
PHYSICAL REVIEW B 93, 125405 (2016)

Semiclassical electron transport at the edge of a two-dimensional topological insulator:
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We study electron transport at the edge of a generic disordered two-dimensional topological insulator, where
some channels are topologically protected from backscattering. Assuming the total number of channels is large,
we consider the edge as a quasi-one-dimensional quantum wire and describe it in terms of a nonlinear sigma
model with a topological term. Neglecting localization effects, we calculate the average distribution function
of transmission probabilities as a function of the sample length. We mainly focus on the two experimentally
relevant cases: a junction between two quantum Hall (QH) states with different filling factors (unitary class) and
a relatively thick quantum well exhibiting quantum spin Hall (QSH) effect (symplectic class). In a QH sample,
the presence of topologically protected modes leads to a strong suppression of diffusion in the other channels
already at scales much shorter than the localization length. On the semiclassical level, this is accompanied by the
formation of a gap in the spectrum of transmission probabilities close to unit transmission, thereby suppressing
shot noise and conductance fluctuations. In the case of a QSH system, there is at most one topologically protected
edge channel leading to weaker transport effects. In order to describe ‘topological’ suppression of nearly perfect
transparencies, we develop an exact mapping of the semiclassical limit of the one-dimensional sigma model
onto a zero-dimensional sigma model of a different symmetry class, allowing us to identify the distribution of
transmission probabilities with the average spectral density of a certain random-matrix ensemble. We extend our
results to other symmetry classes with topologically protected edges in two dimensions.

DOI: 10.1103/PhysRevB.93.125405

I. INTRODUCTION

Topological insulators and superconductors are a subject
of intense theoretical and experimental studies in the past
years [1–3] due to their fascinating electronic properties
and potential applications ranging from spintronics [4] to
quantum computations [5]. The distinctive feature of these
materials is the presence of topologically protected metallic
edge or surface modes on the background of a gapped bulk
spectrum. Historically, the first example of a topological
insulator was provided by the two-dimensional (2D) electron
gas in a strong magnetic field exhibiting quantum Hall effect
[6,7] (QHE). When the chemical potential is tuned into a
gap between Landau levels (quantum Hall plateau regime),
electron transport is due to chiral one-dimensional modes
at the edge of the sample [8,9]. These edge channels have
a topological origin and evade Anderson localization in the
presence of disorder, thus giving rise to the extremely accurate
quantization of Hall conductance. The state of the system is
characterized by an integer topological invariant [9] (Chern
number) corresponding to the number of edge modes. Hence,
QHE gives an example of Z topological insulator.

Another type of 2D topological insulators was discovered
in HgTe quantum wells exhibiting the quantum spin Hall
effect (QSHE) [10–12]. This is an analog of QHE in a system
with strong spin-orbit interaction and preserved time-reversal
symmetry [1,3,10]. Spin-orbit coupling leads to inversion
of the band gap and the appearance of the spin-polarized
counterpropagating edge states. These edge modes are par-
tially protected due to Kramers theorem. If disorder scattering
preserves time-reversal invariance and the number of edge

channels is odd, one edge mode remains immune to Anderson
localization. Due to the presence of two edges, the longitudinal
conductance of the sample takes the quantized value of 2e2/h.
The distinction between ordinary and topological insulator in
this case is given by the parity of the number of edge modes.
Hence, this type of system is named Z2 topological insulator.

Soon after, topological insulator states were discovered in
three-dimensional (3D) Bi alloys (BiAs, BiTe, BiSe, etc.) and
later in many other related compounds [13,14]. These materials
have gapped bulk spectrum and massless 2D Dirac states at
the surface. The surface states are also topologically protected
from localization in the presence of disorder as long as the
time-reversal symmetry is preserved. Following the discovery
of 3D topological insulators, a complete classification of
possible topological phases in systems of free fermions in
any spatial dimension and symmetry class was developed
[15–17]. Disordered systems are classified according to their
symmetries, giving rise to 10 symmetry classes [18]. In
each spatial dimension, three of these classes may exhibit
Z topological states (with any integer number of protected
edge/surface modes) and two classes host Z2 topological
states (at most one protected edge/surface mode). Symmetry
classification of possible topological states gives rise to the
“periodic table” of topological insulators [15,17].

The 2D QHE state belongs to the unitary class (A) with
all symmetries broken. In addition, Z topological states in 2D
are also possible in superconductors with broken time-reversal
symmetry and either preserved (class C) or broken (class D)
spin-rotation symmetry. These two cases, although not yet
realized experimentally, have the names of spin quantum Hall
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FIG. 1. Schematic setup of a junction between two quantum Hall
systems with different filling factors.

effect (SQHE) and thermal quantum Hall effect (TQHE),
respectively [19,20]. The QSHE appears in a system with
preserved time-reversal symmetry but broken spin symmetry
(symplectic class AII). A similar Z2 topological state is also
possible in a superconductor with the same symmetries (class
DIII) [21],

In this paper, we study the problem of electron transport
at the edge of a 2D topological insulator in the presence
of disorder when both topologically protected and ordinary
(unprotected) states coexist. Whenever the sample length
exceeds a certain characteristic length ξ , the unprotected
channels are expected to be localized by disorder. In the
opposite limit of short samples, both topologically protected
and diffusive channels contribute to transport and the question
of interplay between them becomes important. In order to
study how transport is distributed among different channels, we
consider the average distribution of transmission probabilities
ρ(T ). This encodes information on the full counting statistics
of the sample including the conductance, shot noise, and
all higher moments of charge transfer. In the absence of
topologically protected channels, the distribution function is
universal [22,23] in the diffusive (L � ξ ) limit. Our main
objective is then to investigate how this universal diffusive
behavior is altered in the presence of topological protection.

One possible realization of a Z topological insulator
with both protected and diffusive edge states is given by a
junction of two quantum Hall systems with different filling
factors shown schematically in Fig. 1. In this setup, the
boundary between the two parts of the sample hosts a
different number of right- and left-moving modes, nR and
nL, respectively. This system realizes Z topological insulator
state of the unitary symmetry class A. When the two quantum
Hall samples are decoupled, all the edge channels conduct
perfectly and the overall conductance is [24] Gtot = Ne2/h

with N = nR + nL. Coupling at the interface between the
two parts of the sample gives rise to backscattering, thus
suppressing the conductance. The backscattering eventually
localizes all the channels at the interface except for m =
nR − nL topologically protected modes. The total conductance
is then Gtot = max{nR,nL}e2/h. We will separate it into two
contributions:

Gtot = e2

h

nR + nL

2
+ G. (1)

HgTe/CdTe

FIG. 2. Schematic setup of a relatively thick 2D quantum well
exhibiting quantum spin Hall effect with a large number of edge
channels.

The first term is due to the outer edges averaged with
respect to right-to-left and left-to-right direction of the current.
The second term is the conductance of the middle part
averaged in the same manner. Naturally, the total conductance
Gtot is independent of the current direction. In this paper,
we will consider the transport properties of the middle
part only.

A contact between two quantum Hall states with different
filling factors was realized in a series of experiments [25–28],
where a 2D electron gas was confined to the surface of a
crystal with an edge between two faces. The filling factors
were tuned by changing the orientation of the sample in the
uniform external magnetic field. Another possible realization
of a system with unequal number of counterpropagating chiral
modes is a Weyl semimetal in a magnetic field which also
belongs to the symmetry class A [29]. Landau levels in such a
system consist of states confined in the plane perpendicular
while having a dispersion along the field direction, with
the lowest Landau level having a definite chirality for each
Weyl point. If disorder does not scatter between Weyl nodes,
the system is effectively a quasi-1D wire with a number
of chiral topologically protected channels m equal to the
Landau level degeneracy. Higher (nonchiral) filled Landau
levels provide unprotected transport channels carrying current
in both directions along the magnetic field [30].

A possible realization of a Z2 topological insulator with
both protected and unprotected edge modes is given by
a relatively thick HgTe/CdTe quantum well (see Fig. 2).
When the width of the HgTe layer exceeds 6.3 nm, a pair
of counterpropagating topologically protected edge modes
appears [10–12]. As the width of the quantum well is increased
further, additional edge modes become available. Topology
protects only a single edge channel in the case when their total
number is odd. Another realization of the same symmetry
is given by a doped metallic carbon nanotube [31–33]. At
each of the two valleys (K and K ′), one protected channel
coexists with a number of ordinary channels depending on
the electron concentration. The role of spin in this case is
played by the sublattice index (pseudospin) while the real
electron spin remains degenerate. The total conductance of
the Z2 topological insulator includes the contribution of
two edges (cf. Fig. 2) or two valleys in the case of the
nanotube:

Gtot = 2G. (2)
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We will discuss only the half of this total conductance
assuming the disorder does not couple opposite edges/valleys.

On the technical level, the problem of quantum transport
is described by a field theory that takes the form of a
supersymmetric nonlinear sigma model [34,35]. The presence
of topologically protected channels manifests itself as an
additional topological term in the sigma-model action. We
consider the limit of a short sample, L � ξ , and analyze the
corresponding sigma model in the semiclassical limit. Our
main result is that the existence of topologically protected
channels at the edge of Z topological insulator leads to a
gap in the spectrum of transmission probabilities close to unit
transmission. The appearance of this gap can be understood
on a qualitative level in terms of eigenvalue repulsion in
a random system where a large number of eigenvalues are
pinned at a fixed value. This happens in our system due to the
topologically protected channels pinned at unit transmission.
It leads to a reduction of the Fano factor and mesoscopic
conductance fluctuations signaling suppressed diffusion of
the unprotected channels. Quantitatively, the suppression of
diffusion due to m protected channels happens at a length
scale ∼ξ/m that is much shorter than the localization length
ξ in the absence of topological protection. In the Z2 insulator,
a similar suppression of diffusion is observed, but is not
as pronounced. We also show that the average transmission
distribution function in the short sample limit can be fully
obtained from a zero-dimensional sigma model of a different
symmetry class.

Throughout the paper, we discuss various transport prop-
erties. They represent charge (electrical) transport for sys-
tems with electron number conservation (nonsuperconducting
classes A and AII), spin transport for superconductor with
spin-rotational symmetry (class C), and thermal transport for
superconductors without spin-rotational symmetry (classes D
and DIII). The quantum of conductance in these three cases is
[19,20]

G0 =

⎧⎪⎨
⎪⎩

e2/h, A, AII,

2e2/h, C,

π2k2
BT /3h, D, DIII.

(3)

The paper is organized as follows. In Sec. II, we review
the general theory of electron transport in quasi-1D systems
in terms of the matrix Green function [23] and derive the
supersymmetric nonlinear sigma model with the topological
term and source fields. A semiclassical solution of the sigma
model is developed in Sec. III for Z topological insulators.
This solution yields the average distribution function of
transmission probabilities. We also derive explicit expressions
for the average conductance, Fano factor, and mesoscopic
conductance fluctuations. A general mapping of the semi-
classical 1D sigma model onto a random matrix problem is
established in Sec. IV. This yields a detailed description of
the average transmission distribution in the vicinity of perfect
transmission for all symmetry classes. We also discuss the
universal crossover at the semiclassical edge of the spectrum.
The main results are summarized in Sec. V. Some technical
details are relegated to two Appendixes.

II. GENERAL FORMALISM

A. Transport properties of a quasi-1D system

We consider the edge of a 2D system (Figs. 1 and 2), which
can be thought of as a quasi-1D wire between two perfect
metallic leads. Transport properties of the system are fully
determined by the matrix of transmission amplitudes tmn acting
in the space of 1D channels. Each matrix element tmn is the
probability amplitude for an electron that enters the sample
from one lead in the nth channel to be transmitted to another
lead in the mth channel. While the matrix t depends on the
choice of the channel basis in the leads, the eigenvalues of the
matrix t†t represent the full set {Tα} of observable transmission
probabilities of the system.

Different transport quantities, such as conductance G and
Fano factor F , can be expressed in terms of the transmission
matrix as [24,36,37]

G = G0 tr t†t, F = 1 − tr(t†t)2

tr t†t
. (4)

The complete distribution of transmission probabilities is
encoded in the generating function

F(z) =
∞∑

n=1

zn−1 tr(t†t)n = tr

(
t†t

1 − zt†t

)
. (5)

This generating function yields all the moments of electron
transport, including conductance and noise, as its derivatives
in z taken at z = 0. Hence, F(z) contains information about
the full counting statistics of the system [38,39].

An equivalent description of transport is given by the
distribution function of transmission probabilities

ρ(T ) = tr δ(T − t†t). (6)

This function gives the total number of channels with trans-
mission probability T . The two functions F(z) and ρ(T ) are
related by the following identities:

F(z) =
∫ 1

0

ρ(T ) T dT

1 − zT
, (7)

ρ(T ) = 1

πT 2
ImF(1/T + i0). (8)

Note that the function F(z) has singularities when z coincides
with an inverse eigenvalue of t†t . That is why Eq. (8) involves
an infinitesimal shift i0 in the argument of F(z).

It is often more convenient to use alternative variables θ

and λ defined as

z = sin2 θ

2
, T = 1

cosh2 λ
, (9)

and to work in terms of the new generating function F(θ ) and
distribution function ρ(λ):

F(θ ) = F(z), ρ(λ) =
∣∣∣∣dT

dλ

∣∣∣∣ρ(T ). (10)

The parameter λ is referred to as the Lyapunov exponent. In
terms of λ, the distribution function ρ(λ) is constant for a
diffusive wire [22]. The angle variable θ naturally appears in
the sigma-model description of a disordered system as will be
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discussed in the following. In terms of θ and λ, relation (8)
can be written as

ρ(λ) = sinh 2λ

π
ImF(θ = π + 2iλ − 0). (11)

B. Matrix Green’s function formalism

Transport properties of a quasi-1D system can be studied
within the matrix Green’s function formalism developed by
Nazarov in Ref. [23].

The moments of transmission distribution can be rewritten
in terms of the retarded and advanced Green’s functions of the
system with the help of the identity

tr(t†t)n = tr[v̂GA(xL,xR)v̂GR(xR,xL)]n, (12)

where v̂ is the velocity operator and xL and xR are points in the
left and right leads, respectively. The relation (12) represents
the correspondence between Landauer [24,36,37] and Kubo
description of electron transport. It allows to express the
generating function F(z) in terms of a single-matrix Green’s
function [23] defined as(

ε − Ĥ + i0
√

zv̂δ(x − xL)√
zv̂δ(x − xR) ε − Ĥ − i0

)
Ǧ(x,x ′) = δ(x − x ′)1̌.

(13)
Here, the Hamiltonian Ĥ acts in both real space and channel
space and 1̌ in the right-hand side is unity in the channel
and matrix retarded-advanced (RA) spaces. The off-diagonal
terms in Eq. (13) contain velocity operators and the parameter
z. These two terms are located in the right and left leads, which
is ensured by the delta functions.

The generating function F(z) is related to the matrix
Green’s function Ǧ in the following way:

F(z) = ∂

∂z
ln Z, Z(z) = det Ǧ = const

det(1 − zt†t)
. (14)

The numerator of the last expression contains an irrelevant
constant independent of z.

We will calculate transport properties of the system aver-
aged over disorder realizations. This is most easily achieved
with the help of the supersymmetric representation. Consider
two matrix Green’s functions (13) with different source
parameters zB and zF and define the partition function as

Z(zB,zF ) = det Ǧ(zB)

det Ǧ(zF )
= det(1 − zF t†t)

det(1 − zBt†t)
. (15)

This quantity can be viewed as a superdeterminant if the
Green’s function Ǧ is extended into a superspace. The two
parameters zB,F have the meaning of bosonic and fermionic
source fields.

The generating function for transport characteristics can
now be defined as an ordinary rather than logarithmic
derivative

F(z) = − ∂Z(zB,zF )

∂zF

∣∣∣∣
zB=zF =z

. (16)

This is made possible due to the supersymmetry condition
Z(z,z) = 1. Owing to the linear relation between F and
Z, we can directly average the supersymmetric partition

function over disorder. Such averaging is carried out within
the nonlinear sigma model as discussed in Sec. II C.

Let us define the free energy corresponding to the disorder-
averaged partition function as

�(zB,zF ) = − ln〈Z(zB,zF )〉. (17)

This free energy contains information on the full counting
statistics of the electron transport in the system [38,39].
Similarly to Eq. (16), it yields the average generating function

〈F(z)〉 = ∂�(zB,zF )

∂zF

∣∣∣∣
zB=zF =z

. (18)

This function can be also written in terms of the bosonic and
fermionic angular variables [cf. Eq. (9)] defined as

zF = sin2 θF

2
, zB = − sinh2 θB

2
, (19)

F(θ ) = 2

sin θ

∂�(θB,θF )

∂θF

∣∣∣∣
iθB=θF =θ

. (20)

The average distribution function ρ(λ) [Eq. (11)] can be
expressed directly in terms of the free energy � as

ρ(λ) = 2

π
Re

∂�(θB,θF )

∂θF

∣∣∣∣
iθB=θF =π+2iλ−0

. (21)

The supersymmetric representation of the partition function
Z, as well as the corresponding free energy �, also allows us
to access the mesoscopic fluctuations of conductance [40–42]

var G = 〈G2〉 − 〈G〉2 = G2
0

∂2�(zB,zF )

∂zF ∂zB

∣∣∣∣
zB=zF =0

= −4G2
0

∂4�(θB,θF )

∂2θB ∂2θF

∣∣∣∣
θB=θF =0

. (22)

Variance of conductance describes correlations between dif-
ferent transmission channels. Hence, this quantity provides an
additional information on the electron transport not contained
in the average generating function F .

C. Supersymmetric nonlinear sigma model

In this section, we derive the disorder-averaged super-
symmetric partition function (15) within the nonlinear sigma
model. We will provide detailed derivation for the problem of
imbalanced quantum Hall edge (see Fig. 1), that is described
by the supersymmetric sigma model of the unitary symmetry
class. Then, we discuss the case of the quantum spin Hall edge
(symplectic class) and other symmetry classes.

1. Quantum Hall edge (class A)

Our derivation of the sigma model closely follows the steps
of Refs. [34,43] allowing for an unequal number of right-
and left-propagating modes nR 	= nL. We treat the edge states
of the quantum Hall sample, Fig. 1, assuming metallic limit
with a short Fermi wavelength. This enables the quasiclassical
description in terms of well-defined conducting channels
[24,36,37]. The Hamiltonian can be written as a matrix of
the size N = nR + nL,

Ĥ = −iv̂
∂

∂x
+ V̂ (x), (23)
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where V̂ (x) is the disorder potential and v̂ is the velocity
operator acting in the channel space

v̂ = v

(
1nR

0

0 −1nL

)
. (24)

We assume for simplicity that all channels have the same Fermi
velocity v. The disorder potential V̂ (x) is a random Hermitian
matrix obeying Gaussian distribution with 〈V̂ 〉 = 0 and

〈Vnm(x)Vmn(x ′)〉 = 1

Nτ
δ(x − x ′), (25)

where τ is the electron mean-free time.
The supersymmetric partition function Z(zB,zF ) can be

written as a Gaussian integral over superfields:

Z(zB,zF ) =
∫

Dψ† Dψ e−S[ψ†,ψ], (26)

S = i

∫
dx ψ†�

(
iv̂

∂

∂x
− V̂ (x) + i0� + M

)
ψ. (27)

Here, the supervector ψ contains 2N complex and 2N

Grassmann variables and operates in retarded-advanced (RA),
Bose-Fermi (BF), and channel spaces. The matrix

� =
(

1 0
0 −1

)
RA

(28)

operates in the RA space, while

M = v̂

(√
zB 0

0
√

zF

)
BF

⊗
(

0 δ(x)

δ(x − L) 0

)
RA

(29)

represents the source terms in Eq. (13). Gaussian integral in
Eq. (26) yields the superdeterminant of the corresponding
matrix, that is exactly the ratio of usual determinants from
Eq. (15).

The term with the matrix M implies that the eigenfunctions
of the operator in the quadratic action (27) have jumps at the
boundaries x = 0 and L between the sample and the leads.
In order to eliminate these jumps and make the fields ψ

continuous across the boundaries, we perform a gauge rotation
in the RA space [43]

ψ = �ψ̃, ψ† = ψ̃†�−1, � = ��̃�−1, (30)

v̂
∂�

∂x
= iM�. (31)

The last equation ensures that M drops from the action and
determines � up to right multiplication by a constant matrix.

We write the source fields zB,F in terms of the angles θB,F

[see Eq. (19)] and arrange them in a diagonal matrix

θ̂ =
(

iθB 0

0 θF

)
BF

. (32)

In terms of the angle variables, Eq. (31) can be explicitly solved
yielding

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
i cos(θ̂/2) 0

0 1

)
RA

, x < 0

(
i cos(θ̂/2) i sin(θ̂/2)

0 1

)
RA

, 0 < x < L

(
i cos(θ̂/2) i sin(θ̂/2)

− sin(θ̂/2) cos(θ̂/2) cos2(θ̂/2)

)
RA

, x > L.

(33)
Once the off-diagonal source terms in the action (27) are

removed, we proceed with the derivation of the sigma model
in the standard way [34]. The next step is the averaging
over disorder that yields the quartic term (ψ̃†ψ̃)2. This
term is decoupled by a Hubbard-Stratonovich transformation
introducing the supermatrix field Q that acts in RA and
BF spaces but not in the channel space. The action is then
integrated over ψ̃ and ψ̃† leading to

S[Q] = N

8τ
Str Q2 + nR Str ln

(
iv

∂

∂x
+ iQ

2τ

)

+ nL Str ln

(
−iv

∂

∂x
+ iQ

2τ

)
. (34)

Here, “Str” is the full operator supertrace over all spaces (BF,
RA, channels) including integration in the real space. We are
using boson-dominated convention Str A = Tr ABB − Tr AFF

as in Ref. [35].
In the limit of large number of channels N � 1, we can

treat the action (34) within the saddle-point approximation
[34]. Assuming the matrix Q is constant in space, we identify
a degenerate minimum of the action Q = T −1�T with any
supermatrix T acting in BF and RA spaces. Convergence
of the Q integral at this saddle manifold is guaranteed by
a suitable choice of the structure of T in the complex plane
[35]. This implies a compact group manifold U(2) for the
fermionic sector of the model (FF block of T ) and noncompact
U(1,1) group in the bosonic sector (BB block of T ). Together
with Grassmann variables (BF and FB blocks), this represents
the unitary supergroup U(1,1|2). The matrix Q = T −1�T is
invariant under rotations T �→ KT if the matrix K commutes
with �. Thus, the actual configuration space of the sigma
model is the coset U(1,1|2)/U(1|1) × U(1|1). Its compact
(FF ) and noncompact (BB) parts have the form of a sphere
S2 and a hyperboloid H 2, respectively, as illustrated in Fig. 3.
This is the sigma-model manifold for a system of the unitary
symmetry class A.

The effective low-energy theory is derived by a gradient
expansion of Eq. (34) assuming that T (x) varies slowly
in space. With a cyclic permutation of matrices under the
supertrace, we recast the action in the form

S[Q] = nR Str ln

(
iv

∂

∂x
− ivṪ T −1 + i�

2τ

)

+ nL Str ln

(
−iv

∂

∂x
+ ivṪ T −1 + i�

2τ

)
. (35)
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FF BB

FIG. 3. Compact (FF ) and noncompact (BB) sectors of the
sigma-model manifold in the unitary symmetry class. The shortest
geodesic trajectory connecting the two boundary values (38) is shown.

Here, we use the “dot” notation for derivative:
Ṫ = ∂T /∂x.

Permutation of matrices, which was used in deriving
Eq. (35), is equivalent to the rotation of the fields ψ �→ T −1ψ ,
ψ† �→ ψ†T in the original action (27). Such a rotation may
give rise to the chiral anomaly [44–46] due to nontrivial
Jacobian of the transformation. In the imbalanced case nL 	=
nR , the anomalous contributions from the two terms of Eq. (35)
do not cancel. Hence, in order to get rid of such contributions,
we will assume sdet T = 1.

Expanding the logarithms in Eq. (35) up to the second order
in small derivatives Ṫ T −1, we obtain the action of the sigma
model

S[Q] = −
∫ L

0
dx str

[
ξ

8
Q̇2 + m

2
T −1�Ṫ

]
, (36)

ξ = Nvτ, m = nR − nL, Q = T −1�T. (37)

Here, ξ has the meaning of the localization length.
The second term in the action (36) is the 1D version of

the topological Wess-Zumino-Witten term [47–49]. It appears
due to the imbalance between right- and left-moving channels.
Since the topological term is written explicitly in terms of
the matrix T rather than Q, we need to justify its gauge
symmetry. Any transformation T �→ KT with [�,K] = 0 and
sdet K = 1 leaves the matrix Q invariant and maintains the
condition sdet T = 1 (cf. discussion of the anomaly above).
The topological term changes under such transformation by the
integral of the total x derivative of (m/2) str ln(KRK−1

A ) (here
KR,A are the two diagonal blocks of the matrix K in RA space),
which equals m str ln KR due to the condition sdet K = 1. The
value of this integral is an integer multiple of 2πi for any
closed trajectory T (0) = T (L) provided m is integer. Since
the imbalance m = nR − nL is an integer by definition, the
weight e−S is a function of Q only for any closed path Q(x)
on the sigma-model manifold.

Let us now establish the boundary conditions for the action
(36). Since we have removed M from Eq. (26), all the fields,
including the matrix Q, are continuous at x = 0 and L. Inside
metallic leads, the matrix Q takes the value Q = �̃ that results
from the gauge rotation (30). Using (33), we obtain

Q(0) = �, Q(L) =
(

cos θ̂ sin θ̂

sin θ̂ − cos θ̂

)
RA

. (38)

Thus, we see that the source parameters θB,F enter the sigma
model only via the boundary conditions. The partition function
(15) is given by the path integral in the superspace of the matrix
Q with the action (36). All the paths connect the point Q = �,
representing the “north pole” of the sphere in the compact FF
sector and the base of the hyperboloid in the noncompact BB
sector, with a point described by the polar angles θF and θB

on the sphere and the hyperboloid, respectively, as shown in
Fig. 3.

In view of the boundary conditions (38), we have to
reconsider the gauge invariance of the topological term. As
was argued above, the gauge symmetry is preserved only for
closed paths, which contradicts the boundary conditions (38).
In order to obtain gauge-invariant expressions, we should
“close the circuit” by adding the contribution of a specific
trajectory going from the final point back to the initial point.
Choosing this backward path to be the shortest (geodesic)
restores gauge invariance and guarantees that the conductance
G obtained from the model has the expected form (1).

2. Quantum spin Hall edge (class AII)

Derivation of the sigma model for the edge of the quantum
spin Hall system (Fig. 2) is similar to the case of the quantum
Hall edge discussed above. The main difference arises due
to an additional spin degree of freedom and the associated
time-reversal symmetry of the symplectic type:

H = syH
T sy. (39)

Here, sy is the Pauli matrix acting on the electron spin. We
can describe the edge modes by the 1D Hamiltonian (23)
assuming that the channels are fully spin polarized (right- and
left-moving states have spin up and down, respectively). The
number of right- and left-propagating channels is the same,
N = nR = nL, and the velocity operator v̂ = v1N ⊗ sz.

The partition function Z(zB,zF ) is represented by an
integral over the supervector ψ as in Eq. (26) and the source
fields are removed by the gauge transformation (30). The
time-reversal symmetry is then taken into account explicitly
by doubling the size of the matrix introducing an extra
time-reversal (TR) space,

S = i�̄

(
ivsz

∂

∂x
− V + i0�

)
�, (40)

� = 1√
2

(
ψ

isyψ
∗

)
TR

, �̄ = 1√
2

(ψ†�, − iψT syk�)TR,

(41)

where k = diag{1, − 1}BF. The derivation proceeds along the
standard route [34,35] with disorder averaging, Hubbard-
Stratonovich transformation, and integrating over �. The
resulting action is similar to Eq. (34):

S[Q] = N

8τ
Str Q2 + N Str ln

(
iv

∂

∂x
+ iQ

2τ

)
. (42)

The matrix Q operates in BF, RA, and TR spaces and has twice
larger size as compared to the quantum Hall problem studied
above. Apart from this, an additional constraint on Q appears
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FIG. 4. Compact sector of the sigma-model manifold in the
symplectic class. The space has the structure of a direct product of
two spheres S2 × S2/Z2. Factorization by Z2 identifies the opposite
points. Two topologically distinct trajectories between two fixed
points are shown.

due to the time-reversal symmetry:

Q = Q̄ = CT QT C, C =
(

iσy 0
0 σx

)
BF

. (43)

In the limit N � 1, the saddle-point analysis of the action
(42) yields Q = T −1�T . The condition (43) is fulfilled if

T −1 = T̄ K, [�,K] = 0. (44)

The matrix K can be arbitrary since Q does not depend on it.
The standard choice is K = 1 and T −1 = T̄ . In this case, the
matrix T belongs to the orthogonal group O(4) in the compact
sector (FF block) and to the group Sp(2,2) in the noncompact
sector (BB block). The matrix Q remains invariant under
left rotations of T with any matrix that commutes with
�. Thus, the compact sector of the model is given by the
coset space O(4)/O(2) × O(2) and the noncompact sector is
Sp(2,2)/Sp(2) × Sp(2). The former is the four-dimensional
manifold with the structure of a direct product of two spheres
S2 × S2/Z2 as shown in Fig. 4. Factorization by Z2 implies
that simultaneous inversion of both spheres yields the same
value of Q. The noncompact sector of Q has the structure of a
four-dimensional hyperboloid H 4. The sigma-model manifold
for a system of the symplectic symmetry class AII includes
these compact and noncompact sectors along with Grassmann
variables connecting them.

Gradient expansion in Eq. (42) is carried out similarly to
the case of the quantum Hall problem and yields the action

S[Q] = −
∫ L

0
dx str

[
ξ

8
Q̇2 + N

2
T −1�Ṫ

]
, (45)

with the same boundary conditions (38). However, the topolog-
ical term in this action has different properties. As was argued
above, gauge symmetry of the topological term is ensured
only for closed trajectories in terms of the matrix T . The
continuity of T is not always compatible with the standard
convention T̄ T = 1. Therefore, considering the topological
term, we will allow for a nontrivial matrix K in Eq. (44),
which also continuously changes along the trajectory with
sdet K = 1. The topological term can be transformed in the

following way:

Stop = −N

2

∫
dx str T −1�Ṫ = −N

2

∫
dx str ˙̄T �T̄ −1

= N

2

∫
dx str[T −1�Ṫ + K−1�K̇]

= −Stop + N

∫
dx

∂

∂x
ln sdet KR, (46)

where KR is the upper diagonal block of K in RA space. We
thus see that possible values of the topological term are integer
multiples of iπN .

For a sample with an even number of edge channels,
the topological term is ineffective and can be dropped from
the action. However, when N is odd, some trajectories will
contribute to the partition function with a negative sign. Since
the topological term takes only discrete values, its variation
vanishes. Hence, only topologically distinct trajectories can
yield different values of Stop.

The compact sector of the sigma-model manifold is doubly
connected with the homotopy group π1 = Z2. This is illus-
trated in Fig. 4. A trajectory going from the two “north poles”
of both spheres to the two “south poles” is a closed trajectory
in terms of Q. This trajectory cannot be continuously shrunk
to a single point, hence, it is a representative of the nontrivial
homotopy class. An explicit calculation of the action along
such a trajectory yields Stop = iπN . This proves that the action
does contain the Z2 topological term whenever the number of
channels is odd.

3. Other symmetry classes

Nontrivial topological terms may also arise in the sigma-
model action of a system with other symmetries [15,17].
The Z-type topology occurs in classes C and D that are
superconducting analogs of the unitary class A. Class C refers
to a superconductor with broken time reversal but preserved
spin symmetry, while class D implies both symmetries broken
[18]. These classes describe the edge of spin and thermal
quantum Hall sample, respectively. Corresponding sigma-
model action has the form of Eq. (36) with the boundary
condition (38) and an additional constraint

Q̄ = CT QT C = −Q, (47)

that occurs due to the specific particle-hole symmetry of the
superconductor. The matrix C is skew symmetric in the FF
sector and symmetric in the BB sector in class C and vice
versa for class D.

The analog of the quantum spin Hall system is provided
by the symmetry class DIII. This is a superconductor with
preserved time reversal but broken spin symmetry [18,50].
The system possessesZ2 topological properties and represents
a possible topological superconductor in 2D [15,17]. The
corresponding sigma model is defined on the group manifold
with the compact sector being the group O(2). The derivation
is quite similar to the case of the symplectic class and
the topological term emerges whenever the number of edge
channels is odd.
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III. ELECTRON TRANSPORT AT THE EDGE OF Z
TOPOLOGICAL INSULATORS

In this section, we consider the general transport char-
acteristics of the edge of a Z topological insulator. Main
calculations will be carried out for the imbalanced quantum
Hall edge (unitary class A), as depicted in Fig. 1. The results
for spin and thermal quantum Hall system (classes C and
D, respectively) will be discussed in the end of the section.
We will assume the limit of a short sample L � ξ , when
the localization effects are weak. Nevertheless, taking account
of the topological term strongly modifies transport properties
even in this semiclassical case.

A. Distribution of transmission probabilities

The distribution of transmission probabilities at an imbal-
anced quantum Hall edge can be derived from the sigma model
(36) with twisted boundary conditions (38), as explained in
the previous section. For a short sample, L � ξ , the path
integral is dominated by the extrema of the action and we can
use the quasiclassical approximation to solve the problem.
Classical trajectories do not involve Grassmann variables,
hence, the compact(FF) and noncompact (BB) sectors of the
model decouple. This means that the quasiclassical results
can be derived from a simplified sigma model involving only a
fermionic (compact) or a bosonic (noncompact) sector without
Grassmann variables [51]. In this section, we choose to work
with the compact version.

Let us consider the classical action for the compact sector of
the sigma model. Parametrizing the sphere by the polar angle
θ and the azimuthal angle φ, we can write the action as

S = ξ

2L

∫ 1

0
dx

[
1

2
(θ̇2 + sin2 θ φ̇2) − iα(1 − cos θ )φ̇

]
,

(48)
where we have rescaled x such that the integration interval
extends up to x = 1, and the dimensionless parameter α is
defined as

α = mL

ξ
= (nR − nL)L

(nR + nL)l
. (49)

The action (48) describes the motion of a particle on a sphere in
the magnetic field created by a monopole located in the center
of the sphere. The topological term can be also interpreted
as the Berry phase proportional to the solid angle encircled
by the trajectory. In the absence of magnetic field, classical
trajectories are arcs of great circles, i.e., geodesics on the
sphere. Magnetic field exerts a Lorentz force on the moving
particle, thus making its trajectory an arc of a smaller circle
(Fig. 5).

A classical solution minimizing the action (48) satisfies the
Euler-Lagrange equations

d

dx
[sin2 θφ̇ + iα cos θ ] = 0, (50)

θ̈ − sin θ cos θφ̇2 + iα sin θφ̇ = 0. (51)

It is convenient to represent the classical trajectory in the
rotated frame, as shown in Fig. 5. For the path starting at
the north pole, we select the polar axis tilted by the angle ψ .

FIG. 5. Classical solution in the compact sector of the unitary
sigma model in the presence of the topological term (52). The
trajectory starts at the “north pole” and ends at the point with the
polar angle θ . The solution can be thought of as a rotation with a
constant angular velocity around the tilted axis ψ .

In such coordinates the trajectory is

θ ′ = ψ = const, φ′ = χx, χ = iα

cos ψ
. (52)

It represents a particle moving only in the azimuthal direction
with a constant speed χ along a smaller circle defined by
the constant value ψ . The polar angle θ (x) in the original
frame can be determined as the length along the arc of a great
circle connecting the initial and current points of the trajectory.
Applying the law of cosines on the sphere, we obtain

sin
θ (x)

2
= sin ψ sin

χx

2
. (53)

This solution should satisfy the final condition θ (1) = θF .
Eliminating the constant ψ with the help of Eq. (52), we obtain
a transcendental equation for the angular velocity χ (θF ,α):

χ2 sin2 θF

2
= (χ2 + α2) sin2 χ

2
. (54)

In the absence of the topological term, α = 0, this equation
yields χ = θF . In the imbalanced case, α 	= 0, we assume that
χ is an analytic function of θF in the region 0 < Re θF < π ,
Im θF > 0 taking the value χ = iα at θF = 0. This assumption
will allow us to relate classical dynamics on the sphere (for
real θF ) and on the hyperboloid (positive imaginary iθB) and
to analytically continue both solutions to the positive values
of λ [cf. Eq. (21)].

In the framework of quasiclassical approximation, the
partition function is Z = exp[Smin(iθB) − Smin(θF )] with Smin

being the minimized classical action on the sphere. For the
trajectory (52), this action takes the value (up to a constant)

Smin(θF ) = ξ

L

[
χ2

4
+ α arctanh

(
α

χ
tan

χ

2

)]
, (55)

while χ is determined by Eq. (54).
The generating function F(θ ) can be calculated from

Eq. (55) with the help of Eq. (20). It is, however, technically
easier to use the relation between the derivative of the classical
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FIG. 6. Average distribution of transmission probabilities in the
unitary class [Eq. (57)] in terms of λ (upper panel) and T (lower panel)
for different values of the parameter α. Topologically protected states
yield a delta peak at λ = 0 (T = 1) [Eq. (58)] and a semiclassical gap
of the size λg or Tg (see Fig. 7).

action and momentum ∂Smin/∂θF = (ξ/2L)θ̇ (1) and apply Eq.
(53). This way we obtain the generating function

F(θ ) = ξ

L sin θ

√
χ2 + α2

cos2(θ/2)
. (56)

The average distribution function is then given by Eq. (11):

ρ(λ) = ξ

πL
Re

√
χ2 − α2

sinh2(λ + i0)
. (57)

In the limit α = 0, this yields a constant ρ(λ) = ξ/L cor-
responding to the celebrated Dorokhov distribution [22] for
disordered wires. For a finite imbalance α > 0, the resulting
distribution is shown in Fig. 6.

The main qualitative feature of the imbalance between
right- and left-moving modes is the appearance of a gap in
the transmission probability distribution. This gap develops
around T = 1 or, equivalently, λ = 0. Emergence of the gap
can be explained within the mechanical picture considered
above. Transmissions close to T = 1 correspond to the value
of the source angle close to θ = π . The probability to find
a channel with large transmission is related to the classical
action for a particle going from the “north pole” of the sphere
almost to its “south pole” in a given time. Since the left-right

FIG. 7. The value of the gap in the average distribution function
in terms of T and λ obtained by solving Eq. (59). The asymptotics of
λg are given in Eq. (60).

imbalance implies a magnetic monopole in the center of the
sphere, all classical trajectories are deviated by the Lorentz
force and the south pole becomes classically unreachable.

Another qualitative feature of the distribution (57) is the
delta peak at λ = 0. It appears due to the infinitesimal i0 term
that becomes effective at small λ and yields

ρ(λ → 0) = −ξ |α|
πL

Im
1

λ + i0
= |m| δ(λ). (58)

This delta peak describes |nR − nL| perfectly conducting
topologically protected channels at the imbalanced edge
of the sample. The gap in the distribution function is a result
of the statistical repulsion of transmission probabilities from
the delta peak at T = 1.

The critical value λ = λg , that determines the size of the
gap, can be calculated as follows. Close to λg , the transcen-
dental equation (54) has two almost degenerate solutions. This
implies that at the critical value of θF the derivative ∂θF /∂χ

vanishes, which yields the equation for the critical value χg(α):

tan
χg

2
= χg

2
+ χ3

g

2α2
. (59)

For α < 2
√

3, solution of this equation is real and lies in
the interval 0 < χg < π . At larger α, the critical value χg is
imaginary.

Dependence of the gap on the parameter α is shown in
Fig. 7. Its asymptotic behavior for small and large α can be
derived by approximately solving Eq. (59) and using Eq. (54):

λg =
{

α
π

+ (
2
π5 − 1

6π3

)
α3 + . . . , α � 1

α
2 − ln α

2 + . . . , α � 1.
(60)

Close to the critical value λg , the distribution function
exhibits the square-root behavior

ρ(λ) = ξ

πL
f (α)

√
λ − λg, λ > λg. (61)

The value of the factor f (α) can be calculated by expanding
Eq. (54) close to the critical point determined by Eq. (59). This
leads to

f (α) =
∣∣∣∣∣ 2

√
χg(χg − sin χg)3/4√

2χg + χg cos χg − 3 sin χg sin1/4 χg

∣∣∣∣∣. (62)
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This function behaves as
√

2π3/α in the limit α � 1 and
approaches the value 2 at large α. It will be used in the
discussion of the universal crossover dependence of ρ(λ) in
the vicinity of λg in Sec. IV.

B. Transport moments

The distribution function of transmission probabilities
allows to compute average conductance, Fano factor, and
higher moments of electron transport. However, the result (57)
is written in terms of the parameter χ that is determined by
the complicated transcendental equation (54). It is easier to
compute the moments directly from the generating function
(56) by taking its derivatives at θ = 0. We solve Eq. (54)
perturbatively in small θF with χ ≈ iα and then substitute the
solution into Eq. (56). This yields the following expressions
for the conductance and Fano factor:

G

G0
= F(0) = ξα

2L
coth

α

2
, (63)

F = 1 − 2F ′′(θ )

F(θ )

∣∣∣∣
θ=0

= sinh α − α

sinh α(cosh α − 1)
. (64)

They are plotted in Fig. 8. Expressions (63) and (64) were re-
cently obtained in Ref. [30] in the context of magnetotransport
in Weyl semimetals when scattering between the Weyl nodes
is neglected.

FIG. 8. Average conductance (upper panel) and Fano factor
(lower panel) as a function of α [Eqs. (63) and (64)].

In the limit of balanced edge, α = 0, we recover the
known values [52] of conductance G/G0 = ξ/L and Fano
factor F = 1

3 for a diffusive wire. In the limit of large α,
topologically protected channels dominate the transport giving
the same value of |α|/2 to all moments. The Fano factor
vanishes in this limit while the conductance equals |m|/2.
The total conductance includes the contribution of the outer
edges [Eq. (1)] and attains the value Gtot/G0 = max{nL,nR}
in the limit α � 1.

Diffusion in the unprotected channels is exponentially
suppressed at α � 1. Remarkably, this nonperturbative local-
izationlike effect occurs at scales parametrically shorter than
the actual localization length ξ/m � L � ξ , and is accessible
within the simple semiclassical treatment of the sigma model.

C. Mesoscopic conductance fluctuations

Conductance of a disordered sample exhibits universal re-
producible random fluctuations as a function of some external
parameters, e.g., weak magnetic field or gate voltage [40,41].
These fluctuations are attributed to changes of the effective
disorder potential and can be computed as the variation of
conductance around its average value in the given ensemble
(22). This quantity contains information about correlations of
transmission probabilities of different channels [51,53] and
cannot be expressed in terms of the generating function F
only.

In the quasiclassical limit L � ξ , the partition function
factorizes: Z = ZBZF . This approximation is insufficient to
compute conductance fluctuations since the parameters θB

and θF are fully decoupled on the level of the minimized
action. A more accurate calculation taking into account small
fluctuations around the optimal trajectory is required. This
will also involve Grassmann degrees of freedom of the sigma
model.

In order to expand the action in small fluctuations, we
parametrize the classical solution as

Qc = T −1
c �Tc, ṪcT

−1
c = M = const. (65)

This representation is possible since the trajectory is a rotation
with constant velocity around a suitably chosen axis [cf.
Eq. (52) and Fig. 5]. Deviations from the optimal trajectory
are encoded in the matrix W , which anticommutes with �:

T = eW/2 Tc, Q = T −1
c �eWTc. (66)

We substitute these matrices into the action (36) and expand to
the second order in W . This expansion yields S = S0 + S1 +
S2 with

S0 = Smin(θF ) − Smin(iθB), (67a)

S1 = ξ

2L

∫ 1

0
dx str[(�M)2 + α�M]W, (67b)

S2 = ξ

8L

∫ 1

0
dx str[Ẇ 2 + 4MẆW − {�M,W }2

+α(�ẆW − 2�MW 2)]. (67c)

The linear term S1 vanishes for the classical solution while
S0 yields the minimized action with Smin defined by Eq. (55).
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FIG. 9. Variance of conductance [Eq. (68)] due to mesoscopic
fluctuations as a function of α.

Further details on the parametrization of W and com-
putation of the fluctuations determinant are relegated to
Appendix A. We should note that the quadratic form in
the components of W , corresponding to S2, is difficult to
diagonalize analytically for arbitrary values of θB,F . However,
in order to compute the variance of conductance [Eq. (22)],
an expansion in small θB,F suffices. This is possible within
a perturbative treatment of the fluctuations determinant and
yields

var G

G2
0

= α2(2 + cosh α) − 3α sinh α

16 sinh6(α/2)
. (68)

Dependence of var G on α is shown in Fig. 9. In the limit α = 0,
the known universal value 1

15 is reproduced [40–42,54]. For a
spin degenerate sample, the variance is four times larger. In the
presence of imbalance, α 	= 0, some channels are topologically
protected and have perfect transmission. Hence, the variance
of conductance decreases with growing α.

D. Other symmetry classes

Results for other symmetry classes withZ topology (classes
C and D) are very similar to the results for the unitary class.
The distribution function, conductance, and Fano factor are
given by exactly the same expressions (57), (63), and (64),
respectively. The variance of conductance also has the form
(68) with an additional factor 2 in classes C and D to account
for particle-hole symmetry.

For the classes AII and DIII, theZ2 topology is not captured
on the quasiclassical level. The topological term in the action
(40) is quantized and thus drops from the classical equations
of motion. Nevertheless, for fixed boundary conditions there
are always two topologically distinct trajectories minimizing
the action in each of the two homotopy classes (cf. Fig. 4). The
presence of the topological term becomes crucial when both
trajectories have approximately equal action. This happens
when the angle θF is close to π . Hence, we conclude that
Z2 topology has an effect on the distribution function of
transmission probabilities ρ(λ) for small values of λ (close
to perfect transmission). This limit will be discussed in the
next section.

IV. TRANSMISSION DISTRIBUTION NEAR λ = 0:
MAPPING TO RANDOM MATRICES

The quasiclassical consideration of the previous section is
valid provided the action has a well-defined minimum given
by the solution of the classical equations of motion. This is,
however, not true when the final point of the trajectory is close
to the “south pole” (the point with θ = π ). Hence, our result
for the distribution function (57) should be refined for small
values of λ. Namely, we will demonstrate that the semiclassical
gap in the distribution function is not exact and will obtain a
more accurate result in the gap region.

A. Illustrative example: A sphere

Consideration of the distribution function at small λ is
similar for all symmetry classes. We start with the example
of a particle moving on a sphere and then generalize the result
to a general sigma-model manifold.

Consider the mechanical problem of a particle going from
the “north pole” θ = 0 to the “south pole” θ = π on a sphere.
There are many equivalent solutions to this problem since all
the “meridians” have exactly the same length (Fig. 10). This
implies that the minimum of the classical action is degenerate
with respect to the azimuthal angle. If the final point of
the trajectory is close to but not exactly at the “south pole,” the
exact degeneracy is lifted. However, there is still a soft mode
approximately corresponding to the azimuthal angle.

Let us assume that the final point of the trajectory is
at θ = π − ω and φ = 0. There are two classical solutions
yielding a minimum and a maximum value of the action:
θ = (π ∓ ω)x with φ = 0 or π . The two extremal values of the
action are close provided ω � 1. We can interpolate between
the two solutions by a family of trajectories parametrized
by the angle φ, that labels the point where the trajectory crosses
the “equator” of the sphere. Using Eq. (48) and assuming α

small, we write effective action for this soft mode as

S = const − πξω

2L
cos φ + imφ. (69)

The last term appears due to α and is the relative magnetic flux
enclosed by the trajectory.

FIG. 10. Degenerate classical trajectories connecting the “north
pole” to the “south pole” on a sphere. The soft mode corresponds to
the azimuthal angle. Each trajectory is identified with a point on the
“equator.”
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TABLE I. Symmetry classification of the disordered systems
[15,17,18]. Columns: Hamiltonian symmetry class, “equator” sym-
metry class, compact part of the sigma-model manifold, possible
topological insulators in 1D and 2D.

H “E” QFF d=1 d=2

A AIII U(2n)/U(n) × U(n) 0 Z
AIII A U(n) × U(n)/U(n) Z 0

AI CI Sp(4n)/Sp(2n) × Sp(2n) 0 0
BDI AI U(2n)/Sp(2n) Z 0
D BDI O(2n)/U(n) Z2 Z
DIII D O(n) × O(n)/O(n) Z2 Z2

AII DIII O(2n)/O(n) × O(n) 0 Z2

CII AII U(n)/O(n) Z 0
C CII Sp(2n)/U(n) 0 Z
CI C Sp(2n) × Sp(2n)/Sp(2n) 0 0

The expansion (69) is valid provided ω � √
L/ξ , when

higher terms can be safely neglected in the weight function
e−S . The partition function corresponding to the action (69)
has the form

Z(ω) =
∫ 2π

0

dφ

2π
e(πξω/2L) cos φ−imφ = Im

(
πξω

2L

)
, (70)

where Im is the modified Bessel function. Thus, we have
effectively mapped the classical problem in one dimension
to an effective zero-dimensional (0D) quantum problem.

B. Generalization to symmetric superspaces

We will now generalize the mapping discussed above to
the case of a symmetric superspace. Consider first the case
of a compact symmetric space. There is a family of classical
trajectories connecting the “north pole” Q = � to the “south
pole” Q = −�. Let us pick one particular geodesic connecting
the two poles (we again rescale x by the length of the
sample L):

Q = T −1
0 �T0, T0 = exp(iπM0x/2). (71)

The matrix M0 represents a point on the “equator.” Other
possible trajectories are generated by rotations from the small
group K of the matrices that commute with � and leave the
end points ±� invariant.

We can always choose the generator M0 such that it
anticommutes with �. Since the trajectory (71) ends at the
point −�, we have eiπM0 = −1 and conclude that eigenvalues
of M0 are ±1. (Other odd integer eigenvalues correspond
to longer trajectories and hence yield larger value of the
action). The whole “equator” is parametrized by the matrix
M defined as

M = K−1M0K, M2 = 1, (72a)

{M,�} = 0, [K,�] = 0. (72b)

Hence, the “equator” of a symmetric space is also a
symmetric space of a different class. “Equators” for all 10
symmetry classes are listed in Table I.

Generalization to a symmetric superspace is more subtle
since the noncompact sector does not possess a “south pole.”

Nevertheless, calculation of transmission distribution function
involves analytic continuation of the bosonic angle θB to the
vicinity of −iπ . This is equivalent to the “south pole” of
the bosonic sector and means that the mapping from Table I
applies in the same way to superspaces if a proper analytic
continuation is assumed.

In order to derive an effective action for the trajectories
connecting the “north pole” to the vicinity of the “south pole,”
we parametrize the Q matrix as

Q = T −1�(1 + W )T , T = exp(iπMx/2). (73)

The matrix W anticommutes with � and describes a deviation
of the trajectory from the “meridian.” The final point of
the trajectory is independent of M . We choose it at Q(1) =
−�(1 − iω̂M0) with the matrix M0 from Eq. (72a). The matrix
ω̂ quantifies the deviation of the final point from the south pole:

ω̂ =
(

π − iθB 0

0 π − θF

)
BF

. (74)

The value of W at x = 1 satisfies

W (1) = −iMω̂M0M (75)

in order to ensure the correct final point of the trajectory.
We insert Eq. (73) into the action (36), neglect for the

moment the topological term, and expand to linear order in W .
Using the properties (72) and (75), we get the result

S = − ξ

8L

∫ 1

0
dx str Q̇2 = iπξ

4L

∫ 1

0
dx str(MẆ )

= πξ

4L
str(ω̂M0M). (76)

In order to find the contribution of the topological term, we
neglect W and redefine the matrix T in Eq. (73) such that at
the final point T (1) is independent of M . This can be achieved
by a suitable x-dependent left rotation R from the group K:

T = R(x) exp(iπMx/2), R(0) = 1, R(1) = M0M.

(77)
With this definition, the expression for the topological term in
Eq. (36) becomes

Stop = −m

2

∫ 1

0
dx str T −1�Ṫ = −m

2

∫ 1

0
dx str �ṘR−1

= −m

2
str[� ln(M0M)]. (78)

Thus, we have successfully mapped the 1D sigma model,
defined in terms of the matrix Q, to the 0D sigma model
in terms of M:

S = 1

4�
str(ω̂M0M) − m

2
str[� ln(M0M)]. (79)

The model (79) describes statistics of large random
matrices with the average level spacing � = L/πξ . The
correspondence between the manifolds of Q and M (the
latter is the “equator” of the former) is detailed in Table I.
This correspondence conforms to the Bott periodicity [15].
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Whenever the 1D model contains a topological term, the
corresponding 0D model also acquires a topological term of
the same type.

C. Distribution of transmission probabilities

Let us now apply the correspondence derived above to the
calculation of the transmission distribution ρ(λ). We begin
with the case of the imbalanced quantum Hall edge, which
belongs to the unitary symmetry class A. The matrix � is
defined in Eq. (28) and the matrices M0 and M we represent as

M0 =
(

0 1
1 0

)
RA

, M =
(

0 P

P −1 0

)
RA

. (80)

This choice satisfies all the constraints (72). The unitary matrix
P belongs to the manifold of the sigma model in class AIII
(see Table I). In terms of P , the 0D sigma-model action (79)
takes the form

S = 1

4�
str[ω̂(P + P −1)] + m str ln P. (81)

Such a sigma model was studied before in the context of
random chiral matrices with zero eigenvalues [55,56]. We
are interested in the distribution function of transmission
probabilities that is given by Eq. (21):

ρ(λ) = 2

π
Re

∂

∂ωF

∫
DP e−S(P )

∣∣∣
ωB=ωF =−2iλ+0

, (82)

where ωB,F are the entries of ω̂ [cf. Eq. (74)]. This distribution
function exactly coincides with the spectral density of a
random chiral matrix normalized to the average level spacing
π� = L/ξ .

For an illustration, we perform the calculation explicitly
for class A [56]. The matrix P in Eq. (81) can be written as a
product of a usual and a Grassmann matrix:

P =
(

ea 0
0 eib

)(
1 − μν ν

μ 1 + μν

)
. (83)

The measure on the superspace is especially simple in this
parametrization:

dP = da db dμ dν

4π
. (84)

We compute the partition function with the action (81) and
obtain the following expression:

Z =
∫

dP e−S(P )

=
(

ωF

∂

∂ωF

− ωB

∂

∂ωB

)
Km

(ωB

2�

)
Im

(ωF

2�

)
. (85)

The distribution function is given by Eq. (82) and has the
form [56]

ρA(u) = u

2

[
J 2

m(u) − Jm+1(u)Jm−1(u)
]+ |m|δ(u), (86a)

where we have rescaled the parameter by the level spacing:
u = λ/�, ρ(u) = �ρ(λ).

The result (86a) is depicted in Fig. 11. In the limit
λ � √

L/ξ , it refines the quasiclassical result (57). Indeed,
instead of identically vanishing ρ(λ), suggested by the classical

FIG. 11. Average distribution function of transmission probabil-
ities in class A [Eq. (86a)] at a fixed value of ξ/L = 10 and different
m as a function of λ (upper panel) and T (lower panel).

calculation inside the gap, the true asymptotics is ρ ∼ λ2m+1.
When the gap is not too large, m � √

ξ/L, the function
(86a) also describes smoothly the crossover from the subgap
region, where ρ is strongly suppressed, to the saturation ρ ≈ 1
above the gap. This crossover occurs at λ ≈ mL/πξ , which is
equivalent to λg ≈ α/π found in the semiclassical calculation
(60) for small α. The oscillations in ρ(λ), emerging around
λg , are caused by statistical repulsion between individual
transmission probabilities, in full analogy with level repulsion
in random matrices.

D. Other symmetry classes

Exploiting the correspondence between the 1D transport
problem and level statistics of random matrices, we can
directly apply the results of Ref. [55] to our problem. We
introduce the normalized parameter u = λ/� and quote the
results in terms of ρ(u) = �ρ(λ). For classes C and D, we
have

ρC(u) = ρA(u) − 1

2
Jm(u)

∫ u

0
du′ Jm(u′), (86b)

ρD(u) = ρA(u) + 1

2
Jm(u)

∫ ∞

u

du′ Jm(u′). (86c)

In these expressions, m is any integer in class D and any
even integer for class C.
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FIG. 12. Comparison of the average distribution function in
classes A (quantum Hall edge), C, and D [Eq. (86)], with the
semiclassical result (57) in terms of λ (upper panel) and T (lower
panel).

All the above qualitative discussions of the results for the
unitary class A apply to classes C and D as well. The only
difference is in the strength of the level repulsion. Classes
C (spin quantum Hall effect) and D (thermal quantum Hall
effect) exhibit stronger and weaker oscillations as compared
to class A, respectively. We compare the distribution functions
(86) and the semiclassical result (57) in Fig. 12.

The classes with Z2 topology, AII (quantum spin-Hall
effect) and DIII, map to 0D models of the classes DIII and
D, respectively. The latter are the classes of random matrices
with a possible single zero eigenvalue. The average spectral
density for such matrices [55] yields the following result for
transmission distributions in 1D:

ρAII(u) = u

2

[
J 2

1 (u) + J0(u)J ′
1(u)

]+ σ

2
J1(u) + (1 − σ )δ(u),

(87a)

ρDIII(u) = 1 + σ
sin u

u
+ (1 − σ )δ(u). (87b)

The parameter σ is either 1 or −1 for the even and odd number
of channels, respectively.

The results (87) are depicted in Fig. 13. A single channel
with perfect transmission (delta function at λ = 0) emerges
in the case of an odd number of channels. It suppresses
ρ(λ) at small λ, similarly to other classes discussed earlier.

FIG. 13. Average distribution of transmission probabilities in
classes AII (quantum spin Hall edge) and DIII [Eq. (87)], with even
and odd number of channels. In the odd case, a delta peak at λ = 0
appears.

The mutual repulsion of transmission probabilities results in
the oscillations in ρ(λ) also in an analogy to the previously
discussed classes. However, in the Z2 classes, the topological
effects are weaker; this is the reason why they were not
captured in the fully semiclassical analysis of Sec. III.

E. Distribution function in the vicinity of the gap edge

As was shown above, the behavior of the distribution func-
tion ρ(λ) qualitatively changes from oscillatory to decaying
as λ is decreased below λg . In order to describe this crossover
quantitatively, let us introduce a suitably rescaled variable

x =
(

2

m

)1/3(
λ

�
− m

)
. (88)

In terms of this variable, we can extract the crossover
dependence from Eqs. (86) by invoking the asymptotic form
of the Bessel function at m � 1. This asymptotic expansion is
given in terms of the Airy function [57]

Jm

(
m + x

(m

2

)1/3
)

=
(

2

m

)1/3

Ai(−x) + O(1/m). (89)

The crossover functions for the three classes with Z topology
have the form

ρA(x) = x Ai2(−x) + [Ai′(−x)]2, (90a)

ρC(x) = ρA(x) − 1

2
Ai(−x)

∫ x

−∞
Ai(−t) dt, (90b)

ρD(x) = ρA(x) + 1

2
Ai(−x)

∫ ∞

x

Ai(−t) dt. (90c)

They are plotted in Fig. 14.
These functions coincide with the spectral densities of

the large-size random matrices close to the edge of the
spectrum [58,59] in the three standard Wigner-Dyson classes:
orthogonal (AI), unitary (A), and symplectic (AII). Such a
coincidence is not accidental. As long as we have mapped
the 1D transport problem onto the suitable random-matrix
ensemble, the statistical properties in the vicinity of the spectral
edge are universal.
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FIG. 14. Universal crossover functions close to the semiclassical
edge of the spectrum (shown with dashed line) for classes A, C, and
D [Eq. (90)]. The parameter x is defined by Eq. (88) when the gap is
relatively small, m � √

ξ/L, or by a more general relation (92) for
arbitrary m.

At large positive x, all three functions (90) have the same
square-root behavior

ρ(x) =
√

x

π
, (91)

shown in Fig. 14 by the dashed line. This envelope repre-
sents the edge of the distribution gap in the semiclassical
solution (57).

It appears that the crossover functions (90) correctly
describe the behavior of ρ(λ) near the gap edge even in the
limit m � √

ξ/L. In this limit, the critical value λg is too large
and the mapping of Table I is not applicable for λ � λg . On the
semiclassical level, the appearance of the gap can be attributed
to the existence of an unreachable region around the south
pole of the sigma-model manifold, as is explained in Sec. III.
When quantum fluctuations are taken into account, we expect
the possibility of tunneling into this forbidden region. For
λ > λg , there are always two classical solutions that represent
a minimum and a maximum of the action. Exactly at λ = λg ,
the two solutions merge. For smaller values of λ, we again have
two close “classical” solutions that extend into the complex
plane. Since the corresponding minimum and maximum of
the action are close, there is a soft mode interpolating between
them. This means that the problem can be again mapped onto
an effective 0D model taking into account only this soft mode.
In the limit 1 � m � √

ξ/L, this mapping is equivalent to the
mapping of Table I, hence, the universal crossover function can
be derived from Eq. (86).

The calculation within the effective 0D model, describing
the gap edge in the limit m � √

ξ/L, is presented in
Appendix B. It yields the same crossover functions (90)
provided the definition of the variable x [Eq. (88)] is modified:

x =
(

ξ

L
f (α)

)2/3

(λ − λg), (92)

where the function f (α) is introduced in Eq. (62). The
modified variable (92) is chosen such that the semiclassical

result maintains the form (91) in the vicinity of the gap
edge. Thus, the single adjustable parameter in the universal
dependence (90) is extracted from the perturbative analysis of
the semiclassical equations of motion.

V. SUMMARY AND DISCUSSION

We have studied the transport properties at the edge of
a generic disordered two-dimensional topological insulator
allowing for the coexistence of topologically protected and
diffusive channels. Two qualitatively different patterns of the
topological effects emerge in the cases ofZ andZ2 topological
insulators.

The prototypical model of disorder-mixed edge states with
Z topology is given by the junction between two quantum
Hall states with different filling factors (class A) (Fig. 1). In
this case, the average distribution function of transmission
probabilities exhibits a semiclassical gap [Eq. (57)] shown in
Fig. 6. The magnitude of the gap is related to the imbalance
parameter α as shown in Fig. 7. The gap is accompanied
by a delta peak at λ = 0 due to the topologically protected
states [Eq. (58)]. Strong suppression of transmission in the
unprotected channels occurs already at relatively short scales
ξ/|m| � L � ξ . This nonperturbative effect is thus fully
accessible within the semiclassical treatment of the nonlinear
sigma model.

An exemplary model of a Z2 topological insulator with
N � 1 edge modes is provided by a relatively thick quantum
spin Hall sample (class AII) (see Fig. 2). In this case, at most
one edge channel is topologically protected leading to weaker
transport effects. In order to capture topologically driven
suppression of nearly perfect transparencies in the average
distribution function ρ(λ), we have developed a mapping
of the 1D nonlinear sigma model onto an equivalent 0D
random matrix theory. This mapping applies to all symmetry
classes and is summarized in Table I. Specifically, the average
distribution function ρ(λ) is equivalent to the average spectral
density of a certain random matrix ensemble. The latter is
described by the 0D sigma model defined on the “equator” of
the original 1D sigma-model manifold. This mapping yields
detailed description of the transmission eigenvalues statistics
in the vicinity of λ = 0 both for Z [Eq. (86), Fig. 12] and Z2

[Eq. (87), Fig. 13] topological insulators.
When the size of the sample exceeds the localization

length, L � ξ , the average distribution ρ(λ) qualitatively
changes. Repulsion between transmission probabilities gets
strong and the oscillations of the type of Fig. 11 develop
into sharp isolated peaks. This phenomenon is referred to as
“crystallization” of transmission eigenvalues [50,60,61]. This
limit can be accessed within the nonlinear sigma model (36)
when it is studied beyond the semiclassical approximation.
This amounts to analyzing the full spectrum of the Laplace-
Beltrami operator on the curved superspace [42,43]. The
presence of topologically protected modes, and hence the
topological term in the sigma-model action, should be also
taken into account in this case. This will be a subject of a
separate publication.

The mapping from 1D sigma model to the equivalent 0D
theory on the “equator” (Table I) can be extended to higher
dimensions. In particular, transport properties of the surface
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states of a 3D topological insulator can be described in terms
of the effective 1D sigma model with a topological and a mass
term. The latter encodes the information on source fields. Such
an analysis requires the knowledge of the spectral properties
of the corresponding transfer-matrix Hamiltonian and will be
discussed elsewhere.
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APPENDIX A: FLUCTUATION MODES

In this Appendix, we compute the contribution of fluctua-
tion modes around the classical solution of the sigma model
(36) in the unitary symmetry class. This calculation yields the
result (68) for the mesoscopic conductance fluctuations.

In the presence of the topological term, the classical
trajectory can be represented as a rotation with a constant speed
around a certain axis that depends on α. More specifically, we
can choose Tc, introduced in Eq. (65), in the form

Tc = cos(χ̂x/2) + i sin(χ̂x/2)(τz cos ψ̂ + τy sin ψ̂). (A1)

Here, τx,y,z are Pauli matrices in the RA space and χ̂ and
ψ̂ define the velocity and the axis of rotation, respectively.
They are both diagonal matrices in the BF space. Entries of χ̂

are solutions to Eq. (54) for angles iθB and θF , respectively.
The matrix ψ̂ satisfies χ̂ cos ψ̂ = iα [cf. Eq. (52)]. We also
introduce the matrix

γ̂ =
(

γB 0

0 γF

)
BF

= χ̂ sin ψ̂ =
√

χ̂2 + α2. (A2)

With these definitions, we write the generator of rota-
tion (65) as

M = iχ̂

2
(τz cos ψ̂ + τy sin ψ̂) = iγ̂ τy − ατz

2
. (A3)

It can be checked by a direct calculation, that the linear action
S1 [Eq. (67b)] vanishes with such M .

As long as the matrix W anticommutes with �, we
parametrize W = wxτx + wyτy and write the quadratic action
S2 [Eq. (67c)] in the form

S2 = ξ

4L

∫ 1

0
dx str

[(
ẇ2

x + ẇ2
y

)− iα(ẇxwy − ẇywx)

− γ̂ 2

2

(
w2

x + w2
y

)− 1

2
[(γ̂ wx)2 − (γ̂ wy)2]

]
. (A4)

Using explicit parametrization in the BF space

wx =
(

p σ

κ iq

)
BF

, wy =
(

m μ

η in

)
BF

, (A5)

we recast the quadratic action in the form

S2 = ξ

4L

∫ 1

0
dx

[
(p m)HB

(
p

m

)
+ (q n)HF

(
q

n

)

+ 2(σ μ)HBF

(
κ

η

)]
(A6)

with the operators

HB,F =

⎛
⎜⎜⎝

− ∂2

∂x2
− γ 2

B,F iα
∂

∂x

−iα
∂

∂x
− ∂2

∂x2

⎞
⎟⎟⎠, (A7a)

HBF =

⎛
⎜⎜⎜⎝

− ∂2

∂x2
− (γB + γF )2

4
iα

∂

∂x

−iα
∂

∂x
− ∂2

∂x2
− (γB − γF )2

4

⎞
⎟⎟⎟⎠.

(A7b)

The partition function of the sigma model can be written in
terms of corresponding functional determinants as

Z = det HBF√
det HB det HF

e−S0 . (A8)

This function obeys the supersymmetry condition since at
γB = γF we have HB = HF = HBF and hence Z = 1.

In order to calculate the variance of conductance (22), we
will take the mixed derivative in both θB and θF . Hence, only
the Grassmann determinant HBF contributes

var G

G2
0

= 4
∂4 ln det HBF

∂2θB ∂2θF

∣∣∣∣
θF =θB=0

. (A9)

Diagonalizing the operator HBF under the boundary conditions
W (0) = W (1) = 0 is a tedious problem. However, for our
purposes it is sufficient to carry out the calculation for small
values of θB,F . Approximately solving Eq. (54), we obtain the
relation between γ and θ valid at small angles:

γB,F = α θB,F

2 sinh(α/2)
. (A10)

To facilitate the calculation, we perform the gauge trans-
formation H̃ = eαxσy/2HBFe

−αxσy/2 that removes derivatives
from the off-diagonal elements in Eq. (A7b). Expanding
the determinant in small γB,F , we arrive at the following
expression for the variance of conductance:

var G

G2
0

= α4

8 sinh4(α/2)
tr
[
H−2

0 + 2H−1
0 eαxH−1

0 e−αx
]
.

(A11)

Here, the Hamiltonian is H0 = −∂2/∂x2 + α2/4, and we
can evaluate the traces by expanding in the eigenfunctions√

2 sin(πlx) for integer l � 1. This yields

tr H−2
0 = 1

α4

[
−8 + 2α coth

α

2
+ α2

sinh2(α/2)

]
, (A12)

tr
[
H−1

0 eαxH−1
0 e−αx

]
= 1

2α4

[
8 − 5α coth

α

2
+ α2 + α2

2 sinh2(α/2)

]
.

(A13)

Substituting into Eq. (A11), we obtain the result (68) for the
conductance variance.

125405-16



SEMICLASSICAL ELECTRON TRANSPORT AT THE EDGE . . . PHYSICAL REVIEW B 93, 125405 (2016)

APPENDIX B: FLUCTUATIONS NEAR λ = λg

In this Appendix, we consider the contribution of soft
fluctuation modes to the distribution function ρ(λ) near the
semiclassical threshold value λ = λg [cf. Eq. (61)].

The size of the semiclassical gap λg is determined by
Eq. (54) with θF = π + 2iλg and χg is given by Eq. (59) as
a function of α. At the critical value λ = λg , two classical
solutions (minimum and maximum of the action) merge,
hence, a small deviation �λ = λ − λg scales as the square
of �χ = χ − χg . Expanding Eq. (54) near λg and χg and
using Eq. (59), we derive the relation

�χ = i

χg

√
�λ + i0

AB
, (B1)

where we have introduced the following two constants:

A =
√

χ2
g sin χg

χg − sin χg

, B = 2χg + χg cos χg − 3 sin χg

4χ4
g sin χg

.

(B2)
Such a separation of the factors will be convenient in the
subsequent calculations.

We expand the minimized classical action on the sphere,
Eq. (55), in powers of �λ. The first derivative of the action
∂Smin/∂θF provides the value of the generating function F(θ )
in Eq. (56). The next expansion term can be derived assuming
a small deviation �χ in Eq. (56). Using relation (B1), we
obtain

Smin = ξ

L

[
const − A�λ + 2χg

3A
�λ�χ

]

= ξ

L

[
const − A�λ + 2i

3
√

B

(
�λ

A

)3/2
]
. (B3)

This action correctly reproduces semiclassical square-root
behavior of the density (61) with the prefactor f (α) =
A−3/2B−1/2 [cf. Eq. (62)]. The full supersymmetric minimized
action is given by Eq. (67a):

S0 = ξ

L
str

[
A�λ̂ − 2χg

3A
�λ̂�χ̂

]
. (B4)

Here, we use the notation λ̂ = diag{λB,λF } and similar for χ̂ .
Let us consider small fluctuations around the classical

minimum of the action. These fluctuations are described by
the matrix W [Eq. (66)], and the expansion of the action up
to the second order in W is given by Eq. (67). The linear
term S1 vanishes at the minimum of the action. The quadratic
term S2 can be written explicitly in components of W as in
Eq. (A6) with the Hamiltonian (A7) and parameters γB,F

defined by Eq. (A2). Exactly at the edge of the classical
gap, γB = γF = γg , all three Hamiltonians (A7) coincide and
possess a zero mode which signals that two classical solutions
merge at λg . The zero mode has the following two-component
wave function:

u(x) = cos
(
χgx − χg

2

)
− cos

χg

2
,

(B5)

v(x) = iγ 2
g

α
x cos

χg

2
− iα

χg

[
sin

(
χgx − χg

2

)
+ sin

χg

2

]
.

It manifestly satisfies the conditions u(0) = u(1) = v(0) = 0
while the condition v(1) = 0 follows from the gap equa-
tion (59).

With small deviations �λB,F , the mode (B5) acquires a
small mass of the order of �χ ∼ √

�λ. We will retain only this
soft mode in the action and parametrize relevant fluctuations by

W = [u(x)τx + v(x)τy]c. (B6)

Here, c is a constant 2 × 2 matrix in the BF space while the
coordinate dependence is contained in the functions u and v.
Quadratic action can be now computed by assuming small
perturbations −2γg�γ = −2χg�χ in the operators (A7).
This yields

S2 = ξX

L
str(χg�χ̂c2) (B7)

with the factor

X = −1

2

∫ 1

0
dx u2(x) = −χ3

g sin χg B (B8)

and B from Eq. (B2).
Since the quadratic term in the action (B7) vanishes at

λ = λg , we expand the action further taking into account the
cubic term

S3 = ξ

4L

∫ 1

0
dx str

[
M{W 2,Ẇ } + �MW�MW 2

+ 1

3
(�M)2W 3 + α

3
�MW 3

]
= −ξY

3L
str c3. (B9)

The factor Y can be computed directly at λ = λg and takes the
value

Y = −3γg

4

∫ 1

0
dx(u2 + v2)(2iv̇ − αu) = (

χ3
g sin χg

)3/2
B.

(B10)

We have thus constructed the relevant expansion of the
action both in �λ and in fluctuations c. Collecting together
the terms (B4), (B7), and (B9) we obtain

S = ξ

L
str

[
A�λ̂ − 2χg

3A
�λ̂�χ̂ + Xχg�χ̂c2 − Yc3

3

]
.

(B11)

This action can be simplified in terms of a rescaled matrix
field h and parameters x̂ = diag{xB,xF }. The new variables
are introduced as

c = h(ξB/L)−1/3 − χg�χ̂√
χ3

g sin χg

, �λ̂ = AB1/3(ξ/L)−2/3x̂.

(B12)
Note that the relation between x̂ and �̂λ coincides with
Eq. (92) due to the identity f (α) = A−3/2B−1/2 [cf. Eq. (62)].
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In the new variables (B12), the action (B11) acquires a
universal cubic form:

S = str

[
A2(ξB/L)1/3x̂ − x̂h − h3

3

]
. (B13)

The matrix h and the corresponding integration measure dh

can be written explicitly as

h =
(

p η

κ q

)
BF

, dh = dp dq dη dκ

2πi
. (B14)

Integration contours for the variables p and q should be
chosen in accordance with the structure of the original sigma-
model manifold and deformed in order to ensure convergence
of the integral with the action (B13). This leads to the
following choice of the integration contours: p : (−∞,i∞ +
0), q : (−i∞ − 0,i∞ − 0). The partition function for the
action (B13) can be now calculated in terms of the Airy

functions

Z(xB,xF ) =
∫

dh e−S(h) = πeA2(ξB/L)1/3(xF −xB )

×
(

∂

∂xF

− ∂

∂xB

)
Ai(−xF )[Bi(−xB)−i Ai(−xB)].

(B15)

This partition function obeys the supersymmetry relation
Z(x,x) = 1.

The distribution of transmission probabilities follows from
Eq. (21):

ρ(x) = 1

π
Im

∂Z

∂xF

∣∣∣∣
xB=xF =x

. (B16)

The exponential prefactor in the partition function (B15) is
purely real and hence does not contribute to the distribu-
tion function. The resulting expression for ρ(x) reproduces
Eq. (90a).

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[2] J. Moore, Nat. Phys. 5, 378 (2009).
[3] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[4] D. Pesin and A. H. MacDonald, Nat. Mater. 11, 409 (2012).
[5] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma,

Rev. Mod. Phys. 80, 1083 (2008).
[6] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45,

494 (1980).
[7] The Quantum Hall Effect, edited by R. E. Prange and S. M.

Girvin (Springer, Berlin, 1987).
[8] B. I. Halperin, Phys. Rev. B 25, 2185 (1982).
[9] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den

Nijs, Phys. Rev. Lett. 49, 405 (1982).
[10] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314,

1757 (2006).
[11] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.
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