorods. The interactions lead
to collective excitation eigenmodes that exhibit collective
resonance frequencies, linewidths, and line shifts. When the
nanorod pairs are pointing radially outwards, one of the
collective eigenmodes is identified as a toroidal dipole mode.
We provided simple criteria to optimize a structural asymmetry
of the metamolecule that allows a strong excitation of the
toroidal dipole mode by a simple linearly-polarized light beam.
By analyzing a specific eight-rod case, we have shown how
even small asymmetries lead to a large proportion of the total
excitation to be found in the toroidal dipole mode.

By comparing the point dipole approximation to a finite-
size resonator model, we have shown that the point dipole
approximation is sufficient to model interacting rods for large
interrod separations, providing accurate descriptions when the
layer and radial separations satisfy y � λ0/6 and s � λ0/4.
For more closely-spaced rods, the nanorods’ finite length and
thickness become increasingly important.
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APPENDIX A: DRUDE MODEL

In this Appendix, we consider the scattering and polar-
izability of small metallic nanorods in order to estimate the
resonance frequency, as well as the radiative and ohmic decay
rates of a single nanorod. We begin by considering the Drude
model for the permittivity ε of a metallic rod [42],

ε(ω) = ε∞ − ω2
p

ω(ω + i�D)
, (A1)

where ε∞ is the permittivity at infinite frequencies, ωp is
the plasma frequency and �D is the decay rate of current
oscillations within the material. The scattering cross section
of a small particle is dependent upon its polarizability α [42]
and the wavelength λ of the incident field

σsc = 8π3

3λ4
|α|2 . (A2)

The polarizability depends on the physical characteristics of
the particle including its volume V0 and geometry, which is
introduced through the depolarization factor L [42]. In the
Rayleigh approximation, the polarizability is

αi = V0
ε − 1

1 + Li(ε − 1)
, i = x,y,z . (A3)
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FIG. 12. The ohmic losses, resonance frequency, and relative
radiative decay rate as a function of the rod length for a gold nanorod
with radius a = λp/5. We show the ohmic losses �O in (a), the
resonance frequency ω0 in (b) and the relative radiative decay rate
�O/�E in (c).

The depolarization factor for a cylinder aligned along the z

axis is [43,44]

Lx = Ly = 1

2
√

1 + κ2
and Lz = 1 − 1√

1 + κ2
, (A4)

where κ = 2a/H is the aspect ratio of the cylinder. The
curve produced by the scattering cross section Eq. (A2)
has two Lorentzian profiles with two independent resonance
frequencies. There is a resonance representing the longitudinal
polarizability αz with depolarization factor Lz, and a separate
resonance for the radial polarizability αx = αy with depolar-
ization factors Lx = Ly .

For gold, the Drude parameters are [45–47] ε∞ = 9.5,
ωp = (2π )2200 THz, and �D = (2π )17 THz. In the Rayleigh
approximation, the full width at half maximum (FWHM) of the
scattering cross section Eq. (A2) is approximately independent
of the length of the rod and gives the value of the ohmic loss
rate �O. In Figs. 12(a) and 12(b), we show �O and resonance
frequency ω0 for a gold nanorod with radius a = λp/5, where
λp = 2πc/ωp � 139 nm. We find �O � �D � (2π )17 THz.

For larger particles, the Rayleigh approximation is in-
sufficient and retardation effects must be considered. Mie’s
formulation accounts for this retardation for spherical par-
ticles. In Ref. [35], a generalization of Mie’s polarizability
is obtained for nonspheroidal particles that has been used
successfully to model the scattering of metallic nanoparticles.
The approximate ratio of ohmic losses to the radiative decay
rate is

�O

�E
= −Im

(
3λ3

0

4π3a2H (ε − 1)

)

= 6�Dω2
pc3

a2Hω2
0

[
ω2

0�
2
D(ε∞ − 1) + (

ω2
0(ε∞ − 1) − ω2

p

)2] .

(A5)

In Fig. 12(c), we show the relative decay rates as a function of
the rod length. For shorter rods H < λp, the ohmic losses
are dominant. For longer rods, the radiative emission rate
is dominant. For λp < H < 3λp, the radiative decay rate is
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approximately constant, �E ≈ 5�O. In Sec. IV, we model
the interactions between nanorods as point dipoles and as
finite-size cylinders using this value. In Secs. IV B and IV C,
where the length of the nanorod is important, the resonance
frequency of each nanorod is assumed to depend on the length
of the rod as shown in Fig. 12.

APPENDIX B: ASYMMETRIC COUPLING
OF COLLECTIVE MODES

In Sec. IV C, we showed how linearly-polarized light
could drive a toroidal dipole response in a metamolecule
whose constituent rods vary in resonance frequency. We
found an optimal variation in the limit that the resonance
frequency shifts were much larger than the rod linewidths,
and interactions between individual rods can be neglected.
In this Appendix, we show how this scheme also works in
the presence of interactions. Describing the evolution of the
system in terms of collective eigenmodes of a symmetric
metamolecule, we see how the introduced asymmetry couples
collective metamolecule modes. We will see that a judicious
combination of rod lengths can strongly couple an electric
dipole mode (driven by the incident linearly-polarized light)
to the toroidal dipole mode (which is invisible to the incident
field without rod asymmetries).

Formally, the evolution of the resonator excitations can be
expressed in terms of the driven, system of equations Eq. (7).
When all rods are of equal length Hj = H0, the coupling
matrix C = Csym, and we denote the driving of the resonators
as Fsym, with elements Fsym,j given in Eq. (18). As discussed
in Sec. IV A, this symmetric metamolecule has eigenmodes of
oscillation (labelled by index n) corresponding to eigenvectors
vn of Csym and eigenvalues ξn = −iδn − γn/2, where δn is the
shift of the collective mode resonance frequency from the
reference �0, and γn is the collective decay rate, Eq. (16).
Generally, any metamolecule excitation b can be expressed as

b =
∑

n

cn(t)vn = Sc , (B1)

where S is a matrix whose nth column is the eigenvector vn

of Csym, and c ≡ (c1, . . . ,cn)T . The electric dipole vE1 and
toroidal dipole vt excitations are eigenmodes of the symmetric
metamolecule, where vE1 is directly driven by the incident
field. When the two layers of rods are separated by much
less than a wavelength, the incident field drives only one of the
two modes where the adjacent dipoles oscillate symmetrically,
leaving all of the other modes, including the toroidal dipole
unexcited.

Here we generalize the treatment of Sec. IV B, which dealt
with the limit of noninteracting rods, to show how introducing
an asymmetry into the rod lengths can lead to the excitation
of a toroidal dipole. Perturbing the lengths of each rod j

by δHj during the fabrication, alters the coupling matrix
C. As discussed in Sec. IV B, the primary consequence of
altering the rod lengths is that each rod has its resonance
frequency shifted by δωj proportional to δHj , as indicated
in Fig. 12. Additionally, changing rod lengths impacts the
interactions between metamolecules. We denote the deviation

of the coupling matrix from that for the symmetric system as

A ≡ C − Csym . (B2)

From Eq. (7), the amplitude of each amplitude cn in the
expansion of Eq. (B1) obeys

ċ = [� + S−1AS]c + f + δf , (B3)

where f ≡ S−1Fsym is the vector of driving amplitudes for each
individual mode, and � is the diagonal matrix of eigenvectors
of Csym. Changing the rod lengths also alters the driving by
δf ≡ S−1δF, where δFj = δFj cos θj is the change in driving
amplitude experienced by rod j , and δFj is the change in
driving amplitude a rod would experience if it were oriented
along the incident field polarization, as discussed in Sec. IV B.
Essentially, altering the lengths of the rods induces coupling
between the eigenmodes via the asymmetry matrix S−1AS.
At the same time, while a linearly-polarized incident field only
drives electric dipole modes in the symmetric metamolecule, a
nonzero δf introduced by the asymmetry permits other modes
to be driven directly by the incident field.

As in Sec. IV B, our goal in altering the lengths is to find a
perturbation that permits the excitation of the toroidal dipole
mode, while reducing the contribution of other collective
modes. In particular, consider the steady-state excitation
induced by a field resonant on the toroidal dipole of the
symmetric system

c = −[� + iδt + S−1AS]−1(f + δf),

where the subscript “t” refers to the toroidal dipole mode. Since
altering the lengths of the rods induces coupling between the
modes, one can produce a toroidal dipole excitation by intro-
ducing a coupling between the toroidal dipole mode and other
modes in the metamolecule, in particular the electric dipole
mode. In general, one would obtain the optimal excitation of
the toroidal dipole by optimizing the rod length perturbations
δHj . The general optimization procedure would account for
changes in interactions between resonators produced by the
asymmetry as well as the interactions that are present in the
symmetric metamolecule.

Here, we illustrate how rod lengths would be chosen
when the only effect of δHj is to produce changes
in resonance frequencies δωj = χδHj and individual
rod decay rates δ�j = νδHj in proportion to δHj

for some constants χ and ν. In this case, the matrix
A = diag (−δω1 − δ�1/2, . . . , − iδωN − δ�N/2). We will
also assume the separation between rod layers is much less
than a wavelength so that each layer experiences an identical
driving. In these limits, we ask the question: what conditions
would have to be satisfied to have the steady-state response
of the metamolecule to be purely in the toroidal dipole mode?
From there, we deduce a combination of δHj , that could
yield a toroidal dipole response. Consider an excitation of the
form b = c0vt at time t = t0, entirely in the toroidal dipole
mode. Then, from Eqs. (7), (18), and (19), we have, for each
resonator j ,

d

dt
bj

∣∣∣∣
t=t0

= −c0
γt

2
vt(j ) − ic0(χ − iν)δHj vt(j )

+ (F0 + δFj ) cos θj . (B4)
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From Eq. (B4), we see that if γt is negligible, i.e., γt � δωj ,
�, the toroidal excitation is in the steady state when for each
nanorod j , δHj solves

ic0(χ − iν)δHj vt(j ) = (F0 + δFj ) cos θj . (B5)

As in Sec. IV B, where we considered noninteracting
metamolecules, to lowest order in δHj , the asymmetry in
rod lengths needed to generate a toroidal dipole is given by
Eq. (22).

Thus, when the collective decay rate γt � δωj , and we have
neglected how the asymmetry of rod lengths alters interactions

between the rods, the asymmetry of Eq. (22) would yield a
toroidal dipole amplitude

c0 = −i
√

N
F0

(χ − iν)δH0
.

This is remarkably similar in form to the toroidal dipole
amplitude one would obtain if one neglected all interactions
between nanorods as done in Sec. IV B. In accounting for
interactions, we no longer need to assume that δωj 
 �.
One does, however, need to drive the metamolecule with a
field resonant on the toroidal dipole mode of the symmetric
metamolecule, rather than resonant with a single nanorod.
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