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Optically controlled periodical chain of quantum rings
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We demonstrated theoretically that a circularly polarized electromagnetic field substantially modifies electronic
properties of a periodical chain of quantum rings. Particularly, the field opens band gaps in the electron energy
spectrum of the chain, generates edge electron currents, and induces the Fano-like features in the electron transport
through the finite chain. These effects create physical prerequisites for the development of optically controlled
nanodevices based on a set of coupled quantum rings.
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I. INTRODUCTION

Progress in fabrication of semiconductor nanostructures has
led to achievements in studies of ringlike various mesoscopic
objects, including quantum rings, nanotubes, nanohelices (see,
e.g., Refs. [1–4] and references therein). The physical interest
to the rings is caused by the phenomenon of the interference
of electron waves, which can be observed there. Particularly,
the Aharonov-Bohm (AB) effect arisen from the direct
influence of the vector potential on the phase of the electron
wave function [5–8] has been studied both theoretically and
experimentally in various ringlike nanostructures [9–17]. Con-
ceptually, the AB effect is caused by the broken time-reversal
symmetry in an electron system subjected to a magnetic flux.
Namely, the flux breaks the physical equivalence of clockwise
and counterclockwise electron rotations in a ring, which
results in the flux-controlled interference of the electron waves
corresponding to these rotations. However, the time-reversal
symmetry can be broken not only by a magnetic flux but also
by a circularly polarized electromagnetic field. Therefore, the
strong coupling of electrons in quantum rings to off-resonant
circularly polarized photons leads to the optically induced
AB effect [18–21]. As a consequence, stationary electronic
properties of quantum rings can be effectively controlled
with light. It should be noted that the optical control of
quantum rings is attractive from an applied viewpoint since
it is much faster than the magnetic-flux-induced control.
Therefore, optically controlled ringlike nanostructures can be
considered as a basis for creating ultrafast logic gates. In the
previous studies, the main attention was paid to the optically
induced effects in sole quantum rings. As to the effects in
multiring systems, they escaped attention before. In the present
article we perform a theoretical analysis of a one-dimensional
chain of coupled quantum rings [22–25] subjected to an
off-resonant circularly polarized electromagnetic wave and
demonstrate that electronic properties of the chain are very
sensitive to the irradiation.

II. MODEL

Let us consider the periodical chain of quantum rings
irradiated by a circularly polarized electromagnetic wave with
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the electric field amplitude Ẽ0 and the frequency ω, which is
assumed to be far from resonant frequencies of the electron
system (see Fig. 1).

Within the scattering matrix approach [17,26], the ampli-
tudes of electron waves in the chain A±, B±, C±, D± satisfy
two equations,⎛⎜⎝A−e−iqd/2

C+
D+

⎞⎟⎠ = S

⎛⎜⎝ A+eiqd/2

C−ei(πqR−φ0)

D−ei(πqR+φ0)

⎞⎟⎠, (1)

⎛⎜⎝B+e−iqd/2

C−
D−

⎞⎟⎠ = S

⎛⎜⎝ B−eiqd/2

C+ei(πqR+φ0)

D+ei(πqR−φ0)

⎞⎟⎠, (2)

where the scattering matrix is

S =

⎛⎜⎜⎝
√

1 − 2ε2 ε ε

ε −(1+√
1−2ε2)

2
(1−√

1−2ε2)
2

ε (1−√
1−2ε2)
2

−(1+√
1−2ε2)

2

⎞⎟⎟⎠, (3)

ε is the electron transmission amplitude through the QPCs (0 �
ε � 1/

√
2), q =

√
2meE/�2 is the electron wavenumber, me

is the electron mass, and E is the electron energy. As to the
phase shift in Eqs. (1) and (2),

φ0 = πe2Ẽ2
0

me�ω3
, (4)

it describes the phase difference for electron waves traveling
inside the ring clockwisely and counterclockwisely, which
arises from the electron coupling to the circularly polarized
irradiation [20]. It should be stressed that the phase shift (4)
is induced by an off-resonant electromagnetic field (“dressing
field” in conventional terms of quantum optics) which cannot
be absorbed by electrons. Therefore, the effects discussed be-
low substantially differ from the effects caused by absorption
of light in quantum rings (see, e.g., Refs. [27–29]).

Applying the Bloch theorem to the considered periodic
chain of quantum rings, we arrive at the equation(

A+
A−

)
= eikT

(
B+
B−

)
, (5)
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FIG. 1. Sketch of the system under consideration: (a) The
periodical chain of quantum rings irradiated by a circularly polarized
electromagnetic wave with the electric field amplitude Ẽ0. (b) The
elementary cell of the chain consisting of a quantum ring with the
radius R, two leads with the length d/2, and two quantum point
contacts (QPCs). The arrows correspond to electron waves traveling
in different ways with the amplitudes A±, B±, C±, D±, and T is the
period of the chain.

where k is the electron wave vector originated from the
periodicity of the chain and T = d + 2R is the period of
the chain. Mathematically, Eqs. (1), (2), and (5) form a
homogeneous system of linear algebraic equations for the
eight amplitudes A±,B±,C±,D±. The secular equation of the
algebraic system,

sin(qd)[(1 − ε2) cos2 φ0 +
√

1 − 2ε2 sin2 φ0

− cos(2πqR)] + ε2{sin[q(d − 2πR)]

+ 2 cos φ0 sin(πqR) cos(kT )} = 0, (6)

defines the sought electron energy spectrum of the irradiated
chain E(k), which is plotted in Fig. 2 for the particular
important cases discussed below.

III. DISCUSSION AND CONCLUSIONS

The electron energy spectrum of the chain without the
irradiation (φ0 = 0) is shown in Figs. 2(a) and 2(b). In the
case of transparent QPCs (ε = 1/

√
2), Eq. (6) reads as

sin(qπR)[cos(kT ) − cos(qd + qπR)] = 0. (7)

Evidently, Eq. (7) has the two solutions q = (|kT | +
2πn)/(d + πR) and q = m/R, where n,m = 0,±1,±2, . . . .
The first solution produces the k-dependent branches of
the electron energy spectrum E(k), which correspond to an
electron propagating along the chain, whereas the second one
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FIG. 2. Electron energy spectrum of the chain of GaAs-based
quantum rings with the radius R = 30 nm and the period T = 100 nm
in the presence of a circularly polarized electromagnetic field with
the frequency ω = 12 × 1012 rad/s.

results in flat bands corresponding to an electron localized
inside individual rings [see Fig. 2(a)]. In the case of semitrans-
parent QPCs (0 < ε < 1/

√
2), the secular equation (6) takes

the form

{(2ε2 − 1) cos[q(d − πR)] + cos[q(d + πR)]

− 2ε2 cos(kT )} sin(qπR) = 0. (8)

It follows from Eq. (8) that the nontransparency of the QPCs
leads to opening band gaps at the Brillouin zone edges (k =
±π/T ), which arise from the Bragg reflection of electron
waves by the QPCs [see Fig. 2(b)]. As to the limit of weakly
transparent QPCs, ε � 1, the band structure contains only the
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electron modes localized inside rings and leads, which are
defined by the dispersion equation sin(qd) sin(qπR) = 0.

The electron energy spectrum of the irradiated chain (φ0 �=
0) is shown in Figs. 2(c) and 2(d). Since the localized electron
modes are not eigenmodes of the irradiated structure, the phase
shift φ0 �= 0 results in the coupling between the localized
electron modes of the rings and the propagating electron modes
of the chain. As a consequence, the anticrossings—which
manifests itself through an opening of the additional band gaps
inside the Brillouin zone—appears [see Fig. 2(c)]. It should
be noted also that in the particular case of φ0 = π/2 Eq. (6)
results in the series of the k-independent solutions producing
flat bands in Fig. 2(d). Thus, generally, the two types of band
gaps can be identified in the considered chain: The type-I
gaps can take place in the unirradiated chain, whereas the
type-II gaps are caused by the irradiation. Namely, the type-I
gaps, �1 and �2, are opened at the edges and at the center
of the Brillouin zone, whereas the type-II gaps, �3, appear
at the crossing of delocalized and localized electron modes
[see Fig. 2(c)]. It should be noted that these two types of band
gaps have a different dependence on the small phase shifts
φ0: While the type-I gaps are �1,2 ∝ φ2

0 , the type-II gap is
�3 ∝ φ0. The explicit forms of the asymptotic expressions for
the gaps at φ0 � 1 read as

�1 ≈ 3π�
2

me(d + πR)2
cot

(
3π

2

πR

d + πR

)
φ2

0, (9)

�2 ≈ 4π�
2

me(d + πR)2
tan

(
2π

πR

d + πR

)
φ2

0 , (10)

�3 ≈ 3�
2

meR2

√
2R

π (d + πR)
φ0. (11)

The dependence of gaps �1,2,3 on the phase shift φ0 is plotted
in Fig. 2(e). The irradiation-induced type-II gaps are most
interesting from the viewpoint of possible applications since
they allow us to design the optically controlled modulators
of the electron signal propagating in the chain. It should
be noted that the coupling of the narrow localized electron
mode and the delocalized one, which results in opening the
type-II band gaps, can be described formally in terms of the
Fano resonance [30,31]. In order to demonstrate this, we
calculated the probability of electron transmission through
a finite chain of quantum rings (see the Appendix). The
Fano-like asymmetry of the lineshape of the transmission
spectrum is clearly seen in Fig. 3.

In order to demonstrate another interesting irradiation-
induced effect in the considered system, let us introduce
the probabilities to find the electron in the upper and lower
segments of rings R±. The difference of these probabilities,
R+ − R−, which gives the distribution of electron density in
the chain, is plotted in Fig. 4 as a function of the phase shift
φ0. It follows from the plot that an electron in the irradiated
chain propagates preferably either in the upper or the lower
segments of the rings. Moreover, one can see that R = ±1 for
some values of φ0. As a consequence, electrons propagating
along the chain can be localized in different (upper or lower)
segments of the rings. Thus, the irradiation-induced edge
currents appear (see the upper insert in Fig. 4).
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FIG. 3. Probability of electron transmission through a finite chain
consisting of five quantum rings at the irradiation-induced phase shift
φ0 = π/9. The shaded-green regions correspond to the band gaps in
Fig. 2(c).

In the present paper we restricted our consideration to the
simplest case of the periodic chain consisting of identical rings.
It is interesting to discuss the more complicated case of the
doubly periodic chain, where the unit cell of the periodic
structure consists of two nonequivalent quantum rings. In
this case, the simultaneous breakdown of the time-reversal
symmetry (due to the applied circularly polarized field) and the
inversion symmetry (due to nonequivalency of the rings) takes
place. It follows from the fundamentals of quantum mechanics
that these broken symmetries result in the asymmetric electron
dispersion E(k) �= E(−k), which has been studied in various
nanostructures (see, e.g., Refs. [32,33] and references therein).
As a consequence, electronic phenomena which are specific
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FIG. 4. Distribution of electron density in the chain R = R+ −
R− as a function of the irradiation-induced phase shift φ0 at kT =
π/4 for the four lowest energy bands pictured schematically in the
lower insert, where R+ and R− are the probabilities of the electron
staying in the upper and lower segments of the rings, respectively.
The upper insert shows the edge currents corresponding to the cases
of R± = 1.
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for such an asymmetric dispersion can be expected also in the
system under consideration.

Finalizing the discussion, let us analyze observability of the
predicted effects. There are the two fundamental restrictions
for the developed theory. First, the mean free path of the
electron for inelastic scattering processes should be much
greater than the chain period T . Second, the condition of
strong electron-field coupling must be satisfied: The time of the
electron traveling through a ring should be much less than the
field period 2π/ω [20]. In the considered case of GaAs-based
quantum rings with the Fermi energy of meV scale and the
chain period T ∼ 10−5 m, both conditions can be satisfied
for a dressing field of THz frequency range with the intensity
I0 ∼ 104 W/cm2. It follows from the calculations that the
field-induced band gaps �1,2,3 are of meV scale [see Fig. 2(e)]
and, therefore, can be easily detected in state-of-the-art optical
experiments. To use the irradiation frequencies within the
visible and near-infrared ranges, the field intensity I0 =
Ẽ2

0c/8π should be increased in order to keep the phase shift (4)
large enough. However, increasing the field intensity can melt
the nanostructure. To avoid the melting with the strong field, it
is reasonable to use narrow pulses of a circularly polarized field
which open band gaps and narrow pulses of a weak probing
field which detect the gaps. This pump-and-probe methodol-
ogy has been elaborated long ago and is commonly used to
observe various effects induced by strong fields—particularly,
modifications of electron energy spectrum arisen from the
optical Stark effect—in semiconductor structures [34–36].
Since giant field intensities (up to GW/cm2) can be applied to
semiconductor structures within this approach, the wide band
gaps can be opened with the pulsing fields.

Summarizing the aforesaid, we analyzed the electron
dispersion and electron transport properties of an one-
dimensional periodical chain of quantum rings irradiated
by circularly polarized light. It is shown that the optically
induced Aharonov-Bohm effect leads to opening band gaps
in electron energy spectra of the chain and modifies electron
transport through the chain. These findings can be exploited,
for instance, in optically controlled logic gates with high
operation speed.

The work was partially supported by FP7 IRSES projects
POLATER and QOCaN, FP7 ITN project NOTEDEV, Rannis
project BOFEHYSS, RFBR projects 14-02-00033 and 16-
02-01058, the Russian Ministry of Education and Science,
the Russian Target Federal Program “Research and Devel-
opment in Priority Areas of Development of the Russian
Scientific and Technological Complex for 2014-2020” (project
14.587.21.0020).

APPENDIX: DERIVATION OF THE TRANSMISSION
PROBABILITY FOR A FINITE CHAIN

OF QUANTUM RINGS

In order to obtain the expression for the probability
of electron transmission through a finite periodic chain of
quantum rings (the transmission probability plotted in Fig. 4),
we have to introduce the transfer matrix T̂ which connects the
incoming electron amplitudes A± with the outgoing electron
amplitudes B±,

(
B+
B−

)
= T̂

(
A+
A−

)
. (A1)

It follows from the basic equations (1) and (2) that the transfer
matrix for the elementary cell pictured in Fig. 1(b) reads as

T̂ = 1

2 cos φ0 sin(πqR)

×
(

ieiqd [cos2φ0−e2iqπR] −isin2φ0

isin2φ0 −ie−iqd [cos2φ0−e−2iqπR]

)
.

(A2)

The transfer matrix over N elementary cells, T̂(N), is just the
N th power of the transfer matrix (A2), i.e., T̂(N) = T̂N . If the
incoming amplitude is A+ = 1, we arrive from Eq. (A1) to the
equation

T̂(N)

(
1

r

)
=

(
t

0

)
, (A3)

where r and t are the amplitudes of electron reflection
and electron transmission through the chain, respectively.
Taking into account the unimodularity property of the transfer
matrices, the solving of Eq. (A3) leads to the transmission
amplitude

t = 1

T(N)
22

, (A4)

where

T(N)
22 = T22UN−1

(
T11 + T22

2

)
− UN−2

(
T11 + T22

2

)
, (A5)

and Ui(x) is the Chebyshev polynomial of the second kind [37].
Using Eqs. (A4) and (A5) we can easily calculate the
transmission probability |t |2 plotted in Fig. 4.
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