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Disentangling hole subbands dispersion in Si(111): In- and out-of-plane
effective masses and anisotropy
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We disentangle complex Si(111) hole subbands dispersion obtained by angle-resolved photoelectron
spectroscopy and classify the subbands into three valence components. Through this procedure, quantum numbers
and in-plane effective masses of the subbands are determined. The in-plane effective masses are close to the
effective masses of a Si bulk valence band obtained by the first-principles calculations. Out-of-plane effective
masses are obtained within the framework of triangular potential approximation. The results are compared to the
reported theoretical results examining the validity of the theory. Energy separations of the subbands, order of
the subbands, and out-of-plane effective masses are found to be basically in good agreement with the theoretical
results.
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I. INTRODUCTION

One strategy to enhance the performance speed of the
metal-oxide-semiconductor field effect transistor (MOSFET)
is to enhance carrier mobility in the channel region [1,2].
Among the various parameters affecting the carrier mobility,
the effective mass of carrier is the most fundamental factor
which determines the ultimate carrier velocity in an ideal
condition. Importance of the effective mass further increases
in advanced MOSFET with the channel length shorter than the
carrier mean free path, which is in an order of 10 nm in silicon,
because ballistic carrier transport is expected. Band effective
mass directly relates to the second derivative of the electron
band dispersion curve which is basically specific to both
semiconductor material and its crystallographic orientation.
In the channels in MOSFETs, carriers are confined in an
inversion layer (IL) and quantized in perpendicular to the
interface. The band structure is transformed into multiplet
“subbands” by the confinement. The determination of the
subband dispersion curve leads to the determination of the
crystallographic-orientation-specific carrier effective mass in
IL. From this point of view, the subband dispersions of both
electrons and holes have been theoretically studied extensively
[3–6]. However, compared to the electron subbands, theo-
retical determination of the hole subband (HSB) dispersion
is still a challenging problem due to the complicated nature
of the valence bands. Thus, experimental determination of
HSB dispersion will provide a better perspective on mobility
enhancement technology.

We have recently developed a method to observe the
HSBs dispersion in p-type ILs directly using angle-resolved
photoelectron spectroscopy (ARPES) [7]. In this method,
p-type ILs are made by surface structures which store
sufficient electrons necessary to induce strong band bending.
Using this method, HSB dispersions in Si(111) and Si(001)
p-type ILs have been reported so far [7–10]. Through these
studies we showed complicated HSB dispersion due to both
the interaction between adjacent HSBs and discontinuity of
dispersion lines arising from the variation of the photoelectron
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intensity [10]. The top of the valence band of bulk silicon
is composed of three 3p electrons. At the � point they are
orthogonalized into heavy hole (HH), light hole (LH), and
split-off (SO) bands. Within the framework of the standard
Hamiltonian which describes valence electrons in ILs [11],
HH, LH, and SO are still an orthogonalized basis set at the
� point. Then the observed HSBs should be classified into
these three components. This classification is very important
to interpret the observed HSBs further. It is because a series of
quantum numbers have to be assigned to the HSBs classified
into the same component. Without appropriate classification,
we cannot assign quantum numbers to the observed HSBs.
However, it has been difficult to classify the observed HSBs
into each component due to the complexity of the dispersion
structure.

Our aim in this paper is to give quantum numbers to the ob-
served HSBs in Si(111) IL and draw HSBs dispersion structure
which is capable of being compared with theoretical results. To
achieve this, we first discuss the validity of the parabolic fitting
to the HSBs dispersion structure. Then we disentangle the
HSBs dispersion curves into different groups using parabolic
fitting. In-plane effective masses for each HSB are obtained
through the fitting. Based on their in-plane effective mass, we
classify HSBs into three groups and give them the quantum
numbers. The classified groups are examined whether they are
compatible with the triangular potential-well approximation
(TPA) [15]. Within the framework of TPA, effective masses
of HSB along perpendicular to the interface are obtained, too.
Finally, the obtained results are compared with the available
theoretical results [5,6].

II. EXPERIMENT

The sample preparation and the ARPES measurement were
done in a UHV chamber [16]. For photoelectron excitation,
monochromatized VUV light (hν = 21.2 eV) from a He
discharge lamp (VG Scienta AB, VUV5000) was used.
Photoelectron energy spectra were measured by a concentric
hemispherical electron energy analyzer (VG Scienta AB,
SES2002). Momentum (or wave number k) scan was achieved
through scanning the photoelectron emission angle θ from
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FIG. 1. (a) Structure model of Si(111)
√

3 × √
3-Pb (SIC)

[12–14]. (b) Band bending curve of the sample in this study [10].

the sample normal both by using the finite acceptance angle
(±6◦) of the analyzer and by rotating the sample. θ is
converted to k using the relation k = (

√
2m0/�)

√
Ek sin θ .

m0 is the free electron mass and Ek is the kinetic energy
of the photoelectrons. The in-plane orientation of the wave
vector k was changed by sample rotation around the sample
normal. The sample was at room temperature during ARPES
measurements.

We employed Si(111)
√

3 × √
3-Pb (striped incommensu-

rate: SIC) [12–14,17] as the surface structure to induce strong
band bending. Si(111)

√
3 × √

3-Pb (SIC) can accommodate
a large number of electrons as surface carrier in its electronic
states owing to its large density of surface states, enough to
induce a strong band bending. The surface structure affects
the Si subband dispersion only if it has surface states near the
subbands in the E-k space (and also in the real space). In the
case of

√
3 × √

3 surface states, there are no such states around
the region of interest in the E-k space [18]. So we can exclude
the effect of surface states on subbands in the case here. The
substrate was a piece of Si(111) wafer with a carrier concen-
tration of 5 × 1018 cm−3. The surface structure was monitored
by RHEED during the sample preparation. The sample surface
was cleaned in the UHV chamber by flash annealing with
direct current heating. Pb was deposited on the heated Si(111)
7 × 7 clean surface until the surface structure converted to

Si(111)
√

3 × √
3-Pb (SIC) [13]. A schematic model of the

atomic structure of Si(111)
√

3 × √
3-Pb (SIC) is shown in

Fig. 1(a) [12,14,17]. The Pb coverage of Si(111)
√

3 × √
3-Pb

(SIC) is reported to be 1.33 monolayer (ML). The shape
of the band bending induced by Si(111)

√
3 × √

3-Pb (SIC)
is shown in Fig. 1(b). The potential curve was obtained by
solving Poisson’s equation [19] using the surface boundary
condition given by the Si 3p peak shift [10]. There are two
high-symmetry in-plane orientations, [112̄] and [101̄], on the
Si(111) surface as shown in Fig. 1(a). In this article the
dispersion structures of HSBs along these two orientations
are investigated.

III. RESULTS AND DISCUSSION

A. Anisotropy and in-plane mass

Figure 2 shows ARPES intensity maps in energy (E)–
momentum (k) space, which corresponds to the band disper-
sion diagram, along the two symmetric in-plane orientations
of Si(111)

√
3 × √

3-Pb (SIC) surface. Multiplet dispersion
curves characteristic to HSBs confined in the IL are observed
in both directions. The fundamental HSB (n = 0) locates at
around 0.15 eV at �̄ point in both Figs. 2(a) and 2(b). In the
raw photoelectron energy distribution curves (EDC) shown in
Fig. 3(a), they appear as prominent peaks labeled a. HSBs with
higher indices appear at around 0.30, 0.50, and 0.65 eV at the
�̄ point in the dispersion map along [112̄]. They correspond to
photoelectron peaks b, e, and f in Fig. 3(a). In the map along
[101̄], besides these HSBs, additional HSBs appear at 0.35 eV
(peak c) and 0.45 eV (peak d). Because the energy levels of
HSBs at the �̄ point should be identical in the band dispersions
measured along any direction, this inconsistency should be a
consequence of a variation of photoelectron intensity probably
due to the photoelectron matrix element effect [20]. This has
a severe impact on the analysis of HSB because one needs to
know the energy levels of all the HSBs at the �̄ point to give
the collect quantum numbers for each energy level without
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FIG. 2. ARPES photoelectron intensity maps of Si(111)
√

3 × √
3-Pb (SIC) along (a) [112̄] and (b) [101̄]. The photoelectron intensities are

represented using different colors as shown by the color bar on the right side.
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FIG. 3. (a) Photoelectron spectra at the �̄ point of Si(111)
√

3 ×√
3-Pb (SIC) in the measurements along [112̄] [Fig. 2(a)] and [101̄]

[Fig. 2(b)]. (b) Dispersion curves obtained from ARPES intensity
maps (Fig. 2) are plotted against k2.

ambiguity. The next part of this paper is devoted to construct
a method for the correct indexing. The strategy is as follows.

The apparent dispersion of HSBs (Fig. 2) consists of several
segments of the subbands. Thus, the whole HSBs dispersion
can be restored by fitting an appropriate function to the visible
segments. Within the k · p approximation scheme [21], the
bulk valence bands around the �̄ point are expressed as
quadratic functions. Though interactions between adjacent
HSBs modifies the shape of the HSBs dispersion different
from the quadratic functions, such interactions work only in the
vicinity of the crossing points. Thus, except for the vicinity of
the crossing points of HSBs [22], where the strong interactions
take place, the HSBs should be in their own parabolic shapes.
In this point of view, we chose quadratic functions to restore
the subbands. Nevertheless, this idea is not always valid as
seen in Fig. 3(b) in which the heaviest HSBs in both directions
are plotted against k2. The figure shows that the dispersion
of heavy HSB is linear against k2 only in the case of [101̄].
The heavy HSB along [112̄] deviates from the linear line. The
HSBs along [112̄] direction is not in parabolic shape.

To see whether this nature originates in the bulk valence
band structure or not, we examined parabolicity of the Si bulk
valence bands obtained by the first-principles calculations [23]
as shown in Figs. 4(a) and 4(b). In the figure the calculated
band dispersion is shown together with the parabolic curves
obtained by fitting to the bands around the �̄ point. The bands
are named as HH1, HH2, and LH in order of decreasing
in-plane effective mass. As seen in the figure, the dispersion
curves are parabolic in both directions at least in the vicinity
of the �̄ point. The effective masses obtained from these
parabolic curves are indicated in the figure. The bands start
to deviate from the parabolic curves at higher wave numbers.
The deviation point and the amount of deviation depends on
each band. HH1 along [101̄] is close to parabolic curvature
up to 0.4 Å−1. HH2 and LH along [101̄] direction and LH1
along [112̄] have minor deviation from the parabolic curves
up to the binding energy of 1.0 eV from the valence band top.
Comparing to these bands, HH2 along [112̄] deviates from the
parabolic bands significantly even in the small wave number
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FIG. 4. Valence band dispersions of bulk Si (red circles) by the
first-principles calculations along (a) [112̄] and (b) [101̄] directions.
Blue lines are parabolic curves obtained by fitting the result of
the first-principles calculations. Binding energy at the valence band
maximum is set to 0 eV. Effective masses corresponding to these
parabolic curves are indicated in the figure. The same dispersion
structures are plotted against k2 in (c) and (d) to see the parabolicity.

region. All calculated bands have a tendency to have effective
mass heavier than the corresponding parabolic curves after the
deviation points. To see the parabolicity more, the bands are
plotted against k2 in Figs. 4(c) and 4(d). It is clear that HH1
and HH2 along [112̄] are not linear against k2.

This suggests that the nonparabolic character of the heavy
HSB along [112̄] observed by ARPES originates in the nature
of the Si bulk valence band. We concluded from these results
that the above strategy, restoring HSB structure using parabolic
band fitting, is only valid for the dispersion along [101̄]
direction.

It is worth noting here that the above results are inconsistent
with simple k · p approximation. In the case of the basic k · p

approximation, the dispersion relation of the bulk valence band
is expressed as

EHH
LH (k) = Ak2 ± [

B2k4 + C2
(
k2
xk

2
y + k2

yk
2
z + k2

z k
2
x

)]1/2
, (1)

ESO(k) = −�SO + Ak2. (2)

A, B, and C are the parameters determined to reproduce the
result of the cyclotron resonance on Si valence bands. −�SO

is split-off energy and 44 meV for silicon. By substituting k =
1√
6
(k,k, − 2k) for [112̄] direction and k = 1√

2
(k,0, − k) for

[101̄] direction, one gets the same expression for the dispersion
relation of HH and LH in both directions,

E(k) = [
A ± (

B2 + 1
4C2

)1/2]
k2. (3)

The effective mass m∗ is obtained by setting the coefficient
of k2 in Eq. (3) equal to �

2/2m∗. Because the E-k relations
in [112̄] and [101̄] directions are expressed by the identical
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FIG. 5. (a) ARPES second-derivative intensity map of Si(111)
√

3 × √
3-Pb (SIC) along [101̄]. Red corresponds to the peaks in the

photoelectron spectra where electronic states exist. (b) Parabolic curves obtained by fitting to the observed HSB dispersion structure along
[101̄] are overlaid on the ARPES second-derivative intensity map shown in (a). The solid lines indicate the fitted segments and the dashed lines
are the rest of the parabolic curves. Green, black, and blue lines indicate v1-n, v2-n, and v3-n, respectively.

equation, the simple k · p approximation gives an identical
effective mass for [112̄] and [101̄] directions in contrast to the
HSB dispersion experimentally obtained in this work and the
bulk dispersions obtained by the first-principles calculations
shown above. Using A = −4.29, B = 0.68, and C = 4.87 in
�

2/2m0 unit [24], the bulk effective masses in both directions
are obtained to be 0.57m0, 0.15m0, and 0.23m0 for HH, LH,
and SO. These values are similar to the effective masses from
the first-principles calculations in [112̄] direction [Fig. 4(a)].
On the other hand, in [101̄] direction, the discrepancy of heavy
hole mass obtained by the first-principles calculations (1.9m0)
and the k · p approximation reaches more than a factor of
3. k · p approximation is valid within a small energy region
less than spin-orbit splitting energy (44 meV for Si) from the
valence band top, whereas the energy region used to estimate
the effective masses from the results of the first-principles
calculations in this study is approximately 500 meV or more.
Thus the discrepancy might be partially caused by the the
difference of the targeting energy region in these calculation
methods. Nevertheless, we remind to the readers that isotropic
valence band dispersion of Si in (111) plane obtained by the
simple k · p approximation does not match the observed HSB
dispersion nor the results of the first-principles calculations.
Furthermore, effective mass along [101̄] obtained by the k · p

approximation differ significantly from those obtained by the
first-principles calculations. More accurate framework such
as use of increased number of basis set [25] would be more
appropriate to describe Si valence bands quantitatively using
k · p approximations.

Based on the above findings, fragments of HSBs along
[101̄] direction are fitted by parabolic curves expressed as

E(k) = �
2

2m∗ k2 + En. (4)

Here the fitting parameters are in-plane effective mass m∗
and binding energy at the �̄ point En. The result of the

fitting is shown in Fig. 5. The regions used to the fitting
are indicated by solid lines and the rest of the parabolic
curves are indicated by the dashed lines. The obtained fitting
parameters are summarized in Table I. The parabolic curves are
categorized into three groups in terms of the in-plane effective
mass as expressed by different colors in the figure. We named
them as v1 (green), v2 (black), and v3 (blue). HSBs within
each group are expressed as v1-n, v2-n, and v3-n using the
quantum number n starting from 0 for the HSB closest to
the EF .

B. Out-of-plane mass

Once the quantum numbers are given to each HSB, we
can compare the experimental result with TPA. In TPA the
confinement potential curve is approximated to a linear line.

TABLE I. In-plane effective mass m∗ and En obtained from
parabolic curves fitted to HSBs along [101̄] shown in Fig. 5(b).

[101̄] m∗ (m0) En (eV)

v1-0 2.4 ± 0.3 0.29 ± 0.02
v1-1 2.09 ± 0.03 0.432 ± 0.004
v1-2 2.09 ± 0.04 0.551 ± 0.005
v1-3 2.12 ± 0.05 0.659 ± 0.006

v2-0 0.78 ± 0.03 0.156 ± 0.002
v2-1 0.54 ± 0.02 0.268 ± 0.002
v2-2 0.60 ± 0.03 0.365 ± 0.005
v2-3 0.48 ± 0.02 0.450 ± 0.003

v3-0 0.08 ± 0.01 0.150 ± 0.008
v3-1 0.098 ± 0.007 0.300 ± 0.005
v3-2 0.18 ± 0.02 0.397 ± 0.003
v3-3 0.18 ± 0.00 0.538 ± 0.003
v3-4 0.17 ± 0.00 0.662 ± 0.003
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As seen in the shape of the IL shown in Fig. 1, this is reasonable
between z = 0 and approximately 10 nm in our sample. Within
the TPA, one can obtain the quantized energy levels at the �̄

point (En) analytically. The energy levels obtained by TPA are
expressed in the form

En = 1

(2m∗
z )1/3

(�eFs)
2/3γn + V0, (5)

m∗
z is the HSB effective mass along z ([111]) direction, V0 is

the confinement potential energy at z = 0, and Fs is the electric
field which makes the linear confinement potential. γn is the
value where the Airy function becomes 0, i.e., γ0 = 2.338,
γ1 = 4.088, γ2 = 5.521, and γ3 = 6.787 [26]. Because there
is an ambiguity in m∗

z , we treat the coefficient of the γn as a
fitting parameter A:

A = 1

(2m∗
z )1/3

(�eFs)
2/3. (6)

Now it is clear that En is expressed as a linear function of γn

with slope A and intercept V0,

En = Aγn + V0. (7)

Using Eq. (7) we examined whether the experimentally
obtained sets of En follow this description or not by plotting
the experimentally obtained En shown in Table I against γn for
each group. The result is shown in Fig. 6. Here we can see that
the sets of En of v1 and v2 are very well fitted by straight
lines. A rough estimate of the validity of the straight-line
approximation to the band bending curve shown in Fig. 1(b)
indicates that the TPA is valid only at low energies (up to
0.5 eV). So the excellent linear behavior of v1 up to 0.65 eV
is beyond our expectation. The obtained fitting parameters
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FIG. 6. En shown in Table I are plotted against γn. v1, v2, and
v3 groups are presented by different colors corresponding to the
parabolic curves in Fig. 5. Lines indicate the result of fittings for each
group based on the TPA approximation.

TABLE II. A and V0 in Eq. (7) obtained by fitting En and m∗
z .

The values for v3-3 and v3-4 are derived from lines connecting each
point and V0 obtained by fitting v3-0, -1, and -2.

A (eV) V0 (eV) m∗
z (m0)

v1 0.083 ± 0.0007 0.095 ± 0.003 0.33 ± 0.01
v2 0.066 ± 0.0006 0.000 ± 0.003 0.65 ± 0.02
v3 0.078 ± 0.005 −0.028 ± 0.021 0.40 ± 0.08
v3-3 0.083 – 0.34
v3-4 0.087 – 0.28 ± 0.05

A and V0 are summarized in Table II. Furthermore, using
Fs = 0.07 eV/nm obtained from Fig. 1(b) and using these
values of A, one can get m∗

z for each group from Eq. (6).
They are also summarized in Table II. The linear relationship
means that each v1-n and v2-n subbands group has a single
out-of plane effective mass irrespective of quantum number n.
The fundamental HSB, v2, has heaviest m∗

z . This is in good
agreement with one of the main characteristics of TPA derived
from Eq. (5). The k · p effective masses of bulk valence bands
along [111] direction are 0.72m0, 0.14m0, and 0.23m0 for HH,
LH, and SO, respectively. They are of the same order as the m∗

z

for v1 and v2 obtained through the above analysis. On the other
hand, bulk effective masses derived from dispersion relations
along [111] direction by the first-principles calculations are
2.5m0 and 0.37m0 for HH (doubly degenerated) and LH as
shown in Fig. 7. They are much heavier than k · p bulk masses
and m∗

z for HSBs obtained in this work. This discrepancy may
be again attributed to the difference in the targeting energy
region. V0 has been already obtained to be 0.04 eV through
the analysis of Si 3p peak shift [10] as shown in Fig. 1(b). V0

for group v2 obtained through the analysis here (0.00 eV) is in
good agreement with the value obtained by Si 3p peak shift.
The similarity of the values of V0 obtained by two independent
methods supports the validity of our arguments here. In the
case of v1, V0 is approximately 100 meV higher than the V0

of v2. Considering that the bulk SO band maximum locates at
higher binding energy by �SO (44 meV) than that of the bulk
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FIG. 7. Valence band dispersions of bulk Si along [111] direction
from the � point. Red circles are obtained by the first-principles
calculations and the blue lines are the fitting using parabolic curves.
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HH and LH, the difference of 100 meV would suggest that
HH1 has the bulk SO character around the �̄ point.

The En of v3 group, on the other hand, are not fitted by a
single straight line. In Fig. 6 only the first three energy levels,
v3-0, v3-1, and v3-2, are on the solid line. Parameters A, V0,
and m∗

z for LH listed in Table II are obtained by fitting them.
v3-3 and v3-4 are obviously away from the line.

At higher binding energies, where the IL potential curve
starts to deviate from the linear potential line of TPA, TPA
would no longer be a suitable approximation. However,
because the confinement width of the real IL potential becomes
wider than the TPA line at higher binding energy, a necessary
correction to the TPA energy levels to compensate for the error
of the TPA potential line shifts them to lower binding energy.
The measured v3-3 and v3-4, on the other hand, appear at
higher binding energies than the result of TPA shown as the
line in Fig. 6. So the deviation of the TPA straight line from the
real IL potential curve does not explain the strange behavior
of v3-3 and v3-4.

Within the framework of TPA, this situation means that
v3-n group is not described by a common m∗

z in contrast to
v1-n and v2-n groups. Namely, the v3-3 and v3-4 have their
own m∗

z . Their m∗
z are obtained through the lines connecting

V0 obtained by the fitting of v3 and v3-3 or v3-4 as shown by
dashed lines in Fig. 6. The result listed in Table II indicates m∗

z

decreases with increasing n. Why only does the v3-n group
have different m∗

z depending on n? A recent study [18] on a
Si(111)Pb-

√
7 × √

3 system proposed that the surface states
repulsively interact only with the LH band, but not with the HH
band, in Si due to the band symmetry. Si(111)Pb-

√
7 × √

3 is
a low temperature phase of Si(111)

√
3 × √

3-Pb (hexagonal
incommensurate: HIC), which is formed at slightly lower
Pb coverage than Si(111)

√
3 × √

3-Pb (SIC) [13,27]. In the
case of Si(111)

√
3 × √

3-Pb (SIC), however, the existence of
such surface states has been denied [18]. Thus an effect from
the surface states is unlikely. The reason will be clarified by
measuring the HSB under other surface structures.

C. Comparison with theoretical results

HSBs in Si(111) ILs have been calculated by Fischetti et al.
[5] and Donetti et al. [6] using a six-band k · p and TPA.
According to Fig. 3 in Ref. [5], the order of the HSB energy
levels at the surface field of Fs = 0.07 eV/nm is HH, LH,
HH, LH, and SO from the fundamental HSB. The labeling
of the subbands in their article is from the in-plane mass too.
This order is the same with our result if one assigns v1 and
v2 to be SO and HH as discussed above. Furthermore, the
energy splittings of each HSB level at the �̄ point are in
good agreement between this work and Fig. 3 in Ref. [5].
For example, energy splitting between v2-0 and v2-1 at the �̄

point is 0.11 eV in our data, and the energy splitting between
the fundamental HH and the first excited HH is 0.11 eV too
in their calculations at Fs = 0.07 eV/nm. This coincidence
ensures that the method employed in Ref. [5] to calculate HSB
dispersion well describes the real HSBs in Si IL. In the case of
Ref. [6], the order of the HSB energy levels at the surface field
of Fs = 0.07 eV/nm is HH, LH, HH, LH, and LH. Though the
first four HSB is the same with us and Ref. [5], the ground SO

subband seems to appear at much higher binding energy than
us. The energy splitting between the fundamental and the first
excited HH is 0.12 eV, which is close enough to our results. In
Ref. [6], m∗

z are calculated as well. According to Fig. 1(f) in
Ref. [6], the m∗

z of HH, LH, and SO subbands at the surface
field of Fs = 0.07 eV/nm are approximately 0.7m0, 0.4m0,
and 0.06m0, respectively. The values of m∗

z for HH and LH
are in good agreement with the experimental values here. In
the case of SO, our result (0.33m0) is five times larger than
Ref. [6]. This discrepancy probably relates to the discrepancy
in the order of the HSB energy levels mentioned above.

IV. CONCLUSIONS

As a conclusion, we disentangled HSBs dispersion in
Si(111) p-type IL observed by ARPES. Though the observed
HSBs were an assembly of the fragments of the HSBs, we
restored the complete HSBs dispersion structure along [101̄]
direction using a parabolic dispersion relation. The validity
of the use of a parabolic dispersion relation was confirmed
through the first-principles calculations. Quantum numbers
were assigned to all restored HSBs and their in-plane effective
masses were obtained. The HSBs energy levels of HH1 (SO)
and HH2 (HH) at the �̄ point were found to be well described
by TPA. On the other hand, LHs were not described by TPA.
We attributed it to the interaction of LHs with surface states.
Within the framework of TPA, out-of-plane effective masses
of HSBs were obtained. We found the energy splittings of
the HSB calculated using six-band k · p and TPA excellently
reproduce our results.

We believe that the analysis method described here is
useful to analyze experimentally obtained HSBs, which is
complicated due to the interactions of the three components in
contrast to the electron subbands, which is composed of one
component. Experimentally, the condition of the photoelectron
excitation process has to be changed to observe all the HSB
structures. ARPES using linearly polarized light as incident
light and changing the direction of the polarization vector
of the light is required to see the entire HSBs dispersion,
which will be our next task. So far experimental studies on
HSBs have been mainly through the mobility measurements.
Thus theoretical studies as a counterpart of the experiments
have focused on the mobilities derived from HSBs. Though
the direct observation on HSB dispersion have been started
recently using ARPES, the characterization of the observed
HSB dispersion, such as assignment of quantum numbers and
determination of effective mass of HSBs, had not succeeded so
far. In this paper we showed such characterization is possible
for the HSBs observed by ARPES. We hope that this study
encourages future theoretical studies on HSBs dispersion as a
counterpart of the experimental results.
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