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Bulk and shear viscosities of the two-dimensional electron liquid in a doped graphene sheet
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Hydrodynamic flow occurs in an electron liquid when the mean free path for electron-electron collisions is the
shortest length scale in the problem. In this regime, transport is described by the Navier-Stokes equation, which
contains two fundamental parameters, the bulk and shear viscosities. In this paper, we present extensive results for
these transport coefficients in the case of the two-dimensional massless Dirac fermion liquid in a doped graphene
sheet. Our approach relies on microscopic calculations of the viscosities up to second order in the strength of
electron-electron interactions and in the high-frequency limit, where perturbation theory is applicable. We then
use simple interpolation formulas that allow to reach the low-frequency hydrodynamic regime where perturbation
theory is no longer directly applicable. The key ingredient for the interpolation formulas is the “viscosity transport
time” τv, which we calculate in this paper. The transverse nature of the excitations contributing to τv leads to the
suppression of scattering events with small momentum transfer, which are inherently longitudinal. Therefore,
contrary to the quasiparticle lifetime, which goes as −1/[T 2 ln(T/TF)], in the low-temperature limit we find
τv ∼ 1/T 2.
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I. INTRODUCTION

Hydrodynamics [1–3] is a powerful nonperturbative theory
to deal with transport properties of strongly interacting many-
particle systems. In the solid state, interactions need to be
sufficiently strong to ensure that the mean free path �ee = vFτee

for electron-electron (e-e) collisions is the shortest length
scale in the problem, i.e., �ee � �p,L,vF/ω. Here, vF is
the Fermi velocity, τee is the quasiparticle lifetime due to
electron-electron collisions [4], �p is the mean free path for
momentum-nonconserving collisions, L is the sample size,
and ω is the frequency of the external perturbation. In Fig. 1,
we show the result of microscopic calculations of the e-e mean
free path for the two-dimensional (2D) massless Dirac fermion
(MDF) liquid in a doped graphene sheet [7–9] embedded
between two semi-infinite uniform and isotropic media with
dielectric constants ε1 and ε2. The two-dimensional Fourier
transform of the e-e interaction in this case is vq = 2πe2/(εq),
where ε ≡ (ε1 + ε2)/2. Technical details on these many-body
diagrammatic perturbation theory calculations can be found,
e.g., in Refs. [5,6]. We clearly see that, for sufficiently large
temperatures, there is a wide range of carrier concentrations in
which �ee becomes much shorter than the typical device size
(L ∼ 10 μm).

The regime defined by the above inequalities is named
in what follows “hydrodynamic,” “low-frequency,” or “col-
lisional.” In the range of temperatures and carrier densities in
which this regime is attained, e-e interactions drive the system
towards a local quasiequilibrium state characterized by slowly-
varying time-dependent density n(r,t) and drift velocity
v(r,t), which obey the continuity and Navier-Stokes equations.
The latter are controlled by two transport coefficients, the shear
viscosity, ηω→0, which describes the friction between adjacent
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layers of fluid moving with different velocities, and the bulk
viscosity, ζω→0, which describes the dissipation arising in
the liquid when it undergoes a homogeneous compressionlike
deformation [1].

When, on the contrary, the frequency ω of the external
perturbation is much larger than the quasiparticle collision rate
(i.e., ωτee � 1)—but still much smaller than the characteristic
free-particle frequencies epitomized by the Fermi energy—e-e
interactions fail to drive the system towards local quasiequilib-
rium [4]. Nonetheless, it is still possible to describe the system
by hydrodynamic equations of motion [10], provided that the
low-frequency bulk and shear viscosities are replaced by their
high-frequency counterparts [4] (ζ∞ and η∞, respectively) and
that a finite value of the shear modulus (S∞) is allowed.
This regime is named in what follows “high-frequency” or
“collisionless.” We emphasize that it is a “high-frequency”
regime only on the scale of e-e collisions, but not at all on the
scale of the Fermi energy.

In this paper, we calculate the frequency-dependent vis-
cosities ζω and ηω for the 2D MDF liquid in a doped graphene
sheet [8]. Doping, which creates a Fermi liquid of electrons
or holes in the upper or lower Dirac band, is of essence here:
we note that the zero-frequency shear viscosity of thermally
excited electron-hole pairs in an undoped graphene sheet
was previously calculated in Ref. [11]. The viscous flow
of MDFs was also suggested as a possible explanation for
the linear dependence of the conductivity and its residual
value at the neutrality point [12]. The low-frequency bulk
and shear viscosities of an ordinary three-dimensional (3D)
parabolic-band electron gas in the Fermi liquid regime were
calculated long ago by Abrikosov and Khalatnikov [13]. They
found that ηω→0 = S∞τv, where τv is a “viscosity transport
time” of the order of (but not identical to) τee (here all quantities
refer to a 3D system). The Abrikosov-Khalatnikov calculation
was extended to the opposite regime of high frequency in
Ref. [10]. The main difficulty in connecting these two regimes
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FIG. 1. (a) The e-e mean free path �ee (in μm) in a 2D MDF liquid
is plotted as a function of temperature T (in K). Different curves refer
to different values of the excess carrier density, n = 0.5 × 1012 cm−2,
n = 1.0 × 1012 cm−2, and n = 2.0 × 1012 cm−2. (b) The e-e mean
free path �ee (in μm) in a 2D MDF liquid is plotted as a function
of the excess carrier density n (in units of 1012 cm−2), for three
values of T , i.e., T = 100, 200, and 300 K. In both panels, the e-e
dimensionless coupling constant has been set to αee = 0.5.

lies in the fact that e-e interactions play very different roles
in the two cases. In the low-frequency regime, their main
effect is to cut off an otherwise diverging shear viscosity:
the corrected shear viscosity is proportional to τv, which is
nonperturbative in the strength of e-e interactions. Conversely,
in the high-frequency regime, e-e interactions generate a
nonzero value for the otherwise vanishing shear viscosity: this
finite value can and has been calculated perturbatively.

Our theoretical approach is based on ideas first presented in
Ref. [10]. We combine the perturbative information contained
in η∞ and ζ∞ with the calculation of τv to generate non-
perturbative interpolation formulas for ηω and ζω. The latter
are approximately valid at all frequencies and consistently
include many-body self-energy and vertex corrections. The
final formulas are [10]

ζω = ζ∞
(ωτv)2

1 + (ωτv)2

(1)

ηω = S∞τv + η∞(ωτv)2

1 + (ωτv)2
,

where, in addition to the above-mentioned quantities η∞ and
ζ∞, we also see the high-frequency shear modulus S∞, which
is to the shear viscosity what the “Drude weight” is to the
conductivity. We note that the shear modulus is renormalized
by e-e interactions: however, this effect is relatively small,
and it is thus qualitatively correct to approximate S∞ by its
noninteracting value, which in the case of graphene is S (0)

∞ =
nεF/4, where εF is the Fermi energy.

From a mathematical point of view, the viscosities appear
as coefficients in the expansion of the stress tensor τμν to first

order in the spatial derivatives of oscillating velocity fields,
vμν ≡ 1

2 (∂μvν + ∂νvμ). This can also be viewed [14] as the
out-of-phase component of the response of τμν to an oscillating
metric field gμν . For a 2D isotropic fluid, the expansion has
the form

τμν(ω) = (ζω − ηω)[∇ · v(ω)]δμν + 2ηωvμν(ω). (2)

In a parabolic-band electron gas [4], and also in graphene in
the Fermi liquid regime [8], the response of the stress tensor
to the metric field is connected by equations of motion to the
nonlocal response of the current to a vector potential, i.e., the
coefficient of q2 in the expansion of the nonlocal conductivity
for small wave vectors q. This implies that the high-frequency
viscosities can be extracted from the damping rate of plasmons,
the high-frequency collective excitations of an electron liquid
[4,15]. On the other hand, no standard protocol exists at present
to measure the low-frequency viscosities of electrons in a
solid-state host. Tomadin et al. [16] proposed a Corbino disk
viscometer, which allows a determination of the hydrodynamic
shear viscosity ηω→0 from the dc potential difference that arises
between the inner and the outer edge of the disk in response
to an oscillating magnetic flux. More recently, it has been
shown [17,18] that ηω→0 can also be extracted from purely-dc
nonlocal transport measurements in ultra-clean multi-terminal
Hall bar devices.

Our paper is organized as follows. In Sec. II, we introduce
the tight-binding model of graphene, which we use [19–21]
to avoid broken gauge invariance due to the presence of
a rigid ultraviolet cut-off in the MDF low-energy theory.
The MDF limit is indeed taken only at the very end of the
calculation. In Sec. III, we derive the relativistic counterpart
of the Navier-Stokes equation [1], which describes the long-
wavelength dynamics of quasiparticles in graphene in both
the low- and high-frequency regimes. In this section, we also
show the connection between the macroscopic bulk and shear
viscosities and the longitudinal and transverse current-current
response functions, which can be microscopically calculated
from the usual Kubo formula [4]. In Sec. IV, we use a kinetic
equation approach and the relaxation-time approximation to
determine the interpolation formulas for the viscosities and
the elastic moduli of graphene in terms of the high-frequency
viscosity η∞ and a yet undetermined transport time τ . These
quantities are calculated in the remainder of the paper. Since
the longitudinal current-current response function of the 2D
MDF liquid in a doped graphene sheet was calculated in
Ref. [19], in Sec. IV A we focus on its transverse counterpart.
We calculate it at the lowest nonvanishing order in the strength
of e-e interactions, which is quantified by the graphene’s fine
structure constant [8]

αee ≡ e2

ε�vF
. (3)

Our results for the high-frequencies bulk and shear viscosities
are reported in Sec. IV A. We prove that the high-frequency
bulk viscosity vanishes, while η∞ is finite. Sec. IV B is devoted
to the calculation of the viscosity transport time τv. The
approach we adopt is very similar to that used in Refs. [22,23],
where the e-e contributions to the charge, spin, and thermal
conductivities of the 2D MDF liquid in a doped graphene
sheet were calculated. Therefore, only the main steps of the
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calculation are surveyed. We refer the reader interested in
more details to Ref. [23]. Finally, In Sec. V, we show our
result for the shear viscosity at finite frequency ηω. Making
use of Eq. (1), we provide numerical results for the shear
viscosity of the 2D MDF liquid in a doped graphene at all
frequencies. Appendix B presents a self-contained description
of the generalized relaxation time approximation, leading to
the formulas of Eq. (1). Appendix D contains several technical
details of the calculation. In this paper, we set, except when
explicitly stated otherwise, � = 1.

II. MODEL AND BASIC DEFINITIONS

Following Refs. [19–21], we describe π electrons in
graphene by a one-orbital tight-binding (TB) model [7].
To keep the model as simple as possible, we set to zero
all the hopping parameters but the nearest-neighbor one.
The low-energy MDF limit will be taken only at the very
end of the calculation, after carrying out all the necessary
algebraic manipulations. By following this procedure, we
avoid problems associated with the introduction of a rigid
ultraviolet cutoff, which breaks the gauge invariance [24] and
is responsible for the appearance of anomalous commutators
[24,25].

The noninteracting Hamiltonian is

Ĥ0 =
∑

k∈BZ,α,β

ψ̂
†
k,α( f k · σ αβ)ψ̂k,β , (4)

where the operator ψ̂
†
k,α (ψ̂k,α) creates (annihilates) an electron

with Bloch momentum k, which belongs to the sublattice [7]
α = A,B. The vector f k is defined as [7]

f k = −t

3∑
i=1

(
e[e−ik·δi ], − �m[e−ik·δi ]). (5)

Here, t ∼ 2.8 eV is the nearest-neighbor tunneling amplitude,
while δi (i = 1, . . . ,3) are the vectors which connect an atom
to its three nearest neighbors, i.e., δ1 = a

√
3x̂/2 + a ŷ/2, δ2 =

−a
√

3x̂/2 + a ŷ/2, and δ3 = −a ŷ. Here, a ∼ 1.42 Å is the
carbon-carbon distance in graphene. The sum over k in Eq. (4)
is restricted to the first Brillouin zone (BZ) and the Pauli
matrices σ i

αβ (i = x,y,z) operate on the sublattice degree of
freedom.

The TB problem posed by the Hamiltonian (4) can be easily
solved analytically [7]. One finds the following eigenvalues
εk,λ = λ| f k|, with λ = ±. These two bands touch at two
inequivalent points (K and K ′) in the hexagonal BZ. The
low-energy MDF model is obtained from Eq. (4) by taking
the limit a → 0, while keeping the product ta constant. In
this limit f K+k → vFk, where vF = 3ta/2 ∼ 106 m/s is the
density-independent Fermi velocity.

Introducing the field operator ĉ
†
k,λ (ĉk,λ) as the creation

(annihilation) operator in the eigenstate representation, Eq. (4)
can be rewritten as

Ĥ0 =
∑
k,λ

εk,λĉ
†
k,λĉk,λ. (6)

In the same representation, the Hamiltonian describing e-e
interactions reads [4]

Ĥee = 1

2

∑
q

vq n̂q n̂−q, (7)

where the density operator is

n̂q ≡
∑
k,α

ψ̂
†
k−q/2,αψ̂k+q/2,α

=
∑

k,λ,λ′
Dλλ′(k − q/2,k + q/2)ĉ†k−q/2,λĉk+q/2,λ′ , (8)

and vq is the 2D discrete Fourier transform of the real-
space Coulomb interaction, which is a periodic function of
the reciprocal-lattice vectors, and reduces to ∼2πe2/(εq)
in the limit of q → 0. Finally, in Eq. (8), we have introduced
the “density vertex”

Dλλ′(k,k′) = ei(θk−θk′ )/2 + λλ′e−i(θk−θk′ )/2

2
(9)

with θk = Arg[fk,x + ifk,y]. Here, {fk,i ,i = x,y} denotes the
Cartesian component of the vector f k. In the low-energy MDF
limit, θK+k → ϕk, where ϕk is the angle between k and the x̂
axis.

Note that in writing Eq. (7) we have neglected the one-
body operator proportional to the total number of particles,
which avoids self-interactions [4], since it has no effect on the
calculations we will carry out below. The viscosities are indeed
determined (at the lowest nonvanishing order in the strength
of e-e interactions) by two-particle excitations only, which are
generated by two-body operators.

We also introduce the current operator

ĵq,α ≡
∑
k,β

∑
γ,γ ′

∂fk,α

∂kβ

σ
β

γ γ ′ψ̂
†
k−q/2,γ ψ̂k+q/2,γ ′

=
∑
k,β

∑
λ,λ′

∂fk,α

∂kβ

S (β)
λλ′ (k − q/2,k + q/2)

× ĉ
†
k−q/2,λĉk+q/2,λ′ , (10)

where the “pseudospin-density” vertices are

S (x)
λλ′(k,k′) = λ′ei(θk+θk′ )/2 + λe−i(θk+θk′ )/2

2
(11)

and

S (y)
λλ′(k,k′) = λ′ei(θk+θk′ )/2 − λe−i(θk+θk′ )/2

2i
. (12)

For the sake of definiteness, we assume the system to be n-
doped, with an excess electron density n. Results for a p-doped
system can be easily obtained by appealing to the particle-hole
symmetry of the MDF model defined by Eqs. (6) and (7). The
Fermi wave vector is defined as kF = √

4πn/Nf , while εF =
vFkF is the Fermi energy, and Nf = 4 is the number of fermion
flavors in graphene. For future purposes, we also define the
matrix element of the ẑ component of the pseudospin between
the states labeled by k,λ and k′,λ′:

S (z)
λλ′(k,k′) = ei(θk−θk′ )/2 − λλ′e−i(θk−θk′ )/2

2
. (13)
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In the continuum limit and for k + q/2,k − q/2 close to
the K point of the Brillouin zone, projecting Eqs. (11)–(13) at
the Fermi surface in the upper band, we get [to O(q2)]

S (x)
++(k − q/2,k + q/2) → kx

kF
,

S (y)
++(k − q/2,k + q/2) → ky

kF
, (14)

S (z)
++(k − q/2,k + q/2) → i

2

(q × k) · ẑ

k2
F

.

From these equations, we see that the projected current
operator at the Fermi surface in the upper band takes the
Galilean-invariant form

ĵq,α →
∑

k

kα

mc
ĉ
†
k−q/2,+ĉk+q/2,+, (15)

with an effective mass mc = kF/vF. We will make repeated use
of this important result.

III. THE BULK AND SHEAR
VISCOSITIES — GENERAL THEORY

The bulk and shear viscosity are usually introduced
[1] as phenomenological coefficients to describe the long-
wavelength motion of a viscous fluid close to a quasiequi-
librium situation. The interactions between the elementary
constituent of the fluid, although extremely complicated at the
microscopic level, admit a rather simple description in terms
of macroscopic coefficients. Their space and time average is
in fact responsible for the friction between (macroscopic) fluid
elements having different values of the momentum. The two
viscosities then describe the forces between fluid elements that
undergo either a shear or a compression-like long-wavelength
deformation.

It is therefore possible, starting from a fluid-like description
of the 2D MDF liquid in graphene, to derive the macroscopic
response of currents to external vector potentials, in the linear
response regime and in terms of hydrodynamic coefficients.
Equating the coefficients of proportionality between currents
and vector potentials to the microscopic current-current linear
response functions of the system, one obtains the microscopic
definitions for the bulk and shear viscosities. It turns out that
these can be calculated from the coefficients of the expansion
to order q2/ω2 of the current-current linear response functions
(in the limit q → 0). This approach was used in Ref. [10] for
the case of a parabolic-band (i.e., Galilean invariant) electron
gas.

A more fundamental approach [14,26] relies on the fact
that it is possible to microscopically define the stress tensor
operator τμν(x,t), starting from the equation of motion of the
momentum density, and to calculate the deviation of its average
from the equilibrium value due to an applied strain. In the linear
regime and at low frequencies, such variation is proportional
to the applied strain. The coefficient of proportionality is the
“tensor of elasticity,” a rank-4 tensor whose imaginary part in a
rotationally and time-reversal invariant system at q = 0 can be
characterized by two coefficients, the complex bulk and shear
moduli. Note that in the linear regime the tensor of elasticity is
equivalent to the stress-stress response function. Therefore the

knowledge of the latter response function constitutes a viable
route to the calculation of the viscosity coefficients [14,26].

The connection between the two approaches is rather trivial
in Galilean invariant systems. Indeed in such systems the
current density is proportional to the momentum density, and
therefore its time derivative is proportional to the divergence of
the stress tensor. It is therefore possible to derive an equation
of motion that relates the current-current response functions
to the stress-stress response. From that, it is thus evident that
the viscosity, which is proportional to the coefficient of the
term of order q2/ω2 in the expansion of the current-current
response function, can also be calculated from the q = 0 limit
of the stress-stress response.

In the 2D MDF liquid, however, the current and the
momentum are not proportional to each other. The current is
indeed an off-diagonal operator (in pseudospin space), which
represents the hopping between the two inequivalent carbon
atoms in the unit cell. Conversely, the momentum operator
is a diagonal one (as, e.g., the density operator). Therefore
the two approaches could give, in principle, different results.
Nevertheless, we find that in the Fermi liquid regime, i.e.,
when graphene is doped and the temperature T � εF/kB is
sufficiently low (kB is the Boltzmann constant), the two agree
with each other. In the following sections we show in detail
how the two approaches reconcile in the Fermi liquid regime.
Here, however, we briefly discuss the problem in general terms.

It is quite easy to understand what goes wrong in the general
case. While the second approach, i.e., the calculation from
the stress-stress response, is completely general, the first one
relies on the fact that it is possible to write a Navier-Stokes
equation for the velocity as in the classical nonrelativistic
case. This statement is highly nontrivial. Indeed, in graphene
the velocity operator, being proportional to the unit vector
of the momentum, is not a conserved quantity. Therefore it
is not possible to write in general a Navier-Stokes equation
for the macroscopic velocity in the same way as it is done
in the Galilean invariant case. Since the quantities that are
conserved by e-e interactions are the density, energy density,
and momentum, one should in principle consider the Navier-
Stokes equations for these three.

However, as it was shown in Ref. [23], in the Fermi liquid
regime the velocity is essentially a conserved quantity. This
statement is rationalized as follows. At low temperature and
in a doped system, the states that contribute to transport are
those in a narrow region (of size ∼kBT ) around the Fermi
energy. Those states have momentum nearly identical to the
Fermi momentum kF, and the velocity operator evaluated on
them is simply proportional to the momentum (via the constant
kF). Since the same states give the dominant contribution to
the total momentum of the system, and the latter is conserved
by e-e interactions, also the velocity is a conserved quantity
[27]. This paves the way to a hydrodynamic description of the
velocity, with a Navier-Stokes equation [28] that contains the
same viscosities as the momentum one. It is indeed clear that
the two equations must be proportional to each other via the
cyclotron mass mc = kF/vF, as discussed at the end of Sec. II.

In passing, we mention that a hydrodynamic description of
graphene, valid at all doping concentrations and in the linear-
response regime, has been worked out in Ref. [30]. There, the
authors show that it is possible to describe the hydrodynamic
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transport in graphene in terms of three macroscopic currents
carrying electric charge, energy, and quasiparticle imbalance.
In the “Fermi-liquid regime,” the three macroscopic currents
become equivalent. Therefore the transport in a doped MDF
system in the hydrodynamic regime can be described by the
standard Navier-Stokes equations.

A. The hydrodynamic approach

Following Refs. [11,28], we describe the long-wavelength
dynamics of the 2D MDF liquid in a doped graphene sheet
by the nonrelativistic limit of the relativistic Navier-Stokes
equations in 2+1 dimensions. The derivation of this theory
can be found in, e.g., Ref. [1]. The use of the relativistic
form of the Navier-Stokes equations is dictated by the linear-
in-momentum band dispersion of quasiparticles [29], which,
however, move with a Fermi velocity vF that is roughly 300
times smaller than the speed of light c. For this reason,
retardation effects can be safely neglected.

Moreover, we assume that only the states around the Fermi
surface contribute to transport. This is certainly a good approx-
imation in the Fermi-liquid regime, and in the limit in which
the wave vector and frequency of the external perturbation
are small. In the Fermi-liquid regime, the fluid velocity can be
expressed, in the “nonrelativistic” limit |v(r,t)| � vF, in terms
of the macroscopic current j (r,t) carried by quasiparticles in
conduction band as v(r,t) ≡ j (r,t)/n(r,t). Here, n(r,t) is the
position- and time-dependent excess number density.

The linearized Navier-Stokes equations then read [1,11,28]

w

v2
F

∂tvi + ∇iP − ∇j {η0[∇j vi + ∇ivj − (∇ · v)δij ]

+ ζ0(∇ · v)δij } = neq
e

c
∂tAi, (16)

where the latin indices i,j = x,y denote the Cartesian com-
ponents of the vectors, w ≡ w(r,t) is the enthalpy density
(which is equivalent to the Drude weight), and P ≡ P (r,t)
is the local pressure. The last term on the left-hand side of
Eq. (16) is the divergence of the stress tensor τij = τij (r,t),
whose most general form, based on symmetry arguments, is
reported in Eq. (2) [1]. Since we are interested in deriving
the current response of the fluid to an external perturbation,
in Eq. (16) we expressed [4] the driving field as the time
derivative of a vector potential A ≡ A(r,t). Note that we do
not introduce any retardation effect in the driving term since
the Fermi velocity is much smaller than the speed of light.

In Eq. (16), we assume the density to be close to its
equilibrium value (which only in this Section we denote
as neq), i.e., n(r,t) = neq + δn(r,t) with |δn(r,t)/neq| � 1.
Moreover, in a linear-response fashion, also the current density
j (r,t) and the vector potential A(r,t) are assumed to be
small (note that the current is zero at equilibrium). Using a
well-known thermodynamic relation we rewrite [4]

∇P = ∂P

∂n
∇n = B

neq
∇n, (17)

whereB = B(n) is the bulk modulus [4] of the 2D MDF liquid.
In Eq. (17), we suppressed the space- and time-dependences of
the various quantities for brevity. This equation, together with
the continuity equation ∂tn(r,t) = −∇ · j (r,t), allows us to

rewrite the Fourier transform of Eq. (16) as

w

v2
F

ωji − B
ω

(q · j )qi + iη0q
2ji + iζ0(q · j )qi = n2

eq
e

c
ωAi.

(18)

To obtain this equation, we used that in the linear regime
∂tv(r,t) = ∂t [ j (r,t)/n(r,t)] � ∂t j (r,t)/neq. A similar ap-
proximation was used for terms which contain spatial deriva-
tives of v(r,t).

We now observe [4] that Eq. (18) is suitable to describe
the long-wavelength dynamics of 2D MDFs in the collisional
ωτee � 1 limit. In this regime [4], the system is indeed
expected to behave as a liquid, with a finite shear viscosity
and a vanishing shear modulus. However, in the opposite,
collisionless, limit (ωτee � 1) a solid-like behavior is expected
to emerge, characterized by a small shear viscosity and a finite
shear modulus [4]. The system may thus be described by the
equations of the elasticity theory [31], which are obtained
from Eq. (18) by replacing [4] the low-frequency coefficients
by their high-frequency counterparts, and by introducing a
finite shear modulus S∞. Defining the complex bulk and shear
moduli, B̃ω = Bω − iωζω and S̃ω = Sω − iωηω, Eq. (18) then
reads

w

v2
F

ωji − B̃ω

ω
(q · j )qi − S̃ω

ω
q2ji = n2

eq
e

c
ωAi, (19)

which is now valid in both the collisionless and collisional
regimes. Note that 
e(S̃ω) → 0 in the low-frequency regime.
Separating the longitudinal and transverse components of
Eq. (19), we finally get

jL(q,ω) = n2
eqω

2

wω2/v2
F − (B̃ω + S̃ω)q2

e

c
AL(q,ω)

≡ χL(q,ω)
e

c
AL(q,ω) (20)

and

jT(q,ω) = n2
eqω

2

wω2/v2
F − S̃ωq2

e

c
AT(q,ω)

≡ χT(q,ω)
e

c
AT(q,ω). (21)

The transverse component of any 2D vector v is defined as
vT = v − q̂(q̂ · v), while its longitudinal component is vL =
(q̂ · v)q̂. Equations (20) and (21) provide a macroscopic defi-
nition of the longitudinal [χL(q,ω)] and transverse [χT(q,ω)]
components of the current-current linear response function.
Indeed, in a rotationally-invariant system

χj�jk
(q,ω) = χL(q,ω)

q�qk

q2

+χT(q,ω)

(
δ�k − q�qk

q2

)
, (22)

where �,k = x,y are Cartesian indices. It is easy to show that,
if q = q x̂, χL(q,ω) = χjxjx

(q,ω) and χT(q,ω) = χjyjy
(q,ω).

These relations will be used in what follows.
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Expanding Eqs. (20) and (21) to order q2/ω2, we get

�m[χL(q,ω)] = −
(

v2
F

w(0)
neq

)2
q2

ω
(ζω + ηω) (23)

and

�m[χT(q,ω)] = −
(

v2
F

w(0)
neq

)2
q2

ω
ηω, (24)

where we have approximated the enthalpy density by its
noninteracting value w(0) = neqεF. This is justified because
the relations (23) and (24) will be used to estimate the high-
frequency bulk and shear viscosities, ζ∞ and η∞, respectively.
In the high-frequency regime, the two viscosities can be
calculated perturbatively, the first nonvanishing contribution
being of second order in the dimensionless strength of e-e
interactions, i.e., αee in Eq. (3). It is therefore legitimate, up to
second order, to neglect interaction corrections to w.

By inverting Eqs. (23) and (24), we can express the high-
frequency bulk and shear viscosities of a 2D MDF liquid in
terms of the current-current response functions. To second
order in the strength of e-e interactions these hydrodynamic
coefficients read [4]

η∞ = − lim
ω→0

lim
q→0

ωm2
c

q2
�m[χT(q,ω)],

ζ∞ = − lim
ω→0

lim
q→0

ωm2
c

q2
{�m[χL(q,ω)] − �m[χT(q,ω)]}.

(25)

Note that in Eq. (25) the limit ω → 0 is taken after the limit
ωτee � 1.

The current-current response functions on the right-hand
side of Eq. (25) have a rigorous microscopic definition [4] in
terms of Kubo products, i.e., [32]

χAB(ω) = 1

S
〈〈Â; B̂〉〉ω, (26)

where S is the 2D electron system area, Â and B̂ are operators,
and

〈〈Â; B̂〉〉ω ≡ −i

∫ ∞

0
dtei(ω+iη)t 〈[Â(t),B̂]〉. (27)

Note that the average 〈. . .〉 in Eq. (27) is taken over the ground
state of the interacting system.

The longitudinal component χL(q,ω) of the current-current
response function of 2D MDFs was calculated in Ref. [19]. In
this paper, we evaluate the transverse current-current response
function χT(q,ω) at second order in the strength of e-e
interactions and in the limit vFq � ω � 2εF.

We note that, from Eq. (20), it is possible to derive
an expression for the nonlocal charge conductivity σ (q,ω).
Replacing ω2 → ω[ω + i/τ (q,ω)] in its denominator to ac-
count for nonmomentum-conserving dissipative effects, and
neglecting the real parts of B̃ω and S̃ω (which are negligible in
the limit vFq � ω), we get

σ (q,ω) ≡ χL(q,ω)

−iω
= n/mc

−iω + 1/τ (q,ω) + νωq2
. (28)

In Eq. (28), we defined the kinematic viscosity νω ≡ ηω/(nmc),
and we used the fact that ζω = 0 (as will be demonstrated

in what follows). Since Eq. (28) is valid to all orders
in the perturbative expansion in the strength of the e-e
coupling constant, the cyclotron mass mc must be renormalized
according to Landau theory of normal Fermi liquids [4].

B. The microscopic approach

In order to get a macroscopic Navier-Stokes equation for a
given quantity, it is necessary for the latter to be conserved
by interactions at the microscopic level. For example, the
momentum density operator p̂(x,t), whose Fourier transform
is microscopically defined as

p̂q =
∑

k∈BZ,α

kψ̂
†
k−q,αψ̂k,α, (29)

is a locally conserved quantity, and satisfies the following
continuity equation:

∂t p̂j (x,t) = −∂i τ̂ij (x,t), (30)

where i,j = x,y are Cartesian indices and the summation
over repeated indices is understood. Equation (30) defines the
symmetric stress tensor operator τ̂ij (x,t). In the noninteracting
limit, the Fourier transform of τ̂ij (x,t) is defined by

τ̂
(0)
q,ij = vF

∑
k,α,β

ψ̂
†
k−q,α

kiσ
j

αβ + kjσ
i
αβ

2
ψ̂k,β . (31)

Let us now consider a time dependent deformation u(r,t)
of the electron coordinates {r i ,i = 1, . . . ,N}, which are thus
shifted as r i → r i − u(r i ,t). This deformation should not be
confused with a similar one that could be applied to the lattice.
To linear order, the metric tensor of the deformed system is

gij = δij − (∂iuj + ∂jui)

≡ δij − 2uij , (32)

where uij is the strain tensor of the elasticity theory [31].
Note that gij = δij + 2uij . Under this transformation the
Hamiltonian becomes (to linear order in uij )

Ĥ′ = Ĥ + 2
δĤ
δgij

∣∣∣∣
gij =δij

uij

= Ĥ + τ̂ij u
ij . (33)

It can be shown [33] that the noninteracting part of the stress
tensor defined by Eq. (33) is identical to Eq. (31). The variation
of the Hamiltonian, τ̂ij u

ij , induces a variation in the expecta-
tion value of the stress tensor operator. To linear order in uij ,
we get

δ〈τ̂ij 〉(q,ω) = χij,kl(q,ω)ukl(q,ω), (34)

which defines the tensor of elasticity χij,kl(q,ω). In a rotation-
ally invariant system, this tensor can be decomposed as

lim
ω→0

χij,kl(q = 0,ω)

= B̃ωδij δkl + S̃ω

(
δikδjl + δilδjk − 2

d
δij δkl

)
, (35)

where d = 2 is the dimensionality of the system. From the
general theory of linear response [4] and the form of the
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perturbation in Eq. (33), it is clear that the elasticity tensor
can be calculated from the stress-stress response function, i.e.,

χij,kl(q,ω) = 1

S
〈〈τ̂ij (q); τ̂kl(−q)〉〉ω. (36)

In writing Eq. (36), we have neglected a “contact” term
(analogous to the diamagnetic term of the current-current
response function), which has been recently discussed, e.g.,
in Ref. [34]. However, this term is purely real and thus does
not contribute to the bulk and shear viscosities, which are
defined as

ηω = − lim
ω→0

1

4ω

∑
i,j

�m

[
χij,ij (0,ω) − 1

2
χii,jj (0,ω)

]
,

(37)

ζω = − lim
ω→0

1

4ω

∑
i,j

�m[χii,jj (0,ω)].

C. Equivalence of the hydrodynamic and microscopic
approaches in a Fermi liquid

In a Galilean invariant system (in which the current operator
is ĵ q = p̂q/mc), it is rather easy to see that the hydrodynamic
and microscopic approach give identical results. Thanks to
Eq. (30) and the following identity:

ω〈〈Â; B̂〉〉ω = 〈〈i∂t Â; B̂〉〉ω + 〈[Â,B̂]〉
= 〈〈Â; −i∂t B̂〉〉ω + 〈[Â,B̂]〉, (38)

we get (q = q x̂)

�m[χxy,xy(q = 0,ω)] = lim
q→0

m2
cω

2

q2
�m[χT(q,ω)],

(39)

�m[χxx,xx(q = 0,ω)] = lim
q→0

m2
cω

2

q2
�m[χL(q,ω)].

Here, we used twice Eq. (38) and the fact that the average
of the commutator on the right-hand-side of that equation is
purely real. Since,

χxy,xy(0,ω) = 1

4

∑
i,j

[
χij,ij (0,ω) − 1

2
χii,jj (0,ω)

]
,

(40)

χxx,xx(0,ω) − χxy,xy(0,ω) = 1

4

∑
i,j

�mχii,jj (0,ω),

which are valid in the limit ω → 0, from Eqs. (37) and (39) one
immediately recovers Eq. (25). Notice that, since in a Galilean
invariant system mc is not renormalized by e-e interactions,
Eq. (25) is valid to all orders in the strength of e-e interactions,
and, therefore, at all frequencies (as long as ω � εF).

The connection is much less straightforward in the case of
the 2D MDF liquid in graphene. Indeed, in a system with a
linear dispersion, the current operator is not proportional to the
momentum-density operator. Therefore Eq. (39) does not hold,
in general. This fact notwithstanding, we have found that in
the Fermi liquid regime Eq. (39) still holds in an approximate
sense and, therefore, to the level of accuracy we are interested
in, the microscopic and hydrodynamic approaches coincide.
The details of the argument are presented in Appendix A, but
the basic idea is quite simple. First of all, it is clear that at
sufficiently low frequency interband transitions are irrelevant

and can be disregarded. Then it is clear that, within a narrow
band of energies around the Fermi level in the conduction
band, there is no qualitative difference between the linear
dispersion of MDFs and the linearized dispersion of ordinary
massive fermions: the two dispersions are indistinguishable if
the ordinary Schrödinger fermions are assigned the cyclotron
mass mc = kF/vF. We conclude that the equivalence of the
microscopic and hydrodynamic approaches carries over to
MDFs with the simple replacement of the effective mass by
the cyclotron effective mass.

IV. CALCULATION OF THE VISCOSITY IN
THE RELAXATION TIME APPROXIMATION

As we pointed out in Introduction, e-e interactions enter
the calculation of the viscosities quite differently in the
high-frequency (collisionless) and low-frequency (collisional)
regimes. In the high-frequency regime, the effect of the
interaction is perturbative, meaning that there would be no
viscosity without interactions creating a correlation between
the motions of adjacent parts of the liquid. In the low-frequency
regime, e-e interactions are nonperturbative as their primary
role is to establish a finite mean free path �ee for electrons: this
mean free path would be infinite in the absence of interactions.
The problem is how to connect in a seamless way these two
very different regimes of e-e scattering. The relaxation time
approximation, summarized in Eq. (1), offers a simple and
physically motivated way to achieve this connection. The
derivation of these formulas closely parallels the derivation
given in Ref. [10] for Galilean invariant systems. Only a
minor adaptation is needed, namely the replacement of the
bare electron mass m by the cyclotron effective mass mc,
as discussed in the previous section. We therefore refer the
reader to Ref. [10], where a detailed derivation of Eqs. (1) is
provided, and we focus in this section on the calculation of
the inputs for Eqs. (1), i.e., the high-frequency viscosities and
the corresponding relaxation times. An alternative derivation
of Eq. (1) is presented in Appendix B.

A. The high-frequency viscosities

To evaluate the transverse current-current response func-
tion, we adopt the (Hamann-Overhauser [35] or Schrieffer-
Wolff [36]) canonical transformation approach outlined in
Refs. [19–21]. First of all, we introduce a unitary transfor-
mation generated by a Hermitian operator F̂ ,

Ĥ′ = eiF̂ (Ĥ0 + Ĥee)e−iF̂ , (41)

which cancels the e-e interaction from the transformed
Hamiltonian, i.e., we require Ĥ′ ≡ Ĥ0 to second order in the
dimensionless strength αee of e-e interactions. The transfor-
mation F̂ = 1̂ + F̂1 + F̂2 + . . . is determined order-by-order
in perturbation theory. Here, 1̂ is the identity and F̂n is the
term of nth order in the strength of e-e interactions. As
shown in Refs. [19–21], to calculate the imaginary part of the
current-current response function in the limit vFq � ω � 2εF,
it is sufficient to determine F̂1, which satisfies the equality
[Ĥ0,iF̂1] = Ĥee.

After carrying out the transformation F̂ , the Kubo product
in Eq. (27) is reduced to the evaluation of a noninteracting
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response function ∝ 〈〈Â′,B̂ ′〉〉0,ω. The subscript “0” here
means that the average 〈. . .〉 is now performed over the ground
state of the noninteracting system and that the time evolution
is generated by Ĥ0. However, the operators Â′ = eiF̂ Âe−iF̂

and B̂ ′ = eiF̂ B̂e−iF̂ are now dressed by e-e interactions. The
key idea is to realize that the calculation of �m[χjαjβ

(q,ω)]
to second order in the strength of e-e interactions and in
the limit vFq � ω � 2εF requires only the knowledge of the
transformed current-density operator ĵ

′
q to first order [19–21],

i.e., ĵ
′
1,q = ĵ q + ĵ1,q , where

ĵ1,q = [iF̂1, ĵ q]. (42)

Thus, to second order in the strength of e-e interactions, and
for vFq � ω � 2εF, we get the following exact-eigenstate

(Lehmann) representation [4] of the current-current response
function

�m[χjαjβ
(q,ω)] = −π

∑
m

〈0|ĵ1,q,α|m〉〈m|ĵ1,−q,β |0〉

× δ(ω − ωm0). (43)

The calculation of F̂1 and ĵ1,q is carried out in Appendices C
and D.

Here we quote the final formula for the two components
(longitudinal and transverse) of the current-current response
function, exact to second order in e-e interactions and in the
large-Nf limit, which is

�m[χ�(q,ω)] = −
∑

α,β=x,y

∫
d2q ′

(2π )2
v2

q ′

∫ ω

0

dω′

π

{
�(�)

α (q,q ′)�(�)
β (−q, − q ′)�m

[
χ (0)

nn (q ′,ω′)
]�m

[
χ

(0)
jαjβ

(q ′,ω − ω′)
]

+�(�)
α (q,q ′)�(�)

β (−q,q ′)�m
[
χ

(0)
njα

(−q ′,ω′)
]�m

[
χ

(0)
njβ

(q ′,ω − ω′)
]}

. (44)

In this equation, � = L,T and χ (0)
nn (q,ω), χ

(0)
jαjβ

(q,ω), and

χ
(0)
njα

(q,ω) are the noninteracting density-density, current-
current, and density-current response functions of a 2D gas
of MDFs. The quantities {�(�)

α (q,q ′); α = x,y; � = L,T} are
defined as

�(T)
α (q,q ′) = vFq

ω2

[
q ′

xq
′
y

q ′2
q ′

α

kF
−
(

1 − q ′2

4k2
F

)

× q ′
xδα,y + q ′

yδα,y

kF

]
+ q ′2

4vFk
3
F

δα,x (45)

and

�(L)
α (q,q ′) = vFqx

ω2

[
q ′2

y

q ′2
q ′

α

kF
− 2

q ′
x

kF

(
1 − q ′2

4k2
F

)
δα,x

]

+ q ′2

4vFk
3
F

δα,x . (46)

We stress that the imaginary parts of the three linear-response
functions χ (0)

nn (q,ω), χ
(0)
jαjβ

(q,ω), and χ
(0)
njα

(q,ω) do not depend
on any ultraviolet cut-off in the low-energy MDF limit.
Moreover, since in the limit of ω → 0 the integral over
q ′ is naturally restricted to 0 � q ′ � 2kF, no ultraviolet
regularization is needed in Eq. (44). The only pathology of
the integral in Eq. (44) appears in the infrared q ′ → 0 limit,
due to the 1/q ′ singularity of the Coulomb potential vq ′ . This
problem is cured by screening, as we will further discuss below.

We observe that, contrary to what happens in a parabolic-
band electron gas, the matrix elements of Eqs. (45) and (46) do
not vanish in the limit q → 0. The terms that remain finite are
due to broken Galilean invariance [24], i.e., due to the presence
of the valence band and, as noted in Ref. [19], are responsible
for a finite optical conductivity in the single-particle optical
gap ω < 2εF, which scales as ∼ω2. Being a conductivity, it
is conceptually wrong to include it in the viscosities, and

therefore in what follows we neglect the terms of Eqs. (45)
and (46) that do not vanish when q → 0, i.e., the last terms in
Eqs. (45) and (46). By insisting in retaining these terms, we
would (wrongly) get diverging viscosities.

Such a finite optical conductivity below the 2εF gap is
present only in the high-frequency limit (τ−1

ee � ω � 2εF)
and is an effect beyond the Fermi liquid theory. Therefore
Eq. (16) does not need to be amended with the inclusion of a
finite conductivity in the low-frequency regime.

The collisionless limit itself is “by definition” outside the
Fermi-liquid regime, since the electronic excitations are not
restricted to live in a thin shell of thickness ∼(kBT )2/εF

around the Fermi surface. We stress that no Fermi liquid
assumption has been done in this section: even though the
excitations are close to the Fermi surface, their energy is
still ω � τ−1

ee ∼ (kBT )2/εF. Note also that one needs to
take into account the simultaneous excitations of two particle-
hole pairs at the Fermi surface, as our theory does, to find a
finite optical conductivity below the 2εF gap. Such processes
are usually neglected in the Fermi-liquid theory, which
assumes that all electronic excitations are uncorrelated [4].
Contrary to one-particle processes, two-particle excitations are
not kinematically constrained (for zero momentum transfer) at
energies ω > 2εF, and can therefore contribute to the optical
conductivity below the 2εF gap.

Equation (44) is the main result of this section. Note
that in the large-Nf limit the second-order expression for
the imaginary part of the current-current response function
in Eq. (44) has the appealing form of a convolution of two
single-particle spectra [37]. The physical interpretation of
Eq. (44) is the following. At long wavelengths and to the lowest
nonvanishing order of perturbation theory, the spectrum of the
current-current correlator is dominated by the emission of two
correlated electron-hole pairs. Each of the Kubo products on
the right-hand side of Eq. (44) describes the rate of generation
of a single electron-hole pair. The spectral weight associated
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with the excitation of two particle-hole pairs with opposite
momenta and given total energy ω is proportional to their
convolution.

We now sketch how to make analytical progress in the
evaluation of the current-current response function as from
Eq. (44). The integrals in Eq. (44) can be carried out
analytically with the help of known formulas for the response
functions [15]. We first observe that in the low-energy MDF
limit the system is translationally and rotationally invariant.
The current-current response function χ

(0)
jαjβ

(q,ω) is a rank-2
tensor that can be therefore decomposed according to Eq. (22).
In the same way, the density-current response function can be
seen to be equal to

�mχ
(0)
jαn(q ′,ω) = q ′

α

q ′ �mχ
(0)
jLn(q ′,ω), (47)

where χ
(0)
jLn(q ′,ω) is the noninteracting longitudinal-current-

density response function. Eqs. (22) and (47) can be used to
perform analytically the angular integration in Eq. (44), which
reads

�m[χ�(q,ω)] =
∫

d2q ′

(2π )2

∫ ω

0

dω′

π
v2

q ′
q ′2

k2
F

× {a��m
[
χ (0)

nn (q ′,ω′)
]�m

[
χ

(0,T)
jj (q ′,ω − ω′)

]
+ b��m

[
χ (0)

nn (q ′,ω′)
]�m

[
χ

(0,L)
jj (q ′,ω − ω′)

]
+ c��m

[
χ

(0)
njL

(q ′,ω′)
]�m

[
χ

(0)
njL

(q ′,ω − ω′)
]}

,

(48)

where

aT = aL = v2
Fq

2

ω4

(
q ′2/k2

F − 4
)2

32
, (49)

bL = v2
Fq

2

ω4

3q ′4 − 20k2
Fq

′2 + 44k4
F

32k4
F

,

bT = v2
Fq

2

ω4

(
q ′2/k2

F − 2
)2

32
, (50)

and, finally,

cL = v2
Fq

2

ω4

3q ′4 − 20k2
Fq

′2 + 44k4
F

32k4
F

,

cT = v2
Fq

2

ω4

(
q ′2/k2

F − 2
)2

32
. (51)

To cure infrared divergences associated with the long-range
tail of the e-e interaction vq ′ , we have evaluated the integral
over q ′ in Eq. (48) by replacing vq ′ with a statically-screened
Thomas-Fermi interaction, i.e., v

(TF)
q ′ = 2πe2/[ε(q ′ + qTF)].

Here, qTF = NFαeekF is the Thomas-Fermi screening wave
vector [8].

In the limit ω → 0, we can expand the imaginary part of
each response function χ (0)

nn , χ
(0)
njL

, χ
(0)
L , and χ

(0)
T in a power

series of ω′, ω − ω′ and retain only the leading order of
this expansion. The leading contribution to �m[χ�(q,ω)] in
Eq. (44) in powers of ω in the limit ω → 0 can be extracted

from the following asymptotic formulas:

lim
ω′→0

�m
[
χ (0)

nn (q ′,ω′)
] = −Nf

√
4k2

F − q ′2

2q ′
ω′

2πv2
F

(52)

and

lim
ω′→0

�m
[
χ

(0)
T (q ′,ω′)

] = −Nf
2kF

q ′
√

4k2
F − q ′2

ω′

2πvF
. (53)

The imaginary parts of density-current and longitudinal
current-current response functions scale with higher powers
of ω′. Indeed they can be derived from Eq. (52) according to
the formulas [4] �m[χ (0)

jLn(q ′,ω′)] = ω′�m[χ (0)
nn (q ′,ω′)]/q ′ and

�m[χ (0)
L (q ′,ω′)] = ω′2�m[χ (0)

nn (q ′,ω′)]/q ′2.
Since the last two lines of Eq. (48) give a subleading contri-

bution, in the limit vFq � ω � 2εF, they can be disregarded.
Plugging Eq. (48) back into Eq. (25), we finally get

η∞ = nANf (αee),

ζ∞ = 0, (54)

where ANf (αee) = 2Nfα
2
eef (Nfαee), with

f (x) = 15x3 − 15x2 − 52x + 42

288π

− (5x4 − 24x2 + 16)

96π
arccoth(1 + x). (55)

Note that ANf (αee) is defined with an extra factor of 2/Nf with
respect to Ref. [19], due to the factor m2

c in the definitions of
Eq. (25), which we chose to include in ANf (αee). We underline
that the dependence on the strength of e-e interactions beyond
α2

ee, encoded in f (x), is due to the Thomas-Fermi screened
interaction introduced above which we used to regularize the
infrared behavior of the integrand in Eq. (48).

In Fig. 2, we show the high-frequency shear viscosity, as
defined in Eq. (54), in units of the carrier density n, and as
a function of the dimensionless parameter αee. In the limit of
αee → 0, we find that

η∞ → −n
Nf

6π
α2

ee ln(αee). (56)

The extra logarithmic dependence on the coupling constant
of Eq. (56) is due to the Thomas-Fermi screening used in the

FIG. 2. The high-frequency shear viscosity η∞ (in units of the
excess carrier density n) of the 2D MDF liquid in a doped graphene
sheet is plotted as a function of the dimensionless parameter αee,
which defines the strength of e-e interactions. Note that the vertical
axis must be multiplied by a factor 10−2.
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calculation. For αee � 1, the Thomas-Fermi screened interac-
tion becomes independent of αee, and the high-frequency shear
viscosity tends to η∞ → n/(9πNf ).

B. The viscosity transport time

We now turn to the evaluation of the viscosity transport time
τv, which enters Eq. (1). This quantity can be estimated from
a diagrammatic calculation of the low-frequency viscosity.
Contrary to its high-frequency counterpart, the low-frequency
viscosity is a nonperturbative quantity, and cannot be cal-
culated by truncating the perturbative series of Feynman
diagrams to any finite order. It is thus necessary to sum an
infinite set of diagrams, to all orders in αee. This requires (i)
that the Green’s functions are dressed by self-energy insertions
and (ii) that vertex corrections are included.

To bypass the tedious task of expanding the infinite series
of diagrams for the current-current response function to order
q2, and then take the limits shown in Eq. (25), we use the
definition of the shear viscosity given by Eq. (37), i.e.,

η0 = − lim
ω→0

1

4ω

∑
i,j

�m

[
χij,ij (0,ω) − 1

2
χii,jj (0,ω)

]
. (57)

The greatest advantage of using Eq. (57) is that the hydrody-
namic shear viscosity η0 can be extracted from the response
function χij,k�(q,ω) evaluated at q = 0. Figure 3(a) shows the
general expression of the stress-stress linear response function
we calculate in what follows. The double solid lines represent
Green’s functions dressed by the self-energy insertion shown
in Fig. 3(b). The wavy line represents the dynamically screened
e-e interaction W (q,ω). In the spirit of the large-Nf approx-
imation, the self-energy can be approximated with its GW

expression. This, in turn, implies that the screened interaction

FIG. 3. (a) The diagrammatic representation of the current-
current response function. The black filled circle represents the bare
vertex �(0,α) (we suppress the momentum-energy dependence for
brevity), while the solid double lines are Green’s functions dressed
by the self-energy. In the large-NF limit, it corresponds to the GW
self-energy, which is depicted in (b). Wavy lines represent the RPA
screened interaction W . Finally, the triangle represents the vertex
function �β which is dressed by e-e interactions and satisfies the
Bethe-Salpeter equation in (c). Note that the form of the irreducible
interaction I is uniquely determined by the choice of the self-energy,
provided that �β satisfies the Ward identities [4] (see Fig. 4).

FIG. 4. Feynman diagrams that contribute to the irreducible
interaction I in Fig. 3.

in Fig. 3(b) contains the usual RPA dynamical dielectric
function ε(q,ω). Herein lies our large-Nf approximation.

The black filled circle on the left side of Fig. 3(a) represents
the bare stress-tensor vertex

�
(0,ij )
λλ′ (k,k′) = vF

kiS (j )
λλ′(k−,k+) + kjS (i)

λλ′ (k−,k+)

2
. (58)

To account for vertex corrections, we need to dress one of the
two vertices in Fig. 3(a). The dressed vertex is marked as “�”
and it is required to satisfy the self-consistent Bethe-Salpeter
equation represented in Fig. 3(c). The choice of the quasiparti-
cle self-energy [Fig. 3(b)] and the requirement of fulfilling the
Ward identities uniquely determine the irreducible interaction
I . The diagrams that contribute to I are shown in Fig. 4.

The present calculation closely follows that reported in
Ref. [23], the main difference being that here we have
stress-tensor vertices in lieu of current vertices. Therefore the
calculation of Ref. [23] should be adapted to the present case.
These changes are explained in detail in Appendix E. Here,
we briefly summarize the procedure we adopted to solve the
problem posed by the diagrams in Figs. 3 and 4.

As explained above, the choice of working with the stress-
stress response function allows us to avoid the expansion of
the Bethe-Salpeter equation for the current vertex to order q2.
We therefore set q = 0 from the very beginning of the present
calculation. In what follows we focus on the imaginary part of
the stress-stress response function, which is the quantity that
controls the low-frequency viscosity [recall Eq. (57)]. Taking
the low-frequency and low-temperature limits, it becomes
evident that only the states in a narrow region of size ∼kBT

around the Fermi surface give a significant contribution to the
imaginary part of stress-stress response function. Moreover,
in the limit ω,τ−1

ee � 2εF, whenever a product of two Green’s
functions with the same momentum argument appears, one
of the two must be considered as retarded and the other
as advanced (schematically, we get products of the form
G(A)G(R)). Terms containing products of two retarded or two
advanced Green’s functions are responsible for subleading
contributions in the limit εFτee � 1. Finally, in the spirit of
the theory of normal Fermi liquids, each product G(A)G(R) is
approximated by a δ function, i.e., the incoherent part of each
Fermi-liquid Green’s function is neglected and we retain only
its singular part. This corresponds to the so-called “quasipar-
ticle approximation,” which is usually done in time-dependent
perturbation theory to derive the Boltzmann transport equation
from the Keldysh equation for the Green’s function. Therefore,
our theory describes the transport of momentum in the
“semiclassical” regime, and neglects all quantum effects.

The set of approximations described above allows us to
dramatically simplify the expression of the Bethe-Salpeter
equation. The latter can be then solved analytically with the
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ansatz [38] (suppressing all the frequency and momentum
dependencies) � = γ�(0). In this way we require the dressed
vertex to be proportional to the bare one. The Bethe-Salpeter
equation becomes an algebraic equation, which can be solved
analytically. We get

γ (ω) = ω + i/τee

ω + i/τv
. (59)

The expression for τv reads (see also Appendix E)

1

τv
� − 2

(2π )2

∫ +∞

−∞
dω

1 − nF(ξk,+ − ω)

1 − exp(−βω)

∫ +∞

0
dqq

×
∣∣∣∣ vq

ε(q,ω,T )

∣∣∣∣
2

�m[χ (0)(q,ω,T )]A++(k,q,ω)

× 4

[
1 − q2 − ω2/v2

F

4k(k − ω/vF)

]
q2 − ω2/v2

F

2k(k − ω/vF)
, (60)

where

A++ = 4(k − ω/vF)

vF

√
[(2k − ω/vF)2 − q2]

(
q2 − ω2/v2

F

)
×
[

1 − q2 − ω2/v2
F

4k(k − ω/vF)

]

×�
{
[(2k − ω/vF)2 − q2]

(
q2 − ω2/v2

F

)}
. (61)

Equation (60) describes the scattering of a quasiparticle with
momentum k = kF x̂ and energy equal to the Fermi energy
into a quasiparticle with momentum |k + q| = kF. In this
process, the whole Fermi liquid is excited. The many-particle
excitations created during the scattering event are encoded in
the imaginary part of the density-density response function
�m[χ (0)

nn (q,ω,T )]. The last line of Eq. (60) can be shown to
be proportional to 1 − cos2(ϕk+q) [see Appendix E—to get
Eq. (60) an integration over the angle of q has been performed].
At low temperature and in the limit of αee → 0 the shear
viscosity becomes

η0 ∝ �n

α2
ee

(
εF

kBT

)2

. (62)

Note that the matrix element 1 − cos2(ϕk+q) vanishes when
k + q is either parallel or antiparallel to k (recall that k is
along the x̂ direction), and it is maximum for excitations for
which k + q is perpendicular to k. Therefore it suppresses
the contribution coming from the region of small transferred
momenta q ∼ 0, which is responsible for the logarithmic-in-
temperatures correction to the quasiparticle lifetime. Indeed,
at low temperature 1/τee ∝ −T 2 ln(T ), with a coefficient of
proportionality which is independent of the coupling constant
αee (see Ref. [5] for more details). Therefore, because of the
presence of the matrix element 1 − cos2(ϕk+q), 1/τv ∝ T 2,
and the coefficient of proportionality depends on αee.

Note also that, since the derivation of the viscosity
transport time does not rely on the linear band dispersion
of MDFs, a similar conclusion can be drawn for a Galilean
invariant parabolic-band 2D electron gas. Also in the latter
case there is no logarithmic-in-temperature correction to the
low-temperature behavior of τv. Indeed, the matrix element
suppresses both the regions q ∼ 0 (forward scattering) and

q ∼ 2kF (perfect backscattering), which are responsible for
the aforementioned correction [4].

Finally, it is possible to extrapolate Eq. (62) to the undoped
regime. In this regime, the Fermi energy is proportional to
the temperature, while the density, being proportional to ε2

F,
becomes proportional to the temperature squared. Therefore,
apart from numerical factors,

η0|undoped ∝
(

kBT

αee

)2

, (63)

which coincides with the power law reported in Ref. [11].

V. RESULTS AND CONCLUSIONS

In Fig. 5(a), we illustrate the carrier density dependence
of the low-frequency kinematic viscosity ν0 ≡ η0/(nmc) of
a 2D MDF liquid in a doped graphene sheet. We show three
curves corresponding to different values of temperature T , i.e.,
T = 150, 200, and 270 K. Data in this plot have been obtained
by setting αee = 0.5. In Fig. 5(b), we plot the same quantity
but viewed as a function of temperature T (in units of K), for
an excess carrier density n = 0.4 × 1012 cm−2. In the inset,
we also show a logarithmic plot of ν0, and we compare it with
the power laws T −2 and T −3/2. While the kinematic viscosity

FIG. 5. (a) shows the low-frequency kinematic viscosity ν0 ≡
η0/(nmc) of a 2D MDF liquid (in units of m2/s) as a function of the
excess carrier density n (in units of 1012 cm−2). The three curves refer
to different values of the temperature, i.e., T = 150, 200, and 270 K.
In this plot, αee = 0.5. Note that in the range of densities shown in this
plot the temperature is always smaller than TF = εF/kB. This, in turn,
implies that the low-temperature approximation (T � TF) for 1/τv in
Eq. (60) is valid. Indeed, the minimum Fermi temperature in this plot,
corresponding to n = 0.2 × 1012 cm−2, is TF � 605 K. Therefore, in
this plot, T/TF � 0.45. (b) The low-frequency kinematic viscosity is
shown as a function of temperature T (in units of K) for an excess
carrier density n = 0.4 × 1012 cm−2 (corresponding to TF � 855 K).
Inset: a logarithmic plot of ν0 in the same range of temperatures as in
the main panel. Note that ν0 grows like T −2 for T � TF. A crossover
to a different power law, ∼T −3/2, is evident as temperature increases
beyond the T � TF regime.
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FIG. 6. (a) shows the kinematic viscosity νω = ηω/(nmc) (in units
of m2/s) of the 2D MDF liquid in a doped graphene sheet—Eq. (1)—
as a function of ω (in units of the Fermi energy εF). In this plot, we
set n = 0.2 × 1012 cm−2, αee = 0.5, and we show results for three
different temperatures: T = 150, 200, and 270 K. All the curves tend
to the finite (albeit small) value at large ω, whose magnitude can be
extracted from Fig. 2. In this plot, we subtracted the “conductivity
term” proportional to BNf (αee) from the definition of η∞ given in
Eq. (54). (b) Same as in panel a) but for n = 0.5 × 1012 cm−2.
(c) Same as in (a) and (b) but for n = 1.0 × 1012 cm−2.

goes as T −2 for very small temperatures, we find that it goes
as T −3/2 for the larger temperatures shown in Fig. 5(b). Note
that the kinematic viscosity of the 2D MDF liquid in graphene
is much higher than that of classical fluids [1].

In Fig. 6, we illustrate the frequency dependence of the
kinematic viscosity νω ≡ ηω/(nmc) of the 2D MDF liquid in
a doped graphene sheet. The quantity ηω is defined in Eq. (1).
We remind the reader that ω here represents the frequency of
the external perturbation. In Fig. 6(a), we fix the excess carrier
density n = 0.2 × 1012 cm−2, the coupling constant αee = 0.5,
and we show three curves for T = 150, 200, and 270 K.
In Figs. 6(b) and 6(c), we fix instead the carrier density at
n = 0.5 × 1012 cm−2 and n = 1012 cm−2. Figure 6 shows that
viscosity corrections to the lifetime of plasmons in the high-
frequency (e.g., mid infrared) regime are totally negligible.
However, when the plasmon frequency is in the terahertz (THz)
spectral region [ω/εF � 0.1 in Figs. 6(a)–6(c)] the viscosity of
the electron liquid leads to corrections [39] to the plasmon life-
time that may be comparable to those due to electron-impurity

[20] and electron-phonon scattering [21,40]. Therefore a
careful comparison between measurements of the lifetime
of THz plasmons in high-quality graphene samples and
theoretical predictions can be used to extract the value of νω.

In summary, we have calculated (i) the high-frequency
bulk and shear viscosities—Eq. (54)—and (ii) the viscosity
transport time—Eq. (60)—of the two-dimensional massless
Dirac fermion liquid in a doped graphene sheet, as solely
due to electron-electron interactions. As expected, the bulk
viscosity vanishes. The shear viscosity is instead finite and is
proportional to the excess carrier density of the doped system.
Note that, since the bulk viscosity vanishes, the high-frequency
shear viscosity η∞ can be directly estimated by measuring the
lifetime of Dirac plasmons [15] in high-quality encapsulated
graphene sheets [40], by carrying out similar experiments in
the terahertz spectral range. Finally, from the knowledge of the
high-frequency values of the shear viscosity and modulus, and
of the viscosity transport time, we extracted the shear viscosity
ηω at all frequencies, using the interpolation formula given by
Eq. (1) and derived in Appendix B.

The low-frequency shear viscosity is equal to the high-
frequency shear modulus S∞ = nεF/4 multiplied by a “vis-
cosity transport time” τv, which we microscopically calculated
in this paper. We showed that τv is both quantitatively and
qualitatively different from the quasiparticle lifetime [5,6] τee.
Indeed, in the low-temperature limit, 1/τee ∝ −T 2 ln(T/TF),
and the coefficient of proportionality is independent of the
coupling constant αee (as shown in detail in Ref. [5]).
Conversely, we proved that 1/τv ∝ T 2 and that it depends on
αee. Excitations in which a quasiparticle is scattered at 90◦ with
respect to its initial direction of motion are responsible for the
dominant contribution to the (shear) viscosity transport time.
This is reflected by a matrix element in the expression of 1/τv,
which suppresses the contributions due to both the forward
scattering and perfect backscattering of the quasiparticle (i.e.,
the perfectly longitudinal channels). The same matrix element
is expected to show up in the expression for the viscosity
transport time of a Galilean invariant (parabolic band) two-
dimensional electron gas. Therefore, also in the latter case, we
expect 1/τv ∝ T 2 for T � TF.
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APPENDIX A: THE EQUIVALENCE OF HYDRODYNAMIC
AND MICROSCOPIC APPROACHES IN THE FERMI

LIQUID REGIME

In this appendix, we demonstrate the equivalence of
hydrodynamic and microscopic approaches for the 2D MDF
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liquid in a doped graphene sheet, in the low-temperature Fermi
liquid regime. To this aim, let us focus on the noninteracting
equation of motion for the current operator

i∂t jq,i = [Ĥ0,jq,i]

= −v2
Fqin̂q − 2iv2

F

∑
k,αβ

ψ̂
†
k−q/2,α(k × σ αβ)ψ̂k+q/2,β .

(A1)

We remind the reader that we are interested in calculating the
current-current response functions to order q2, in order to take
the limits of Eq. (25). This in turn implies that we can retain
only the term of order q of Eq. (A1), and replace the first
term on its right-hand side with qin̂q → qin̂q=0. Since n̂q=0
is the total number of particles, it is exactly conserved by any
microscopic process, and therefore does not contribute to any
linear response function. Thus, we neglect it in what follows.
We now use the fact that we are interested only in the states
in conduction band around the Fermi surface. After a rotation
of the second term on the right-hand side of Eq. (A1) to the
chiral basis, we retain only the states that have chiral indices
λ = λ′ = +. We thus get

∂t jq,i = −2v2
F

∑
k

ĉ
†
k−q/2,+(k × ẑ)ĉk+q/2,+

×S (z)
++(k − q/2,k + q/2), (A2)

where S (z)
λλ′(k,k′) is defined in Eq. (13). Its approximate

expression valid in the continuum limit and at the Fermi surface
is given in Eq. (14). Using the following vectorial identity

(k × ẑ)i[ ẑ · (q × k)] = (r̂ i × k) · (q × k)

= qi |k|2 − ki(q · k), (A3)

which holds since k,q and r̂ i ≡ (x̂, ŷ)i are 2D in-plane vectors,
to O(q2) we get

i∂t jq,i = −
∑

k

ĉ
†
k,+ĉk,+

vF

mckF
ki(q · k)

+ v2
Fqi

∑
k

ĉ
†
k−q/2,+ĉk+q/2,+. (A4)

The term on the second line is proportional to the total number
of particles in the conduction band. At low frequencies, since
interband processes are strongly suppressed, the number of
particles in each band is conserved. Therefore such a term does
not contribute to the response functions and can be neglected.
On the other hand, in Eq. (14), we noted that the matrix
elements of the current, when projected at the Fermi surface,
read S (i)

++(k,k) = ki/kF. Therefore Eq. (A4) can be rewritten
as

i∂t jq,i = −
∑
k,j

ĉ
†
k,+ĉk,+

vFqj

mc

kiS (j )
++(k,k) + kjS (i)

++(k,k)

2
.

(A5)

Since (i) we always consider states around the Fermi surface,
(ii) we do not allow interband transitions, and (iii) we use
the equation of motion to order q, after a rotation back to the

pseudospin basis, we can rewrite Eq. (A5) as

i∂t jq,i = −vFqj

mc

∑
k,α,β

ψ̂
†
k−q/2,α

kiσ
j

αβ + kjσ
i
αβ

2
ψ̂k+q/2,β .

(A6)

The quantity on the right-hand side is exactly the bare
stress tensor operator of Eq. (31). Using Eq. (A6), we can
derive the analogous of Eq. (39) for an MDF liquid and
prove the equivalence of the two approaches [although in the
approximate sense explained after Eq. (A5)].

APPENDIX B: THE GENERALIZED RELAXATION
TIME APPROXIMATION

The generalized relaxation time approximation (GRTA)
offers a simple and powerful way to interpolate between the
collisionless and the collisional regimes of linear response
functions. This theory has its roots in Mermin’s work on the
density-density response function of the electron gas [41], but
it is applicable to a broader class of response functions and
problems. The classic derivation is from the solution of the
Boltzmann equation with a collision integral that describes
relaxation towards a local equilibrium distribution function.

A local equilibrium distribution function (LEDF) has the
same form as the equilibrium distribution function (a function
of constants of the motion) but is evaluated at the local values of
the densities of the conserved quantities. Thus, in the presence
of impurity scattering, the LEDF depends on a local chemical
potential and a local temperature, determined by the local
particle density and energy density respectively. Momentum
is not conserved, and therefore the LEDF has zero average
momentum. This is the situation considered in Mermin’s
original paper. On the other hand, if impurity scattering is
absent or negligible on the time scale of particle-particle
collisions, then the LEDF depends also on a local drift velocity,
determined by the local momentum density.

Regardless of whether electron-impurity collisions or
electron-electron interactions dominate (we assume that it is
always either one or the other), one can distinguish between
(i) a collisionless regime in which the frequency of the
macroscopic motion is much higher than the collision rate,
and (ii) a collisional regime in which the frequency of the
macroscopic motion is much lower than the collision rate.

When electron-impurity collisions dominate, the collisional
regime is referred to as diffusive regime; in this regime, there
is a direct proportionality between the current and the gradient
of the density. Similarly, when electron-electron collisions
dominate, the collisional regime is referred to as hydrodynamic
regime; in this regime, there is a direct proportionality between
the stress tensor and the gradient of the velocity field.

In the diffusive regime, a drift velocity can only arise
from the deviation of the distribution function from the
LEDF, whereas in the hydrodynamic regime a drift velocity is
already present in the LEDF. The diffusive regime is therefore
intrinsically limited to drift velocities that are small relative to
the Fermi velocity—it is basically a linear theory of drift.
Whereas the hydrodynamic regime is suitable to describe
large drift velocities, which cannot be treated in the linear
approximation.
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Let us formulate the general theory of the GRTA for a
generic response function χ (q,ω). We define the relaxation
function K(q,ω) as follows [42]:

χ (q,ω) ≡ χ (q,0)[1 + iωK(q,ω)]. (B1)

Since we will always be working at small q (q � kF ), the q

dependence of χ (q,0) will be ignored: χ (q,0) � χ0. Here, χ0

is (minus) the density of state of quasiparticles, and is thus
renormalized by electron-electron interactions. The relaxation
function can further be expressed in terms of a generalized
frequency- and wave vector-dependent relaxation time T (q,ω)
for the quantity under consideration. Its general structure is

K(q,ω) = 1

−iω + 1
T (q,ω)

. (B2)

This form guarantees that the finite frequency response
function χ (q,ω) vanishes if the generalized relaxation time T

is infinite, i.e.,, if the quantity under consideration is conserved.
From Eqs. (B1) and (B2), it is indeed immediate to get

χ (q,ω) ≡ χ0

1 − iωT (q,ω)
. (B3)

It is essential to realize that T (q,ω) is the lifetime of a collective
mode (say a density fluctuation) and as such is conceptually
different from the microscopic scattering times (quasiparticle
lifetime and transport lifetime) upon which it may depend. In
fact, we will see that the form of T (q,ω) depends crucially on
the nature of the response function under study.

Let us now introduce the “high-frequency” response func-
tion χ∞(q,ω). The latter includes electron-electron interac-
tions only to the extent of renormalizing the Fermi liquid
parameters. Thus the quasiparticle lifetime and all the transport
times, whether they be due to electron-electron, electron impu-
rity, or electron-phonon collisions, are assumed to be infinite:
we are in the collisionless regime. The associated “high-
frequency” relaxation function will be denoted by K∞(q,ω).
We posit that the relation between the full interacting relaxation
function and the “high-frequency” one has the following form:

1

K(q,ω)
= 1

K∞
(
q,ω + i

τ

) − Vτ (q,ω) . (B4)

The underlying physical idea is that the replacement ω →
ω + i/τ accounts for self-energy corrections, while Vτ (q,ω)
accounts for vertex corrections. It is well known that the two
corrections 1/τ and Vτ are not independent of each other,
however. They must be chosen consistently, in order to satisfy
the relevant conservation laws. In the following sections, we
consider the case of the density response in both disorder and
clean systems. Therefore all the response functions that appear
in what follows should be regarded as density-density ones (we
suppress their indices for brevity).

1. GRTA in a disordered system

Let us first apply the theory developed so far to a system
in which the dominant mechanism is the electron-impurity
scattering. Since the only conserved quantity is the particle
number, we now consider the relaxation function of density
fluctuations. At q = 0 and finite frequency ω, both the
collisionless and the collisional relaxation functions must

tend to (−iω)−1 to ensure the vanishing of the corresponding
collisionlesss and collisional density response functions [see
Eq. (B1)], which is required by the conservation of particle
number. Thus, we have K−1

∞ (0,ω) = K−1(0,ω) = −iω. For
this to be compatible with Eq. (B4), we must choose Vτ (0,ω) =
1/τ . The inverse density-density response function, as calcu-
lated from Eq. (B1), reads

1

χ (q,ω)
= 1

χ0
− iω

χ0

K(q,ω)

1 + iωK(q,ω)
. (B5)

Substituting in Eq. (B5) the ansatz (B4), we get

1

χ (q,ω)
= 1

χ0
− iω

χ0

K∞
(
q,ω + i

τ

)
1 + i[ω + iVτ (q,ω)]K∞

(
q,ω + i

τ

) .
(B6)

At the same time, taking the limit τ → ∞ in Eq. (B5), and
replacing ω → ω + i/τ , we have

1

χ∞
(
q,ω + i

τ

)
= 1

χ0
− i

(
ω + i

τ

)
χ0

K∞
(
q,ω + i

τ

)
1 + i

(
ω + i

τ

)
K∞

(
q,ω + i

τ

) . (B7)

Combining Eqs. (B6) and (B7), we finally get

1

χ (q,ω)
= 1

χ0
+ ω(

ω + i
τ

)
χ0

(
χ0

χ∞
(
q,ω + i

τ

) − 1

)

×
[

1 − i
[
Vτ (q,ω) − 1

τ

]
(
ω + i

τ

)
(

χ0

χ∞
(
q,ω + i

τ

)−1

)]−1

.

(B8)

Setting now Vτ (q,ω) = 1/τ (which amounts to neglecting the
q dependence of the vertex correction), we get

1

χ (q,ω)
=

i
τ(

ω + i
τ

) 1

χ0
+ ω(

ω + i
τ

) 1

χ∞
(
q,ω + i

τ

) , (B9)

which is precisely the Mermin’s formula for the density-
density response function [41]. In a Galilean-invariant electron
gas in the diffusive regime,

1

χ (q,ω)
� 1

χ0

(
1 − iω

Dτq2

)
, (B10)

where Dτ = −Dwτ/(χ0) is the diffusion constant, Dw is the
renormalized Drude weight (n/m for the two-dimensional
electron gas or kF vF /� for massless Dirac fermions), and we
have used the ω → 0 diffusive form of the density-density
response function χ∞(q,ω + i/τ ) � −Dwq2τ 2.

However, it is well known that the transport relaxation time
appearing in the diffusion constant, commonly denoted by τtr,
differs from the self-energy relaxation time τ (quasiparticle
lifetime). The conservation of particle number, as implemented
in the q-independent vertex correction, is not sufficient to
produce the correct transport relaxation time. To capture
the difference between τ and τtr, we must allow for the
q-dependence of the vertex correction in our Ansatz (B4).
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Namely, we set

Vτ (q,ω) = 1

τ
+ D̃τ q

2 . (B11)

The coefficient D̃τ has the dimensions of a diffusion constant
and its value is determined by the requirement that the final
formula for χ (q,ω) has a diffusive limit with the correct
relaxation time, i.e., τtr. With the choice (B11) for the vertex
correction our Eq. (B8) gives

1

χ (q,ω)
� 1

χ0
− iω

χ0

1

(Dτ − D̃τ )q2
. (B12)

It is evident from this result that we obtain the correct diffusive
limit if and only if

D̃τ = Dτ

(
1 − τtr

τ

)
. (B13)

Thus the coefficient D̃τ in the vertex correction is simply
the difference between the “naive” diffusion constant and
the “true” diffusion constant, in which τ is replaced by the
transport lifetime τtr.

2. GRTA in a clean system

We now discuss the case of a clean Galilean-invariant
system in the so-called “hydrodynamic regime,” in which
the main mechanism of quasiparticle relaxation is given
by electron-electron interactions. Replacing τ → τee, from
Eq. (B9), we get the “naive” diffusion constant

Dτ = Dw

χ0

1

i
(
ω + i

τee

) . (B14)

However, since electron-electron collisions conserve the total
momentum the true diffusion constant must be divergent in
the limit of ω → 0, i.e., it must be

Dtr = Dw

χ0

1

iω
, (B15)

Therefore the role of D̃τ is played by

D̃τ = Dτ − Dtr = − Dw

χ0τee

1

ω
(
ω + i

τee

) . (B16)

Substituting this in Eq. (B11) for the q-dependent vertex
correction, and then putting this vertex correction in Eq. (B8),
we get

1

χ (q,ω)

= 1

χ0
+ ω(

ω + i
τee

)
(

1

χ∞
(
q,ω + i

τee

) − 1

χ0

)

×
⎧⎨
⎩1 + iDwq2/(ωτee)(

ω + i
τee

)2

[
1

χ∞
(
q,ω + i

τee

) − 1

χ0

]⎫⎬
⎭

−1

.

(B17)

This expression can be further simplified by using the fact that

χ∞

(
q,ω + i

τee

)
� Dwq2(

ω + i
τee

)2 . (B18)

Then simple algebraic manipulations give us

1

χ (q,ω)
= 1

χ0
+
(

ω

ω + i
τee

)2[
1

χ∞
(
q,ω + i

τee

) − 1

χ0

]
,

(B19)

where we have dropped a term proportional to χ2
∞, which is

negligible for small q.
To make a clearer connection with the solution of the

Boltzmann equation in the relaxation time approximation, we
rewrite(

ω

ω + i
τee

)2

= ω

ω + i
τee

− iω/τee(
ω + i

τee

)2

= ω

ω + i
τee

− iω

τeeDwq2

Dwq2

(ω + i/τee)2
. (B20)

The first term reproduces the Mermin formula, and the
second term is the correction required to ensure momentum
conservation:

1

χ (q,ω)
�

i
τee(

ω + i
τee

) 1

χ0
+ ω(

ω + i
τee

) 1

χ∞
(
q,ω + i

τee

)
− iω

τeeDwq2
. (B21)

To extract the hydrodynamic coefficients from Eq. (B21),
we now observe that

1

χ∞(q,ω)
� ω2

Dwq2
−
[B∞

n2
+
(

2 − 2

d

) S̃∞(ω)

n2

]
, (B22)

where the bulk modulus B∞ is real, frequency-independent,
and related to χ0 by the well-known compressibility sum rule

χ0 = − n2

B∞
, (B23)

while S̃∞(ω) = S∞ − iωη∞ is the complex shear modulus.
Plugging Eqs. (B22) and (B23) into Eq. (B21), we get, after
some algebra,

1

χ (q,ω)
� ω2

Dwq2
−
[B∞

n2
+
(

2 − 2

d

)
ω

ω + i/τee

S̃∞(ω)

n2

]
.

(B24)

This expression can be directly compared with what one
obtains from the inversion of Eqs. (20) and (21). The only
problem is that it still contains the electron-electron lifetime
τee instead of the physically correct viscosity relaxation time
τv. This discrepancy is a consequence of the ansatz (B11)
for the vertex correction. We can show that the replacement
of τee by τv is effect of the inclusion of an additional term
proportional to q4 on the right hand side of Eq. (B11). Just as
the inclusion of the q2 term in the vertex correction guaranteed
the correct behavior of the momentum relaxation time, the
inclusion of the q4 term enacts the replacement of τee by τv.
With this replacement, it is at last straightforward to identify
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the frequency-dependent generalized bulk and shear moduli as

B̃ω = B∞,
(B25)

S̃ω = ω

ω + i/τv
S∞.

Separating the real and the imaginary parts of these complex
coefficients we arrive at the expressions in agreement with
Eq. (1).

APPENDIX C: CALCULATION OF F̂1 AND ĵ 1,q

The operator F̂1 was calculated in Ref. [19] and reads

iF̂1 ≡ 1

2

∑
q ′

vq ′
∑
k,k′

∑
λ,λ′,μ,μ′

Mλ,λ′,μ,μ′(k,k′,q ′)

× c
†
k−,λck+,λ′c

†
k′

+,μ
ck′

−,μ′ , (C1)

where

Mλ,λ′,μ,μ′(k,k′,q ′) = Dλλ′(k−,k+)Dμμ′(k′
+,k′

−)

εk−,λ − εk+,λ′ + εk′
+,μ − εk′

−,μ′
. (C2)

To simplify the notation, we have introduced k± ≡ k ± q ′/2
and k′

± ≡ k′ ± q ′/2.
The transverse component of the operator ĵ1,q is obtained

from its definition of Eq. (42). After some manipulations, along
the lines of Ref. [19], we get

ĵ1,q,T = 1

2

∑
q ′

vq ′
[
ϒ̂

(T)
q,q ′ n̂−q ′ + n̂q ′ϒ̂

(T)
q,−q ′

]
, (C3)

where

ϒ̂
(T)
q,q ′ =

∑
k,λ,λ′

Mλ,λ′(k,q ′,q)ĉ†k−−q/2,λĉk++q/2,λ′ ,

(C4)

with

Mλ,λ′ (k,q ′,q)

≡
∑

ρ

⎡
⎢⎣Dλρ

(
k− − q

2
,k+ − q

2

)
S (x)

ρλ′

(
k+ − q

2
,k+ + q

2

)
ω + εk++q/2,λ′ − εk+−q/2,ρ

−
S (x)

λρ

(
k− − q

2
,k− + q

2

)
Dρλ′

(
k− + q

2
,k+ + q

2

)
ω + εk−+q/2,ρ − εk−−q/2,λ

⎤
⎥⎦.

(C5)

We stress that Eqs. (C3)–(C5) are valid only for their use in
Eq. (43), and become exact in the low-energy MDF continuum

limit, which will be taken momentarily. The same limit restores
rotational invariance: we therefore have the freedom of fixing
the direction of the wave vector q arbitrarily. In deriving these
equations, we have taken, without any loss of generality, q =
q ŷ which implies that ĵ1,q,T = ĵ1,q,x .

Following the same steps outlined in Ref. [19]. it is possible
to show that the operator in Eq. (C4) can be written as (the
details of this derivation are given in Appendix D)

ϒ̂
(T)
q,q ′=

∑
α=x,y

{
vFq

ω2kF

[
q ′

xq
′
y

q ′2 q ′
α −

(
1 − q ′2

4k2
F

)

× (q ′
xδα,y + q ′

yδα,y)

]
+ q ′2

4vFk
3
F

δα,x

}
ĵq ′,α

≡
∑

α=x,y

�(T)
α (q,q ′)ĵq ′,α. (C6)

The main differences between Eq. (C6) and the corresponding
expression that can be found for a 2DEG [37] are: (i) the
factor 1 − q ′2/(4k2

F), which is due to the chirality of the MDF
eigenstates and suppresses backscattering at the Fermi surface
[19], and (ii) the last term in curly brackets, which is finite
even in the long-wavelength q → 0 limit [19].

For a sake of completeness we recall [19] that the first-
order correction to the longitudinal current operator is formally
identical to Eq. (C3), with the longitudinal counterpart [ϒ̂ (L)

q,q ′]

of the operator ϒ̂
(T)
q,q ′ taking its place. We recall that ϒ̂

(L)
q,q ′ is

also proportional to the untransformed current operator, i.e.,
ϒ̂

(L)
q,q ′ = ∑

α=x,y �(L)
α (q,q ′)ĵq ′,α , where

�(L)
α (q,q ′) = vFqx

ω2

[
q ′2

y

q ′2
q ′

α

kF
− 2

q ′
x

kF

(
1 − q ′2

4k2
F

)
δα,x

]

+ q ′2

4vFk
3
F

δα,x . (C7)

After the change of variables q ′ → −q ′ in the second term
on the right-hand side of Eq. (C3), the latter can be rewritten
as q · ĵ1,q = ∑

q ′ vq ′ϒ̂
(T)
q,q ′ n̂−q ′ . A major simplification is sug-

gested by the analysis of the Feynman graphs contributing to
the noninteracting spectrum of q̂ · ĵ1,q . As shown in Ref. [19],
the disconnected graphs contain two independent sums over
the number Nf of fermion flavors, whereas the connected ones
contain only one such sum. We conclude that the disconnected
graphs dominate in the large-Nf limit. The final formula
for the two components (longitudinal and transverse) of the
current-current response function, which is exact to second
order in e-e interactions and in the large-Nf limit, is

�m[χ�(q,ω)] = −
∑

α,β=x,y

∫
d2q ′

(2π )2
v2

q ′

∫ ω

0

dω′

π

{
�(�)

α (q,q ′)�(�)
β (−q, − q ′)�m

[
χ (0)

nn (q ′,ω′)
]�m

[
χ

(0)
jαjβ

(q ′,ω − ω′)
]

+�(�)
α (q,q ′)�(�)

β (−q,q ′)�m
[
χ

(0)
njα

(−q ′,ω′)
]�m

[
χ

(0)
njβ

(q ′,ω − ω′)
]}

, (C8)

In this equation, χ (0)
nn (q,ω), χ

(0)
jαjβ

(q,ω), and χ
(0)
njα

(q,ω) are the
noninteracting density-density, current-current, and density-

current response functions of a 2D gas of MDFs. The quantities
{�(�)

α (q,q ′); α = x,y; � = L,T} are defined in Eqs. (C6) and
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(C7). We stress that the imaginary parts of the three linear-
response functions χ (0)

nn (q,ω), χ
(0)
jαjβ

(q,ω), and χ
(0)
njα

(q,ω) do
not depend on any ultraviolet cut-off in the low-energy MDF
limit. Moreover, since in the limit of ω → 0 the integral
over q ′ is naturally restricted to 0 � q ′ � 2kF, no ultraviolet
regularization is needed in Eq. (C8). The only pathology of
the integral in Eq. (C8) appears in the infrared q ′ → 0 limit,
due to the 1/q ′ singularity of the Coulomb potential vq ′ . This
problem is cured by screening, as discussed in the main text.

APPENDIX D: DETAILS OF THE
MANIPULATION OF ϒ̂

(T)
q,q′

In this appendix, we approximate the expression of the
operator ϒ̂

(T)
q,q ′ in Eqs. (C4) and (C5) by taking the limit vFq �

ω � 2εF. We will try to slowly guide the reader through the
many steps of this lengthy process.

To begin with, in the long-wavelength q → 0 limit, we can
write

1

ω + εk±+q/2,λ − εk±−q/2,ρ

→ δλ,ρ

(
1

ω
− q

ω2

∂εk±

∂ky

)
+ (1 − δλ,ρ)

1

ω + 2λεF
+ O(q2). (D1)

We then observe that in the regime of interest in this paper, i.e., vFq � ω � 2εF, the particle-hole states created by the
operator ϒ̂

(T)
q,q ′ are energetically close to the Fermi energy. The band indices λ,λ′ on the right-hand side of Eq. (C5) are therefore

constrained to take the values λ = λ′ = +1 (recall that εF > 0).
Note that the “virtual state” ρ, over which the sum on the right-hand side of Eq. (C5) runs, can be either in conduction

(ρ = +1) or valence (ρ = −1) band, even though the states labeled by the band indices λ and λ′ are bound to the Fermi surface.
We first simplify Eqs. (C4) and (C5) by using Eq. (D1). We are naturally led to define

Mintra(k,q ′,q) ≡ M++(k,q ′,q)
∣∣
ρ=+1 = cos

(
θk−−q/2 − θk+−q/2

2

)
cos(θk+ )

[
1

ω
− vFq

ω2
sin(θk+)

]

− cos

(
θk−+q/2 − θk++q/2

2

)
cos(θk−)

[
1

ω
− vFq

ω2
sin(θk−)

]
+ O(q2) (D2)

and

Minter(k,q ′,q) ≡ M++(k,q ′,q)
∣∣
ρ=−1 = − 1

2εF
sin

(
θk−−q/2 − θk+−q/2

2

)
sin

(
θk+−q/2 + θk++q/2

2

)

+ 1

2εF
sin

(
θk−+q/2 − θk++q/2

2

)
sin

(
θk−−q/2 + θk−+q/2

2

)
+ O(q2), (D3)

so that in the limit vFq � ω � 2εF, we have

M++(k,q ′,q) = Mintra(k,q ′,q) + Minter(k,q ′,q). (D4)

In writing Eq. (D3), we have taken the limit ω → 0 in the second term on the right-hand side of Eq. (D1). Moreover, in obtaining
Eq. (D2), we have used that

cos

(
θk±−q/2 + θk±+q/2

2

)
= cos(θk±) + O(q2) (D5)

and

∂εk±,λ

∂ky

→ λvF sin(θk±). (D6)

The last equation becomes exact for k close to the K point of the BZ and therefore in the low-energy MDF limit.
Clearly we can carry out further approximations, relying on the fact that we are interested in the low-energy MDF limit.

Equation (D2) can be further simplified by noting that

cos

(
θk−±q/2 − θk+±q/2

2

)
= cos

(
θk−−q/2 − θk++q/2

2

)
− q

2
sin

(
θk− − θk+

2

)
∂θk∓

∂ky

+ O(q2), (D7)

which leads to

Mintra = cos(θk+ ) − cos(θk− )

ω
cos

(
θk−−q/2 − θk++q/2

2

)
+ vFq

ω2
[cos(θk− ) sin(θk− ) − cos(θk+ ) sin(θk+)] cos

(
θk− − θk+

2

)

+ q

2ω

∂[sin(θk−) − sin(θk− )]

∂kx

sin

(
θk− − θk+

2

)
+ O(q2). (D8)
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In the first term on the right-hand side of Eq. (D8), we can approximate

cos(θk+) − cos(θk−) → q ′
x

kF
, (D9)

while the second term on the right-hand side of Eq. (D8) becomes

[cos(θk− ) sin(θk−) − cos(θk+) sin(θk+)] cos

(
θk− − θk+

2

)

= −kxq
′
y + kyq

′
x

k2
F

cos

(
θk− − θk+

2

)
→ −

[
q ′

y

kF

cos(θk+ ) + cos(θk− )

2
+ q ′

x

kF

sin(θk+) + sin(θk−)

2

]
cos

(
θk− − θk+

2

)

= −
(

1 − q ′2

4k2
F

)[
q ′

x

kF
sin

(
θk− + θk+

2

)
+ q ′

y

kF
cos

(
θk− + θk+

2

)]
. (D10)

Finally, the derivative in the third term on the right-hand side
of Eq. (D8) reduces to

∂[sin(θk− ) − sin(θk−)]

∂ky

→ −∂(q ′
y/kF)

∂ky

= 0. (D11)

Introducing Eq. (D8), approximated according to
Eqs. (D9)–(D11), back into Eq. (C4) we get the “intraband”
contribution to the operator ϒ̂

(T)
q,q ′ , which reads

ϒ̂
(T,intra)
q,q ′ =

[
vFq

′
x

kFω
n̂q+q ′ − vFq

ω2

(
1 − q ′2

4k2
F

)

×
(

q ′
x

kF
ĵq ′,y + q ′

y

kF
ĵq ′,x

)]
+ O(q2). (D12)

We remind the reader that, without loss of generality, we have
taken q = q ŷ. Here we used that ĵ q = vFσ̂ q close to the K
point of the BZ.

We now consider Eq. (D3). Steps similar to what summa-
rized above for the intraband contribution to ϒ̂

(T)
q,q ′ yield

Minter = 1

2εF
[sin(θk−) − sin(θk+)] sin

(
θk− − θk+

2

)

= 1

εF
sin2

(
θk− − θk+

2

)
cos

(
θk− + θk+

2

)

= q ′2

4vFk
3
F

S (x)
λλ′(k−,k+). (D13)

Once Eq. (D13) is introduced into Eq. (C4), it gives the
“interband” contribution to the operator ϒ̂

(T)
q,q ′ , i.e.,

ϒ̂
(T,inter)
q,q ′ = q ′2

4vFk
3
F

jq ′,x + O(q2). (D14)

Again, we used the fact that ĵ q = vFσ̂ q close to the K point
of the BZ.

Summing Eqs. (D12) and (D14), we finally get

ϒ̂
(T)
q,q ′ = vFq

′
x

kFω
n̂q+q ′ + ϒ̂ ′

q,q ′ (D15)

with

ϒ̂ ′
q,q ′ = −vFq

ω2

(
1 − q ′2

4k2
F

)(
q ′

x

kF
ĵq ′,y + q ′

y

kF
ĵq ′,x

)
+ q ′2

4vFk
3
F

ĵq ′,x .

(D16)

The first term on the right-hand side of Eq. (D15) can be
further manipulated. Indeed, when it is introduced in Eq. (C3)
it gives

1

2ωkF

∑
q ′

vq ′[q ′
xn̂q+q ′ n̂−q ′ − q ′

xn̂q ′ n̂q−q ′]

= vF

2ωkF

∑
q ′

n̂q+q ′ n̂−q ′[q ′
xvq ′ − q ′

xvq+q ′ ]

→ vFq

2ωkF

∑
q ′

q ′
xq

′
y

q ′2 vq ′ n̂q ′ n̂−q ′ + O(q2). (D17)

Here, we performed the shift q ′ → q + q ′ in the term
proportional to n̂q ′ n̂q−q ′ , using that q = q ŷ, and we took the
small-q limit in the last line of Eq. (D17). Finally, using the
continuity equation

ωn̂q ′ n̂−q ′ = −q ′ · ĵ q ′ n̂−q ′ + n̂q ′ q ′ · ĵ−q ′ , (D18)

we can rewrite Eq. (C4) in the form of Eq. (C6).

APPENDIX E: THE VISCOSITY TRANSPORT TIME

We now guide the reader through the all-order diagram-
matic calculation of the low-frequency viscosity, from which
we extract the corresponding transport time τv. We remind
the reader that the low-frequency shear viscosity is given by
Eq. (57), i.e.,

η0 = − lim
ω→0

1

4ω

∑
i,j

�m

[
χij,ij (0,ω) − 1

2
χii,jj (0,ω)

]
,

(E1)

where χαβ,μν(q,ω) is the stress-stress response function. Fig-
ures 3 and 4 summarize the all-order microscopic calculation
of χαβ,μν(q,ω), which is given by [Fig. 3(a)]

χαβ,μν(q,iωm) = −kBT
∑

k,εn,λ,λ′
Gλ(k−,iεn)

×�
(0,αβ)
λ,λ′ (k−,k+)Gλ′(k+,iεn + iωm)

×�
(μν)
λ′λ (k+,iεn + iωm,k−,iεn). (E2)

Here, Gλ(k,iε) is the Green’s function (represented by a
double solid line in Figs. 3 and 4) dressed by the self-energy
insertion of Fig. 3(b), k± = k ± q/2, εn (ωm) is a fermionic

125410-18



BULK AND SHEAR VISCOSITIES OF THE TWO- . . . PHYSICAL REVIEW B 93, 125410 (2016)

(bosonic) Matsubara frequency, and λ and λ′ are band indices.
In Eq. (E2), we defined the bare vertex (represented as a solid
dot in Fig. 3)

�
(0,αβ)
λλ′ (k,k′) = vF

kαS (β)
λλ′ (k−,k+) + kβS (α)

λλ′ (k−,k+)

2
. (E3)

Finally, �
(μν)
λλ′ (k,iε,k′,iε′) is the dressed vertex function

(represented as a triangle in Figs. 3 and 4), which satisfies
the self-consistent Bethe-Salpeter equation of Fig. 3(c). The
choice of the quasiparticle self-energy, and the requirement
of fulfilling the Ward identities, uniquely determine the form
of the Bethe-Salpeter equation, i.e., the irreducible interaction
I . Figure 4 shows the three contributions to the irreducible
interactions. In formulas, the Bethe-Salpeter equation is

�
(αβ)
λ′λ (k+,iεn + iωm,k−,iεn)

= �
(0,αβ)
λ′λ (k+,k−) +

3∑
i=1

�
(i,αβ)
λ′λ (k+,iεn + iωm,k−,iεn),

(E4)

where the three {�(i,αβ)
λ′λ (k+,iεn + iωm,k−,iεn),i = 1, . . . ,3}

correspond to the three diagrams in Fig. 4, and read

�
(1,αβ)
λ′λ (k+,iεn + iωm,k−,iεn)

= kBT
∑
k′,εn′

W
(1)
λλ′μμ′(k′,k,iεn′ − iεn)Gμ′(k′

+,iεn′ + iωm)

×�
(αβ)
μ′μ (k′

+,iεn′ + iωm,k′
−,iεn′ )Gμ(k′

−,iεn′ ) (E5)

and

�
(2,αβ)
λ′λ (k+,iεn + iωm,k−,iεn)

= kBT
∑
k′,εn′

W
(2)
λλ′μμ′(k′,k,iεn′ − iεn)Gμ′(k′

+,iεn′ + iωm)

×�
(αβ)
μ′μ (k′

+,iεn′ + iωm,k′
−,iεn′ )Gμ(k′

−,iεn′ ), (E6)

and finally,

�
(3,αβ)
λ′λ (k+,iεn + iωm,k−,iεn)

= kBT
∑
k′,εn′

W
(3)
λλ′μμ′(k′,k,iεn′ + iεn + iωm)Gμ′

×(k′
+,iεn′+iωm)�(αβ)

μ′μ (k′
+,iεn′+iωm,k′

−,iεn′ )Gμ(k′
−,iεn′ ).

(E7)

Here,

W
(1)
λλ′μμ′(k′,k,iωm)

≡ W (k − k′,iωm)Dλ′μ′(k+,k′
+)Dμλ(k′

−,k−), (E8)

where W (q,iωm) is the screened interaction, represented as a
wavy line in Figs. 3 and 4. In the large-Nf limit, this is given
by

W (q,i�m) = vq

1 − vqχnn(q,i�m)
, (E9)

where χnn(q,ω) is the proper density-density response function
[4] of graphene, i.e., [23]

χnn(q,iωm) = NfkBT
∑
q ′,εn

∑
λ′′,μ′′

Gλ′′(q ′,iεn)

×Gμ′′(q ′ + q,iεn + iωm)

×Dλ′′μ′′(q ′,q ′ + q)Dμ′′λ′′(q ′ + q,q ′). (E10)

Moreover,

W
(2)
λλ′μμ′(k′,k,iεn′ − iεn)

= −kBT
∑

q ′,ωm′

∑
λ′′,μ′′

W (q ′,iωm′ )W (q ′ − q,iωm′ − iωm)

×Dλ′λ′′ (k+,k+ − q ′)Dλ′′λ(k+ − q ′,k−)

×Dμμ′′(k′
−,k′

+ − q ′)Dμ′′μ′(k′
+ − q ′,k′

+)

×Gλ′′(k+ − q ′,iεn + iωm − iωm′ )

×Gμ′′(k′
+ − q ′,iεn′ + iωm − iωm′ ) (E11)

and

W
(3)
λλ′μμ′(k′,k,iεn′ + iεn + iωm)

= −kBT
∑

q ′,ωm′

∑
λ′′,μ′′

W (q ′,iωm′ )W (q ′ − q,iωm′ − iωm)

×Dλλ′′(k−,k− + q ′)Dλ′′λ′(k− + q ′,k+)

×Dμμ′′(k′
−,k′

+ − q ′)Dμ′′μ′(k′
+ − q ′,k′

+)Gλ′′

×(k− + q ′,iεn + iωm′ )

×Gμ′′(k′
+ − q ′,iεn′ + iωm − iωm′ ). (E12)

In Eqs. (E5)–(E12), we suppressed the q dependence of
W (2)(k′,k,iεn′ − iεn) and W (3)(k′,k,iεn′ + iεn + iωm).

In what follows, we first analytically continue Eqs. (E2)–
(E12), and then we consider the limit of q = 0, small frequency
and low temperature. These limits allows us to exactly solve
the Bethe-Salpeter equation. This information is then used to
calculate the low-frequency viscosity as shown by Eq. (E1).

1. Analytical continuation to real frequencies

The analytical continuation of equations similar to
Eqs. (E2)–(E12) was performed in Ref. [23]. Therefore
we summarize here only the main results. After the ana-
lytical continuation, the integral on the right-hand side of
Eq. (E2) contains products of two advanced Green’s functions
(schematically G(A)G(A)), two retarded ones (G(R)G(R)), or
one advanced and one retarded (G(A)G(R)). The first two
combinations have both poles on the same side of the complex
plane. Therefore, in the limit εFτee � 1, they give a negligible
contribution, and we can retain only the combination G(A)G(R).
We thus get

χαβ,μν(q,ω) =
∑

k,λ,λ′

∫
dε

2π
[nF(ε + ω) − nF(ε)]

×G
(A)
λ (k−,ε)�(0,αβ)

λ,λ′ (k−,k+)G(R)
λ′ (k+,ε + ω)

×�
(μν)
λ′λ (k+,ε+ + ω,k−,ε−), (E13)
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where ε± = ε ± i0+, and G
(R)
λ (k,ε) ≡ Gλ(k,ε+) [G(A)

λ (k,ε) ≡ Gλ(k,ε−)] is the retarded [advanced] Green’s function. The vertex
function satisfies the following Bethe-Salpeter equation:

�
(αβ)
λ′λ (k+,ε+ + ω,k−,ε−) = �

(0,αβ)
λ′λ (k+,k−) +

3∑
i=1

�
(i,αβ)
λ′λ (k+,ε+ + ω,k−,ε−), (E14)

where

�
(1,αβ)
λ′λ (k+,ε+ + ω,k−,ε−) = −

∑
k′,μ,μ′

∫
dε′

2πi
[nF(ε′) + nB(ε′ − ε)]

[
W

(1)
λλ′μμ′(k′,k,ε′

− − ε) − W
(1)
λλ′μμ′(k′,k,ε′

+ − ε)
]

×G
(R)
μ′ (k′

+,ε′ + ω)�(αβ)
μ′μ (k′

+,ε′
+ + ω,k′

−,ε′
−)G(A)

μ (k′
−,ε′), (E15)

�
(2,αβ)
λ′λ (k+,ε+ + ω,k−,ε−) = −

∑
k′,μ,μ′

∫
dε′

2πi
[nF(ε′) + nB(ε′ − ε)]

[
W

(2)
λλ′μμ′(k′,k,ε′

− − ε) − W
(2)
λλ′μμ′(k′,k,ε′

+ − ε)
]

×G
(R)
μ′ (k′

+,ε′ + ω)�(αβ)
μ′μ (k′

+,ε′
+ + ω,k′

−,ε′
−)G(A)

μ (k′
−,ε′), (E16)

and finally,

�
(3,αβ)
λ′λ (k+,ε+ + ω,k−,ε−) = −

∑
k′,μ,μ′

∫
dε′

2πi
[nF(ε′) + nB(ε′ + ε)]

[
W

(3)
λλ′μμ′(k′,k,ε′

− + ε) − W
(3)
λλ′μμ′(k′,k,ε′

+ + ε)
]

×G
(R)
μ′ (k′

+,ε′ + ω)�(αβ)
μ′μ (k′

+,ε+ + ω,k′
−,ε′

−)G(A)
μ (k′

−,ε′). (E17)

In these equations, we defined the Fermi and Bose distributions nF(ε) = [eε/(kBT ) + 1]−1 and nB(ε) = [eε/(kBT ) − 1]−1, and the
potentials

W
(1)
λλ′μμ′(ε′

− − ε) − W
(1)
λλ′μμ′(ε′

+ − ε)

= −4
∑

q ′,λ′′,μ′′
|W (k − k′,ε′ − ε)|2

∫
dω′

2πi
[nF(ω′ + ε′) − nF(ω′ + ε)]

×�m
[
G

(R)
λ′′ (q ′ − k,ω′ + ε)

]�m
[
G

(R)
μ′′ (q ′ − k′,ω′ + ε′)

]
Dλ′μ′(k+,k′

+)Dμλ(k′
−,k−)Dλ′′μ′′ (q ′ − k,q ′ − k′)Dμ′′λ′′ (q ′−k′,q ′−k),

(E18)

W
(2)
λλ′μμ′(ε′

− − ε) − W
(2)
λλ′μμ′(ε′

+ − ε)

=
∑

q ′,λ′′,μ′′

∫
dω′

2πi
W (q ′,ω′

+)W (q ′,ω′
− − ω)[nF(ω′ − ε − ω) − nF(ω′ − ε′ − ω)]

×[G(R)
λ′′ (k+ − q ′,ε + ω − ω′) − G

(A)
λ′′ (k+ − q ′,ε + ω − ω′)

][
G

(R)
μ′′ (k′

+ − q ′,ε′ + ω − ω′) − G
(A)
μ′′ (k′

+ − q ′,ε′ + ω − ω′)
]

×Dλ′λ′′(k+,k+ − q ′)Dλ′′λ(k+ − q ′,k−)Dμμ′′(k′
−,k′

+ − q ′)Dμ′′μ′(k′
+ − q ′,k′

+), (E19)

and finally,

W
(3)
λλ′μμ′(ε′

− + ε + ω) − W
(3)
λλ′μμ′(ε′

+ + ε + ω)

= −
∑

q ′,λ′′,μ′′

∫
dω′

2πi
W (q ′,ω′

+)W (q ′,ω′
− − ω)[nF(ω′ + ε) − nF(ω′ − ε′)]

×[G(R)
λ′′ (k− + q ′,ε + ω′) − G

(A)
λ′′ (k− + q ′,ε + ω′)

][
G

(R)
μ′′ (k′

+ − q ′,ε′ + ω − ω′) − G
(A)
μ′′ (k′

+ − q ′,ε′ + ω − ω′)
]

×Dλλ′′(k−,k− + q ′)Dλ′′λ′(k− + q ′,k+)Dμμ′′(k′
−,k′

+ − q ′)Dμ′′μ′(k′
+ − q ′,k′

+). (E20)

2. The Bethe-Salpeter equation

Setting q = 0 and taking the limit ω → 0, Eq. (E13) becomes

χαβ,μν(q = 0,ω) = 2iω

ω + i/τee

∑
k,λ

∫
dε

2πi

(
−∂nF(ε)

∂ε

)
�m
[
G

(R)
λ (k,ε)

]
�

(0,αβ)
λ,λ (k,k)�(μν)

λλ (k,ε+ + ω,k,ε−). (E21)
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Here we used that

G
(A)
λ (k,ε)G(R)

λ′ (k,ε + ω) � − 2iδλλ′

ω + i/τee
�m
[
G

(R)
λ′ (k,ε)

]
.

(E22)

In writing Eq. (E22), we retained only the singular part of the
product of the two Green’s functions, i.e., the quasiparticle
pole, and we neglected the regular part. Herein relies our
Fermi-liquid approximation. In so doing, we are able to
significantly simplify the following expressions, especially
that of the Bethe-Salpeter equation, which can then be
solved analytically. This allows us to determine the viscosity
transport time. However, by neglecting the regular part of the
product (E22), we miss the Fermi-liquid renormalization of
the shear modulus S∞. Note that, while the transport time is a

nonperturbative quantity which diverges in the limit αee → 0,
the renormalization of S∞ can be calculated perturbatively.
Therefore our approach captures the most significant effect of
e-e interactions in the regime in which they are not too strong
(i.e., αee � 1).

We observe that, at low temperature, the derivative of the
Fermi function is strongly peaked at ε ∼ 0. This in turn implies
that we can set ε = 0 in �m[G(R)

λ (k,ε)] on the right-hand side
of Eq. (E21). The latter is then strongly peaked at the Fermi
surface, and allows us to set k = kF and λ = + in the rest of
the integrand. As shown in Ref. [23], we cannot set ε = 0 in
the factor �

(μν)
λλ (k,ε+,k,ε−). This happens because the latter

contains Fermi and Bose distributions which combine with
the factor −∂nF(ε)/(∂ε) on the right-hand side of Eq. (E21) to
produce the correct vertex correction,.

After the analytical continuation Eqs. (E15)–(E20) read

�
(1,αβ)
λλ (k,ε+ + ω,k,ε−)

= − 8i

ω + i/τee

∑
k′,q ′

∑
μ,μ′′,λ′′

∫
dε′

2πi

∫
dω′

2πi
[nF(ε′) + nB(ε′ − ε)][nF(ω′ + ε′) − nF(ω′ + ε)]

×|W (k − k′,ε′)|2�m
[
G(R)

μ (k′,ε′)
]�m

[
G

(R)
λ′′ (q ′ − k,ω′)

]�m
[
G

(R)
μ′′ (q ′ − k′,ω′ + ε′)

]
Dλμ(k,k′)Dμλ(k′,k)

×Dλ′′μ′′(q ′ − k,q ′ − k′)Dμ′′λ′′ (q ′ − k′,q ′ − k)�(αβ)
μμ (k′,ε′

+ + ω,k′,ε′
−), (E23)

�
(2,αβ)
λλ (k,ε+ + ω,k,ε−)

= − 8i

ω + i/τee

∑
k′,q ′

∑
μ,λ′′,μ′′

∫
dε′

2πi

∫
dω′

2πi
[nF(ε′) + nB(ε′ − ε)][nF(ω′ − ε) − nF(ω′ − ε′)]

×|W (q ′,ω′)|2�m
[
G(R)

μ (k′,ε′)
]�m

[
G

(R)
λ′′ (k − q ′, − ω′)

]�m
[
G

(R)
μ′′ (k′ − q ′,ε′ − ω′)

]
Dλλ′′(k,k − q ′)

×Dλ′′λ(k − q ′,k)Dμμ′′(k′,k′ − q ′)Dμ′′μ(k′ − q ′,k′)�(αβ)
μμ (k′,ε′

+ + ω,k′,ε′
−), (E24)

and finally,

�
(3,αβ)
λλ (k,ε+ + ω,k,ε−)

= 8i

ω + i/τee

∑
k′,q ′

∑
μ,λ′′,μ′′

∫
dε′

2πi

∫
dω′

2πi
[nF(ε′) + nB(ε′ + ε)][nF(ω′ + ε) − nF(ω′ − ε′)]

×|W (q ′,ω′)|2�m
[
G(R)

μ (k′,ε′)
]�m

[
G

(R)
λ′′ (k + q ′,ω′)

]�m
[
G

(R)
μ′′ (k′ − q ′,ε′ − ω′)

]
Dλλ′′ (k,k + q ′)

×Dλ′′λ(k + q ′,k)Dμμ′′(k′,k′ − q ′)Dμ′′μ(k′ − q ′,k′)�(αβ)
μμ (k′,ε′

+ + ω,k′,ε′
−). (E25)

In these equations, the limit ω → 0 is understood.
We now recall that Eqs. (E23)–(E25) must be introduced into Eq. (E21) and integrated over ε with the weighting factor

∂nF(ε)/(∂ε). To perform such integration, we use the fact that

N = ∂nF(ε)

∂ε
[nF(ε′)+nB(ε′−ε)][nF(ε′′ + ε) − nF(ε′′ + ε′)]

= ∂nB(ε′′)
∂ε′′ [nF(ε + ε′′) − nF(ε)][nF(ε′ + ε′′) − nF(ε′)] → ε′′2 ∂nB(ε′′)

∂ε′′
∂nF(ε)

∂ε

∂nF(ε′)
∂ε′ . (E26)

In evaluating an integral of the form

I =
∫ ∞

−∞
dε′′ ∂nB(ε′′)

∂ε′′ ε′′2f (ε′′), (E27)

where f (ε′′) is some smooth function of its argument, we exploit the fact that the weighting function ε′′2∂nB(ε′′)/∂ε′′ is strongly
peaked at ε′′ = 0 and its width scales with k2

BT 2/εF. This does not mean, however, that one can simply replace f (ε′′) by f (0).
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Such a crude approximation may introduce spurious divergences [23]. To take this into account, we approximate

I = −2π2(kBT )2

3
f (ε̄) + O(T 4) , (E28)

where [23] ε̄ = ζkBT is approximated with half the variance of the distribution ε2∂nB(ε)/(∂ε). Therefore, ζ = π/
√

5. With this
approximation, we can rewrite

�
(1,αβ)
λλ (k,ω+,k,0−) = − 4i(kBT )2

3(ω + i/τee)

∑
k′,q ′

∑
μ,μ′′,λ′′

|W (k − k′,0)|2�m
[
G(R)

μ (k′,0)
]�m

[
G

(R)
λ′′ (q ′ − k,0)

]�m
[
G

(R)
μ′′ (q ′ − k′,0)

]

×Dλμ(k,k′)Dμλ(k′,k)Dλ′′μ′′(q ′ − k,q ′ − k′)Dμ′′λ′′(q ′ − k′,q ′ − k)�(αβ)
μμ (k′,ω+,k′,0−), (E29)

�
(2,αβ)
λλ (k,ω+,k,0−) = − 4i(kBT )2

3(ω + i/τee)

∑
k′,q ′

∑
μ,λ′′,μ′′

|W (q ′,0)|2�m
[
G(R)

μ (k′,0)
]�m

[
G

(R)
λ′′ (k − q ′,0)

]�m
[
G

(R)
μ′′ (k′ − q ′,0)

]

×Dλλ′′(k,k − q ′)Dλ′′λ(k − q ′,k)Dμμ′′(k′,k′ − q ′)Dμ′′μ(k′ − q ′,k′)�(αβ)
μμ (k′,ω+,k′,0−), (E30)

and finally,

�
(3,αβ)
λλ (k,ω+,k,0−) = 4i(kBT )2

3(ω + i/τee)

∑
k′,q ′

∑
μ,λ′′,μ′′

|W (q ′,0)|2�m
[
G(R)

μ (k′,0)
]�m

[
G

(R)
λ′′ (k + q ′,0)

]�m
[
G

(R)
μ′′ (k′ − q ′,0)

]

×Dλλ′′ (k,k + q ′)Dλ′′λ(k + q ′,k)Dμμ′′(k′,k′ − q ′)Dμ′′μ(k′ − q ′,k′)�(αβ)
μμ (k′,ω+,k′,0−). (E31)

Shifting k′ → k − q ′′ and q ′ → k − k′′ in Eq. (E30), we obtain

�
(2,αβ)
λλ (k,ω+,k,0−) = − 4i(kBT )2

3(ω + i/τee)

∑
k′′,q ′′

∑
μ,λ′′,μ′′

|W (k − k′′,0)|2�m
[
G(R)

μ (k − q ′′,0)
]�m

[
G

(R)
λ′′ (k′′,0)

]�m
[
G

(R)
μ′′ (k′′ − q ′′,0)

]

×Dλλ′′ (k,k′′)Dλ′′λ(k′′,k)Dμμ′′(k − q ′′,k′′ − q ′′)Dμ′′μ(k′′ − q ′′,k − q ′′)�(αβ)
μμ (k − q ′′,ω+,k − q ′′,0−),

(E32)

while shifting k′ → k′′ − q ′′ and q ′ → k′′ − k in Eq. (E31), we get

�
(3,αβ)
λλ (k,ω+,k,0−) = 4i(kBT )2

3(ω + i/τee)

∑
k′,q ′

∑
μ,λ′′,μ′′

|W (k′′ − k,0)|2�m
[
G(R)

μ (k′′ − q ′′,0)]�m
[
G

(R)
λ′′ (k′′,0)

]�m
[
G

(R)
μ′′ (k − q ′′,0)

]
Dλλ′′

× (k,k′′)Dλ′′λ(k′′,k)Dμμ′′(k′′ − q ′′,k − q ′′)Dμ′′μ(k − q ′′,k′′ − q ′′)�(αβ)
μμ (k′′ − q ′′,ω+,k′′ − q ′′,0−).

(E33)

We now observe that the products of the three Green’s functions on the right-hand sides of Eqs. (E29)–(E31) constrains
(i) μ = μ′′ = λ′′ = + and (ii) the momenta of their arguments to be at the Fermi surface. After renaming dummy momentum
variables and noting that Dλλ′(−k, − k′) = Dλλ′(k,k′), we finally get

�
(αβ)
++ (k,ω+,k,0−) = �

(0,αβ)
++ (k,k) − 4i(kBT )2

3(ω + i/τee)

∑
k′,q ′

∑
μ,μ′′,λ′′

|W (k − k′,0)|2�m
[
G(R)

μ (k′,0)
]�m

[
G

(R)
λ′′ (q ′ − k,0)

]�m

× [G(R)
μ′′ (q ′ − k′,0)

]
Dλμ(k,k′)Dμλ(k′,k)Dλ′′μ′′(q ′ − k,q ′ − k′)Dμ′′λ′′(q ′ − k′,q ′ − k)[�(αβ)

++ (k′,ω+,k′,0−)

+�
(αβ)
++ (k − q ′,ω+,k − q ′,0−) − �

(αβ)
++ (k′ − q ′,ω+,k′ − q ′,0−)]. (E34)

We solve Eq. (E34) with the following ansatz:

�
(αβ)
++ (k,ω+,k,0−) = γ (ω)�(0,αβ)

++ (k,k), (E35)

which reduces the self-consistent equation to an algebraic one. We now recall that the full vertex must be plugged in the
stress-stress response function of Eq. (E13), which has then to be summed according to Eq. (E1) to produce the shear viscosity.
Thanks to the result of Eq. (54) and to the interpolation formula of Eq. (1), only the first term on the right-hand side of Eq. (E1)
is expected to give a final result. The summation required by that term is equivalent to multiply Eq. (E34) by �

(0,αβ)
++ (k,k) and

sum over the space indices α,β. Since

1

εF

∑
α,β

�
(0,αβ)
++ (k,k)�(0,αβ)

++ (k,k) = 1, (E36)
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we get

γ (ω) = 1 − γ (ω)
4i(kBT )2

3(ω + i/τee)

∑
k′,q ′

∑
μ,μ′′,λ′′

|W (k − k′,0)|2�m
[
G(R)

μ (k′,0)
]�m

[
G

(R)
λ′′ (q ′ − k,0)

]�m
[
G

(R)
μ′′ (q ′ − k′,0)

]

×Dλμ(k,k′)Dμλ(k′,k)Dλ′′μ′′ (q ′ − k,q ′ − k′)Dμ′′λ′′ (q ′ − k′,q ′ − k)[cos2(ϕk′) + cos2(ϕk−q ′) − cos2(ϕk′−q ′)]. (E37)

Here we used that k = k′ = kF and that the Green’s functions of Eq. (E34) constrain their momentum arguments to be at the
Fermi surface. We also assumed k = k x̂. Equation (E37) can be rewritten as

γ (ω) = 1 + γ (ω)
i/τee − i/τv

ω + i/τee
, (E38)

where

1

τv
= 4(kBT )2

3

∑
k′,q ′

∑
μ,μ′′,λ′′

|W (k − k′,0)|2�m
[
G(R)

μ (k′,0)
]�m

[
G

(R)
λ′′ (q ′ − k,0)

]�m
[
G

(R)
μ′′ (q ′ − k′,0)

]
Dλμ(k,k′)Dμλ(k′,k)

×Dλ′′μ′′(q ′ − k,q ′ − k′)Dμ′′λ′′(q ′ − k′,q ′ − k)[cos2(ϕk′) + cos2(ϕk−q ′) − cos2(ϕk′−q ′) − 1]. (E39)

Equation (E38) is readily solved by

γ (ω) = ω + i/τee

ω + i/τv
, (E40)

which contains all the information about the vertex corrections.
Finally, putting Eqs. (E35) and (E40) back into Eqs. (E13) and (E1), and taking the limit ω → 0, we get

η0 = ε2
Fτv

8τee

∑
k,λ,λ′

∫
dε

2π

∂nF(ε)

∂ε
�m
[
G

(A)
λ (k,ε)G(R)

λ′ (k,ε)
]

= ε2
Fτv

16πτee

∑
k

�m[G(A)
+ (k,0)G(R)

+ (k,0)]

= 1

4
nεFτv. (E41)

Here we used the result of Eq. (E36) to calculate the product of two bare matrix elements. One immediately recognizesS0 = nεF/4
as the noninteracting bulk modulus (which is not renormalized by e-e interactions, as discussed before) and τv as the viscosity
transport time.

3. Transformation of Eq. (E39) to a computationally efficient formula

We start from the definition of Eq. (E39), and we shift k′ → k − q, q ′ → k′′ + k. We get

1

τv
= 4(kBT )2

3

∑
q,q ′

∑
μ,μ′′,λ′′

|W (q,0)|2�m
[
G(R)

μ (k − q,0)
]�m

[
G

(R)
λ′′ (k′′,0)

]�m
[
G

(R)
μ′′ (k′′ + q,0)

]
Dλμ(k,k − q)Dμλ(k − q,k)

×Dλ′′μ′′(k′′,k′′ + q)Dμ′′λ′′ (k′′ + q,k′′)[cos2(ϕk−q)+ cos2(ϕk′′)− cos2(ϕk′′+q)−1]. (E42)

Now we use the fact that, if the scattering occurs at the Fermi surface, k′′ + q (k′′) is opposite to k (k + q) (see also Ref. [23]).
Therefore

1

τv
= −8(kBT )2

3

∑
q,q ′

∑
μ,μ′′,λ′′

|W (q,0)|2�m
[
G

(R)
λ′′ (k′′,0)

]�m
[
G(R)

μ (k − q,0)
]�m

[
G

(R)
μ′′ (k′′ + q,0)

]
×Dλμ(k,k − q)Dμλ(k − q,k)Dλ′′μ′′(k′′,k′′ + q)Dμ′′λ′′(k′′ + q,k′′)[1 − cos2(ϕk+q)]. (E43)

Note that the expression of Eq. (E43), if one excludes the matrix element in its last line, coincides with the quasiparticle lifetime
for kBT � εF reported in Refs. [22,23]. The expression of the quasiparticle lifetime valid at all temperatures was also given in
Ref. [5]. At low temperature (a limit that almost always holds in graphene), we can thus rewrite 1/τv using the formulas provided
in Ref. [5], amending them by multiplying the integrand with the matrix element 1 − cos2(ϕk+q). Since that was derived in a
regime in which intraband transitions are responsible for the dominant contribution, in what follows we approximate the formulas
of Ref. [5] by neglecting contributions due to interband processes. This approximation is valid in the low-temperature regime.
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We get

1

τv
� 4

(2π )2

∫ ∞

−∞
dξ

∂nF(ξ )

∂ξ

∫ +∞

−∞
dω

1 − nF(ξ − ω)

1 − exp(−βω)

∫ +∞

0
dqq

∣∣∣∣ vq

ε(q,ω,T )

∣∣∣∣
2

�m
[
χ (0)

nn (q,ω,T )
]

×A++(kF,q,ω)

[
1 − q2 − ω2/v2

F

4kF(kF − ω/vF)

]
4
(
q2 − ω2/v2

F

)
2kF(kF − ω/vF)

, (E44)

where

A++ = 4(k − ω/vF)

vF

√
[(2k − ω/vF)2 − q2]

(
q2 − ω2/v2

F

)
[

1 − q2 − ω2/v2
F

4k(k − ω/vF)

]
�
{
[(2k − ω/vF)2 − q2]

(
q2 − ω2/v2

F

)}
, (E45)

and we used that

cos(ϕk+q) → 1 − q2 − ω2/v2
F

2k(k − ω/vF)
. (E46)

Equation (E44) has a form similar to the quasiparticle contribution to the decay rate given in Ref. [5]. We did not write the
quasihole contribution, but we included it with an extra factor of two that multiplies the whole expression. Indeed, in the
low-temperature limit, the quasiparticle and quasihole contributions are identical [5]. The integration over ξ in Eq. (E44), with
the weighting factor ∂nF(ξ )/(∂ξ ), is the same integration we performed in the Bethe-Salpeter equation [see the discussion after
Eq. (E25)]. Its origin has to be found in the fact that, in the limit of low temperature, the energy-dependent self-energy can be
replaced by its average over the thermally excited states. Note that, since in the low-temperature limit the function ∂nF(ξ )/(∂ξ )
is strongly peaked at ξ = 0 (which in turn implies k = kF), we set k = kF everywhere in the integrand on the right-hand side of
Eq. (E44), except in the Fermi function on its first line, which strongly depends on ξ .

Following Refs. [5,22,23], we can now calculate Eq. (E44). As noted in the main text, the matrix element 1 − cos2(ϕk+q)
completely suppresses the divergence due to the small-q region. Following the same manipulations performed in Ref. [5], we get

1

τv
= 32N (0)α2

ee

∫ ∞

−∞
dξ

∂nF(ξ )

∂ξ

∫ +∞

−∞
dωωnB(−ω)

∫ 2kF−ω/vF

|ω|/vF

dq

q

nF(ξ − ω)(
1 + qTF

q

)2 + q2
TF
q2

ω2

v2
F

1−q2/

(
4k2

F

)
q2−ω2/v2

F

× 1 − q2/
(
4k2

F

)
q2 − ω2/v2

F

[
1 − q2 − ω2/v2

F

4kF(kF − ω/vF)

]
q2 − ω2/v2

F

2kF(kF − ω/vF)
. (E47)

Here, N (0) = NfεF/[2π (�vF)2] is the density-of-states at the Fermi energy. Since the ratio in the integrand on the first line of
Eq. (E47) is strongly peaked around ξ,ω = 0, we take the limit of ξ,ω → 0 in the rest of the integrand. Contrary to the case of
the quasiparticle lifetime this does not lead to any divergence. Indeed, the integrand is regular for q → 0,2kF.

As we showed in the main text, the largest contribution to the integral (E47) comes from processes at the Fermi surface
for which the initial (k) and final (k + q) momenta are nearly orthogonal. In these processes the transferred momentum is
q � √

2kF. Taking this into account, and owing to the fact that the integrand vanishes for q = 0,2kF (i.e., for collinear processes),
we estimate the 1/q-factor on the right-hand side of Eq. (E47) with (

√
2kF)−1. We then take the limit ω → 0 everywhere but in

the first line of Eq. (E47). Upon integration, we get

1

τv
= Nf

64π
√

2

45

α2
ee

(1 + Nfαee)2

(kBT )2

�εF
. (E48)
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