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Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials
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We theoretically study dispersionless gaps and cavity modes in one-dimensional photonic crystals composed
of hyperbolic metamaterials and dielectric. Bragg gaps in conventional all-dielectric photonic crystals are always
dispersive because propagating phases in two kinds of dielectrics decrease with incident angle. Here, based
on phase variation compensation between a hyperbolic metamaterial layer and an isotropic dielectric layer, the
dispersion of the gap can be offset and thus a dispersionless gap can be realized. Moreover, the dispersionless
property of such gap has a wide parameter space. The dispersionless gap can be used to realize a dispersionless
cavity mode. The dispersionless gaps and cavity modes will possess significant applications for all-angle reflectors,
high-Q filters excited with finite-sized sources, and nonlinear wave mixing processes.
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I. INTRODUCTION

Photonic crystals (PCs) are artificial materials with a
periodic spatial modulation in the dielectric constant which can
suppress the propagation of light by opening a photonic band
gap within a given range of frequencies [1,2]. They exhibit
many novel phenomena and propel enormous applications by
engineering a photonic band gap. In view of applications, an
omnidirectional gap which can reflect electromagnetic waves
in all directions is highly desirable [3,4]. In one-dimensional
(1D) all-dielectric PCs, omnidirectional gaps are realized from
relatively wide Bragg gaps whose edges change with the
incident angles. However, if one can realize a gap whose
edges are independent of the incident angles, one can further
obtain a dispersionless (omnidirectional) gap with a fixed
bandwidth. Typical examples include zero average index
(zero-n̄) gap [5–8] and zero effective phase (zero-φeff)
gap [9,10]. The dispersionless properties of zero-n̄ gap origi-
nate from the phase cancellation of propagating waves between
positive- and negative-index materials [11]. On the other
hand, the dispersionless properties of zero-φeff gap originate
from the compensation of the exponentially increasing and
the exponentially decreasing waves in a one-dimensional
photonic crystal (1DPC) containing two kinds of single-
negative materials. Zero-n̄ gap [12] and zero-φeff gap [13]
were firstly observed in the microwave region. However, in the
near-infrared or the visible region, negative-index materials or
negative-permeability materials are hard to implement, which
limit the experimental realizations of dispersionless gaps. Only
recently, people have used a two-dimensional PC to mimic a
negative-index material and experimentally observe the zero-n̄
gap at near-infrared frequencies [14,15].

In this paper we explore the possibilities of realizing
dispersionless gaps in a simple one-dimensional structure,
i.e., a 1DPC composed of layered hyperbolic metamateri-
als (HMMs) and dielectrics. HMMs are highly anisotropic
media with hyperbolic dispersion [16]. Such metamaterials
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are quite different from conventional (uniaxial) crystals in
which one of the principal components of their permittivity
(permeability) tensors is opposite in sign to the other two
principal components. In the near-infrared or visible region,
a 1D metal-dielectric stack with subwavelength unit cell can
mimic HMMs [17–19], which provides a convenient method
for the experimental implementation of HMMs. HMMs
support propagating modes with very large wave vectors
(also called high-k waves), which brings about a rich variety
of new physics and novel applications, including negative
refraction, and hyperlens as well as spontaneous and thermal
emission engineering (see [20,21] and references therein).
More interesting, owing to the high-k waves in HMM, a 1D
stack composed of a deeply subwavelength HMM layer and
dielectric layer, so-called photonic hypercrystals [22,23], can
offer an unprecedented way to control the light propagation and
thus activate novel physical phenomena such as surface wave
engineering and the Veselago lens. Nevertheless, most studies
of HMMs have focused on the high-k waves so far [24,25].
In fact, the HMMs not only support high-k waves, but also
possess anomalous wave-vector dispersion by contrast with
isotropic dielectric. Here we investigate the dispersionless gaps
in 1DPCs containing HMMs. Different from the 1D stack in
Ref. [22], the size of the HMM layer and dielectric layer
in our design is in the scale of the wavelength although the
metal-dielectric substructure used to mimic the HMM is very
subwavelength (i.e., the size of the unit cell in the substructure
is about one-thirtieth of the wavelength). Our studies reveal
the phase variation compensation effect between a HMM
layer and a dielectric layer which comes from the anomalous
wave-vector dispersion of HMMs. It is this effect that makes
the photonic gap invariant with incident directions. Moreover,
this effect exists in a wide parameter space and can be used to
design dispersionless cavity modes.

This paper is organized as follows. In Sec. II, we start from
the lossless case to study the phase variation compensation
effect between a HMM layer and a dielectric layer and derive
the conditions of a dispersionless gap. Then based on the
analytical conditions, we use a 1D metal-dielectric stack to
mimic a HMM and realize the dispersionless gaps in the
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FIG. 1. The scheme of a 1DPC composed of a HMM layer and
an isotropic dielectric layer, which is denoted by (AB)N . HMM layer
A is mimicked by a metal-dielectric layered substructure (CD)S with
a subwavelength unit cell. dA = S(dC + dD). The background is air.

1DPCs containing the effective HMMs. Next we discuss the
influence of loss on the design of dispersionless gaps. Later
dispersionless gaps are found to survive in a wide parameter
space. In Sec. III, we study an important application of the
dispersionless gaps, i.e., dispersionless cavity modes. Finally,
the Conclusion is given in Sec. IV.

II. PHASE VARIATION COMPENSATION EFFECTS
AND DISPERSIONLESS GAPS

A. The lossless case

We consider a 1DPC composed of a HMM layer and an
isotropic material layer, which is denoted by (AB)N . As is
shown in Fig. 1, medium A is a HMM with anisotropic
permittivity tensor diag(εAx,εAx,εAz) and medium B is an
isotropic dielectric with permittivity εB . In this part we
consider the lossless case and thus the values of permittivity
are real numbers. dA and dB are the thicknesses of two
inclusion layers, respectively, and d = dA + dB is the length
of the unit cell. Moreover, medium A and B are supposed as
nonmagnetic, i.e., μA = μB = 1. N is the number of periods.
The background is air.

We consider that electromagnetic waves with transverse-
magnetic (TM) polarization launch into the structure in the
x-z plane with an incident angle θ , as is shown in Fig. 1.
The magnetic field is in the y direction. Here we take ky = 0
without loss of generality as due to the planar geometry we
can always find a coordinate system where ky = 0. Normally,
both ordinary wave and extraordinary wave will occur in a
HMM. However, in Fig. 1, the optical axis of HMM is along
the z direction and the magnetic field of a TM polarized
wave is perpendicular to the optical axis. In this case, as is
demonstrated in the Appendix, only an extraordinary wave is
excited in the HMM layer and the isofrequency contour of

medium A is given by

k2
x

εAz

+ k2
Az

εAx

= k2
0, (1)

where kx = k0 sin θ is the x component of the wave vector,
kAz is the z component of the wave vector in medium A,
and k0 = ω/c is the wave vector in vacuum with ω being the
angular frequency and c being the speed of light. Different
from Eq. (1), the isofrequency contour of isotropic medium B

is given by

k2
x + k2

Bz = εBk2
0, (2)

where kBz is the z component of the wave vector in medium B.
In Eq. (1), we consider the permittivity components εAx > 0
and εAz < 0 so that kAz is a real number. In this case, the
hyperbola axis of the HMM will be along the z direction.

Since only the extraordinary mode is present in the HMM
layer, we can use a 2 × 2 transfer-matrix method [26] to study
wave propagations in the 1DPCs containing HMMs, as is
discussed in the Appendix. For an infinite-periodic structure
(N → ∞), according to Bloch’s theorem, the dispersion
relation at any incident angle yields to

cos(Kd) = cos(kAzdA) cos(kBzdB)

− 1

2

(
ηAz

ηBz

+ ηBz

ηAz

)
sin(kAzdA) sin(kBzdB), (3)

where K is the Bloch wave vector; ηAz = kAz/(ωε0εAx) and
ηBz = kBz/(ωε0εB) are the wave impedances in medium A and
B, respectively. ε0 is the permittivity of vacuum. Equation (3)
has no real solution for K satisfying |cos(Kd)| > 1, which
corresponds to the gaps of 1DPCs.

The photonic gaps of 1DPCs are physically determined by
Bragg reflection. At the Bragg angular frequency ωBrg of the
first band gap, the Bragg condition is given by [5]

� = (kAzdA + kBzdB)|ωBrg
= π, (4)

where � is the total propagating phase in a unit cell of a PC.
For conventional all-dielectric PCs, Eq. (2) shows that both kAz

and kBz will decrease as incident angle θ increases. Therefore,
in order to satisfy Eq. (4), the value of ωBrg will increase
as θ increases. This is the reason why a conventional gap
is angle dependent and its dispersion has a parabolic shape.
However, if we choose a HMM and a dielectric to form a
1DPC, we find the situation is quite different. Equation (1)
shows that kAz will increase rather than decrease with an
increase of θ . This means that, with the increase of θ , Eq. (4)
can be satisfied even if the value of ωBrg does not change.
Since ∂�/∂θ = (∂�/∂kx)(∂kx/∂θ) = 0 → ∂�/∂kx = 0, we
differentiate Eq. (4) with respect to kx and obtain

∂�

∂kx

=
(

dA

∂kAz

∂kx

+ dB

∂kBz

∂kx

)∣∣∣∣
ωBrg

= 0. (5)

Equation (5) must be met for all allowed kx , which
gives the condition of a dispersionless gap around ωBrg.
As is discussed above, in conventional all-dielectric PCs,
∂kAz/∂kx < 0, ∂kBz/∂kx < 0 [see Fig. 2(a)], and Eq. (5)
cannot be satisfied. However, HMMs exhibit anomalous
dispersion of wave vectors that is different from dielectric.
As is shown in Fig. 2(b), kAz of HMMs will increase with
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FIG. 2. (a) Dispersion of wave vector in dielectric with
∂kBz/∂kx < 0. By contrast, dispersion of wave vector in HMMs with
∂kAz/∂kx > 0 is exhibited in (b).

incident angle θ , which is in contrast to the case of dielectric.
The increase of kAz in HMM layer A can compensate the
decrease of kBz in the isotropic dielectric layer B. We call
such compensation effect the phase variation compensation
effect. Therefore, under proper parameters, a dispersionless
gap around ωBrg can be realized in our structure.

To obtain the parameters that satisfy phase vari-
ation compensation required by Eq. (5), we rewrite
Eqs. (1) and (2) as kAz = k0ε

1/2
Ax [1 − k2

x/(εAzk
2
0)]1/2 and

kBz = k0ε
1/2
B [1 − k2

x/(εBk2
0)]1/2, where kx ∈ [0,k0] when light

launches into a 1DPC from air. Under the conditions of
|εAz| � 1 and εB � 1, kAz and kBz can be Taylor expanded to
the first-order series, i.e.,

kAz ≈ k0
√

εAx

(
1 − k2

x

2εAzk
2
0

)
, (6)

and

kBz = k0
√

εB

(
1 − k2

x

2εBk2
0

)
. (7)

Then we substitute the above first-order approximation of
kAz and kBz into Eq. (5) and obtain

dB

dA

=
√

εAxεB

−εAz

. (8)

Equation (8) shows that dA and dB rely on the permittivity
of materials. Since the ratio of thicknesses must be positive
definite, εAz must be negative. Then this means from Eq. (1)
that the hyperbola axis must coincide with the periodic axis,
in order for this dispersionless band structure to be possible.
Besides, we notice that dA and dB are frequency dependent
since HMMs are dispersive. Moreover, in the derivation
of Eq. (8) we have used the first-order approximation that
requires |εAz| � 1 and εB � 1. This means that we need to
choose a suitable frequency region in which |εAz| � 1 and
simultaneously select a dielectric B with high refractive index
if we design dispersionless gaps based on Eq. (8). Individual
values of dA and dB can be further deduced if we combine
Eq. (8) with Eq. (4). Notice that Eq. (4) at normal incidence
also can be rewritten as

√
εAxdA + √

εBdB = πc

ωBrg
. (9)

Equation (9) is usually used for designing a distributed
Bragg reflector at certain frequency. Now substituting Eq. (8)
into Eq. (9), we obtain

dA = πc

ωBrg

1√
εAx

(
1 − εB

εAz

) ,

dB = πc

ωBrg

1√
εB

(
1 − εAz

εB

) . (10)

Equation (10) gives analytical solutions of dA and dB at the
designed ωBrg when phase variation compensation is satisfied.
Since εAz < 0, the thicknesses of each layer are positive
definite as they should be. Based on Eq. (10), we can design
1DPCs containing HMMs to realize dispersionless gaps.

According to the effective-medium approach, the 1D
metal-dielectric stack with subwavelength unit cell could be
equivalent to the HMMs. A magnification of HMM layer A

which possesses a substructure (CD)S is schematically shown
in Fig. 1, where (CD)S is a subwavelength metal-dielectric
multilayer with thickness dC of layer C and thickness dD

of layer D. S is the number of periods of (CD)S . Thus we
rewrite (AB)N as [(CD)SB]N . As mentioned above, dielectric
B should have a high refractive index. Therefore, dielectric B

and C are selected to be Si with nSi = 3.48 (i.e., permittivity
εSi = n2

Si = 12.11) [27]. Material D is selected to be indium tin
oxide (ITO). ITO is a good candidate as plasmonic materials in
the infrared and visible regions [28]. The plasma frequency of
ITO can be engineered by controlling the doping level of Sn4+.
The permittivity of ITO is described by a Drude model [29,30],

εD(ω) = ε∞ − ω2
pD

ω2 + jωγD

, (11)

where ε∞ is the high-frequency permittivity with a value
of 3.9 for ITO. ωpD = (N0e

2/ε0m
∗)1/2 denotes the plasma

frequency, with N0 the free electron density, m∗ = 0.4me the
effective electron mass, and γD the damping frequency. Here
we assume �ωpD = 2.48 eV and set γD = 0 in the lossless
case.

On the basis of the effective-medium approach, the com-
ponents of the effective permittivity tensor in the substructure
(CD)S are given by [20,21]

εAx = εC(1 − p) + εDp,
(12)

εAz = 1
1−p

εC
+ p

εD

,

where the filling ratio p = dD/(dC + dD) is the volume
percentage of layer D in the unit cell of the substructure.
We assume dC = dD = 25 nm, and thus p = 0.5. Optical
frequencies (ω/2π ) vary in the vicinity of 200 THz, i.e.,
wavelength in the vicinity of 1500 nm, which is much larger
than the thickness dC + dD of the unit cell and thus the
effective-medium approach is valid. The effective permittivity
tensors of the substructure (CD)S are shown in Fig. 3(a). The
effective permittivity components εAx and εAz are represented
by the red and blue solid lines, respectively. εAx > 0 and εAz <

0 in the frequency region of 150–300 THz, which corresponds
to HMMs. Moreover, in the region of 150–220 THz, |εAz| � 1
and we will design ωBrg in this region.
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FIG. 3. (a) Effective permittivity tensor of the substructure (CD)S
based on Eq. (12). dC = dD = 25 nm and εC = 12.11; εD is taken
from Eq. (11). εAx (εAz) is shown by the red (blue) line in the lossless
case (γD = 0). In the lossy case (�γD = 0.016 eV), Re(εAx) and
Re(εAz) are represented by the scattered open circles and triangles,
respectively. Im(εAx) and Im(εAz) are shown by the red and blue
dashed lines, respectively. The gray region indicates the frequency
region of HMMs. (b) dA and dB as a function of frequency based on
the dispersionless condition of Eq. (10) with εB = 12.11. The solid
lines correspond to the lossless case (γD = 0) while the scattered open
circles and triangles correspond to the lossy case (�γD = 0.016 eV).

After obtaining the permittivity of materials in the structure
(AB)N , we will further determine dA and dB . According to the
dispersionless condition of Eq. (10), the frequency-dependent
relation of dA and dB is given in Fig. 3(b). Considering
that HMM layer A is composed of the substructure (CD)S
with thicknesses dC = dD = 25 nm, we select S = 4 which
corresponds to dA = 200 nm. In this case the corresponding
frequency is ωBrg/2π = 207.2 THz and dB = 96 nm, as is
indicated by the dotted line in Fig. 3(b). Of course, other
parameters also can be selected only if the parameters of the
substructure (CD)S are proposed beforehand. Based on the
above parameters, we calculate the band structure. For an
infinite-periodic structure (N → ∞), the dispersion relation

FIG. 4. Dispersion relation of an infinite-periodic structure
(AB)N (N → ∞) in the lossless case (γD = 0), where dA = 200 nm,
dB = 96 nm, and εB = 12.11; εAx and εAz are taken from Fig. 3(a).
The black and the white areas correspond to the forbidden gaps and
the allowed bands, respectively. A dispersionless gap appears in the
region of 175–228 THz.

is given by Eq. (3). The photonic band gap of the structure
(AB)N as a function of incident angle is illustrated in Fig. 4.
It is seen that a gap indicated by the black area appears in the
frequency region of 175–228 THz with the width of 53 THz.
Moreover, as we expected, both the upper and the lower band
edge are independent of the incident angle, owing to the phase
variation compensation effect. Therefore, in the 1DPC with
HMMs, we have realized a dispersionless gap with a fixed
bandwidth.

We further demonstrate the dispersionless property of gaps
by calculating the transmittance spectra of a finite-periodic
structure. We firstly consider the (AB)6 structure, where dA =
200 nm, dB = 96 nm, εB = 12.11, εAx , and εAz are taken from
Fig. 3(a) in the lossless case. Using the transfer-matrix method,
the transmittance spectra of (AB)6 at several representative
angles are given in Fig. 5(a). It is seen that, for the lower
band edge, the frequencies of the transmittance peak at all
representative angles are 167.4 THz. For the upper band edge,
the frequencies of transmittance peak at 0°, 30°, 60°, and
85° are 236.4, 236.2, 235.6, and 235.2 THz, respectively,
which varies very little with incident angles. Therefore, the
transmittance gap in Fig. 5(a) is an angle-insensitive gap. Then
we consider the [(CD)4B]6 structure in which the substructure
(CD)4 mimics HMM layer A. For the effective εAx and
εAz in Fig. 3(a), εD is taken from Eq. (11) with γD = 0,
εC = 12.11, and dC = dD = 25 nm. The parameters of B

are unchanged. The transmittance spectra of [(CD)4B]6 at
several representative angles are given in Fig. 5(b). Overall,
the transmittance spectra of Fig. 5(b) are almost the same
as that of Fig. 5(a) and the transmittance gap in Fig. 5(b)
is also an angle-insensitive gap. Therefore, the effective-
medium approach works well and the 1DPC containing the
subwavelength metal-dielectric stack can be used for realizing
dispersionless gaps.

For better comparison, in Fig. 6 we also show the variance of
gaps with angle of incidence for conventional all-dielectric PCs
in which the phase variation compensation effect is lacking.
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FIG. 5. (a) Transmittance spectra of a finite-periodic structure
(AB)6 at incident angles of 0°, 30°, 60°, and 85°, respectively. dA =
200 nm, dB = 96 nm, and εB = 12.11; εAx and εAz are taken from
Fig. 3(a) in the lossless case (γD = 0). (b) Transmittance spectra of
[(CD)4B]6 at incident angles of 0°, 30°, 60°, and 85°, respectively.
dC = dD = 25 nm, dB = 96 nm, and εB = εC = 12.11; εD is taken
from Eq. (11) with γD = 0.

Here the conventional 1DPC is constructed by replacing the
HMM layer with a SiC layer. The refractive index of SiC
(denoted by nSiC) is 2.57; i.e., the permittivity εSiC = n2

SiC =
6.6 [27]. The other parameters remain invariant. As is shown
in Fig. 6(a), although an omnidirectional gap is realized
from the Bragg gap in the 1D infinite-periodic SiC-Si PC,
its band edges change remarkably with incident angles. In
Fig. 6(b), we give the transmittance spectra of the 1D SiC-Si
PC with six periods at incident angles of 0°, 30°, 60°, and
85°, respectively. Consistent with Fig. 6(a), in Fig. 6(b) the
frequencies of the lower and the upper band edges both shift
to the higher frequencies noticeably as the incident angle
increases. Therefore, conventional all-dielectric PCs cannot
possess dispersionless gaps that, by contrast, the 1DPCs with
HMMs can have.
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FIG. 6. (a) Band gap of a 1D SiC-Si PC with infinite periods.
εSiC = 6.6, εSi = 12.11, dSiC = 200 nm, and dSi = 96 nm. The area
between the two dotted lines indicates an omnidirectional gap.
(b) Transmittance spectra of a 1D SiC-Si PC with six periods at
incident angles of 0°, 30°, 60°, and 85°, respectively.

Lastly, it should be pointed out that the dispersionless gaps
of 1DPCs with HMMs can be obtained only for TM polariza-
tion. In Fig. 1, if we change TM polarization to TE polarization,
only an ordinary wave can be excited in the HMM layer, as
is demonstrated in the Appendix. In this circumstance, the
dispersion of the wave vector is similar to that of an isotropic
medium. Therefore, for TE polarization, the phase variation
compensation effect no longer exists and the dispersionless
band gap cannot be obtained. Besides, since εD(ω) is disper-
sive, from Eq. (12) the effective εAx and εAz may interchange
their signs when frequency varies. As a result, while we
change frequencies, the hyperbola axis may rotate. Therefore,
a dispersionless band gap can be obtained only in the case
in which the normal-incidence ωBrg falls within a frequency
region where the hyperbola axis is along the axis of periodicity.

B. The influence of loss

In the previous part, we investigate the phase variation
compensation effect and the realization of dispersionless gaps
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in the lossless case. However, γD is in fact a nonzero value in
ITO. Therefore, it is necessary to study the impact of the loss
on the phase variation compensation effect and the dispersion
property of gaps. In this part, we consider the realistic value of
γD with �γD = 0.016 eV [29,30]. Normally, the introduction
of γD in Eq. (11) will not only produce the imaginary part, but
also change the real part of εD(ω). Nevertheless, in our consid-
ered frequency range, γD is two orders of magnitude smaller
than ω. As a result, the realistic γD hardly changes the real
part of εD(ω).Then, from Eq. (12), Re(εAx) and Re(εAz) are
nearly unchanged. To numerically confirm this point, we take
�γD = 0.016 eV and recalculate Fig. 3. In the lossy case,
Re(εAx) and Re(εAz) are shown by the scattered open circles
and triangles, respectively, while Im(εAx) and Im(εAz) are
represented by the red and blue dashed lines, respectively. It is
seen from Fig. 3(a) that the scattered open circles (triangles) for
�γD = 0.016 eV almost overlap with the red (blue) solid line
for γD = 0. Accordingly, the designed thicknesses that depend
on Re(εAx) and Re(εAz) will also be nearly unchanged. As is
shown in Fig. 3(b), the scattered open circles (triangles) for
�γD = 0.016 eV almost overlap with the red (blue) solid line
for γD = 0. The differences of dA or dB between the lossless
case and the lossy case are so small that we can use the
structural parameters in the lossless case, i.e., dA = 200 nm
and dB = 96 nm to study the phase variation compensation
effect and the dispersion property of gaps in the lossy case.

Now we study the influence of Im(εAx) and Im(εAz) on
the Bragg condition. In the lossless case, kAz is a real
number. However, when Im(εAx) and Im(εAz) of the effective
HMM are considered, kAz becomes a complex number. Our
calculations from Fig. 3(a) show that, in the frequency
region of 173–220 THz, |εAz| � 1, Im(εAx)/Re(εAx 	 1, and
|Im(εAz)/Re(εAz)| 	 1. In this frequency region, similar to
Eq. (6), kAz can be written as

kAz ≈ k0

√
Re(εAx) + iIm(εAx)

×
{

1 − k2
x

2k2
0[Re(εAz) + iIm(εAz)]

}

≈ k0

√
Re(εAx)

[
1 + i

Im(εAx)

2Re(εAx)

]

×
{

1 − k2
x

2Re(εAz)k2
0

[
1 − i

Im(εAz)

Re(εAz)

]}
. (13)

Thus the real part of kAz is given by

Re(kAz) = k0

√
Re(εAx)

{
1 − k2

x

2Re(εAz)k2
0

×
[

1 + Im(εAx)

2Re(εAx)

Im(εAz)

Re(εAz)

]}
. (14)

Inside the parentheses of Eq. (14), the absolute value of the
second term is much smaller than 1. Neglecting this term, the
real part of kAz can be rewritten as

Re(kAz) ≈ k0

√
Re(εAx)

[
1 − k2

x

2Re(εAz)k2
0

]
. (15)

Comparing Eq. (15) with Eq. (6), we find that the real part
of kAz in the lossy case is nearly the same as that in the lossless

case for any kx ∈ [0,k0]. As a result, the Bragg condition hardly
changes and the loss will not affect the design of dispersionless
gaps based on Eq. (10) in the lossless case.

To verify the above theoretical analysis, we calculate the
band structure for the real part of the Bloch wave vectors after
loss is introduced. In the lossy case, the right-hand side of
Eq. (3) is complex, and the dispersion relation takes the form
as cos(Kd) = gR + igI , where K = KR + iKI represents a
complex Bloch wave vector; gR and gI represent the real and
imaginary parts of the right-hand side of Eq. (3), respectively.
After some deductions, the dispersion relation for KR satisfies
the following equation [31]:

cos(KRd) = gR

[
g2

I

sin2(KRd)
+ 1

]−1/2

. (16)

Equation (16) is used to calculate the band structure for
KR . From Eq. (16), we see that |cos(KRd)| cannot be equal to
1. As a result, the band edges are not as clear as those in the
lossless case and the gaps with large KI appear in the frequency
regions in which |cos(KRd)| → 1 [31,32]. Taking the values of
Im(εAx) and Im(εAz) in Fig. 3(a) and the other parameters used
for Fig. 4, we calculate the band structure based on Eq. (16),
as is shown in Fig. 7(a). Comparing Fig. 7(a) with Fig. 4 in
the lossless case, we see that, although the band edges become
a little bit obscure, the dispersionless property of the gaps is
maintained when loss is considered.

We further illustrate the influence of loss on dispersionless
property of gaps by calculating the transmittance spectra of
a finite-periodic structure [(CD)4B]6, where the parameters
are the same as those in Fig. 5(b) except that γD = 0 is
changed to �γD = 0.016 eV. The transmittance spectra at
several representative angles are given in Fig. 7(b). Comparing
Fig. 7(b) with Fig. 5(b), we see that the angle-insensitive
property of the transmittance gap is maintained in the lossy
case. Of course, because of the absorption caused by the
loss, the transmittances of band edges are smaller than 1.
For the upper band edge, the transmittance remains about 0.5
up to the incident angle of 85°. For the lower band edge,
the transmittance remains about 0.64 when the incident angle
increases to 60°, and decreases to 0.29 when the incident angle
reaches 85°. Briefly, although the transmittance is reduced,
the loss in the designed frequency range does not affect the
dispersionless property of the gaps.

C. The dispersionless gaps with wide parameter space

The dispersionless gap mentioned above is realized ac-
cording to the perfect phase variation compensation effect
required by Eq. (10). In fact, our structure has a wide parameter
space for the design of dispersionless gaps. If dA and dB

that meet Eq. (10) are changed, the perfect phase variation
compensation at ωBrg will not be satisfied. For convenience,
we only change dB . dA = 200 nm, εB = 12.11, Re(εAx), and
Re(εAz) are taken from Fig. 3(a). Based on Eq. (4), for
each value of dB , we plot the variance of ωBrg/2π with
the incident angle, as is shown in Fig. 8(a). It is seen that
ωBrg/2π is invariant with incident angle at dB = 96 nm, which
corresponds to the perfect phase variation compensation.
Nevertheless, when the value of dB deviates from 96 nm,
i.e., the perfect phase variation compensation is not satisfied,
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FIG. 7. (a) Dispersion relation of an infinite-periodic structure
(AB)N (N → ∞) for the real part of the Bloch wave vectors in
the lossy case (�γD = 0.016 eV). The gap appears in the frequency
regions in which |cos(KRd)| → 1. dA = 200 nm, dB = 96 nm, and
εB = 12.11; complex εAx and εAz are taken from Fig. 3(a) in the lossy
case (�γD = 0.016 eV). (b) Transmittance spectra of [(CD)4B]6 at
incident angles of 0°, 30°, 60°, and 85°, respectively. dC = dD =
25 nm, dB = 96 nm, and εB = εC = 12.11; εD is taken from Eq. (11)
with �γD = 0.016 eV.

ωBrg/2π hardly changes with the incident angle. Even when
the value of dB changes to 80 or 120 nm, ωBrg/2π only
slightly changes with the incident angle. Here we use a relative
quantity, δBrg = (ωBrg,θ − ωBrg,0)/ωBrg,0, to denote the change
of ωBrg/2π when the incident angle varies, where ωBrg,θ

and ωBrg,0 are the ωBrg at oblique incidence and at normal
incidence, respectively. Our results show that the maximum
of δBrg is just 0.0067 which corresponds to the case of dB =
120 nm. At dB = 120 nm, and the other parameters the same
as those used for Fig. 7(b), we give the transmittance spectrum
of the finite-periodic structure for all angles of incidence in
Fig. 8(b) and still see a nearly dispersionless transmittance
gap. Similar results can be obtained if we change the values of
dC , dD , and S (i.e., dA). Therefore, even somewhat away from
the perfect phase variation compensation, the compensation

0 15 30 45 60 75 90
Incident Angle (degree)

190

195

200

205

210

215

220

B
rg

d
B
=120 nm

d
B
=110 nm

d
B
=96 nm

d
B
=90 nm

d
B
=80 nm

(a)

FIG. 8. (a) The dependence of ωBrg/2π on incident angle for
different dB based on Eq. (4). dA = 200 nm and εB = 12.11; Re(εAx)
and Re(εAz) are taken from Fig. 3(a). (b) Transmittance spectrum for
all angles of incidence at dB = 120 nm. The other parameters are the
same as those used for Fig. 7(b).

effect still works well, which provides a wide parameter space
to design the dispersionless gaps.

III. DISPERSIONLESS CAVITY MODES

Lastly, one important application of the dispersionless gap
is to design the dispersionless cavity mode. Conventional
cavity modes of planar geometry retain the angle-dependent
property of gaps based on all-dielectric PCs, which can have
their quality (Q) factor performance significantly reduced
when not excited by a perfect plane wave. Essentially, finite-
sized sources are equivalent to multiple plane waves incident
at different angles. Thus, conventional 1D cavity modes will
be broadened and have reduced Q factor when excited with
finite-sized sources, as compared to their Q factor when
excited with a plane wave [33]. By contrast, Q factors of
a dispersionless cavity mode hardly change when the plane
waves launch at different angles, which is very useful when
the cavity mode is excited with finite-sized sources.
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FIG. 9. (a) Transmittance spectrum of the structure
[(CD)4B]3B

′[(CD)4B]3 for all angles of incidence. ε′
B = 12.11,

d ′
B = 100 nm, and the other parameters are the same as those used

for Fig. 7(b). A dispersionless cavity mode appears in the vicinity of
210 THz. (b) Transmittance spectra at incident angles of 0°, 30°, and
60°, respectively.

To realize dispersionless cavity modes, we insert a dielectric
defect layer into the 1DPC possessing dispersionless gaps. The
structure is denoted by [(CD)SB]N ′B ′[(CD)SB]N ′ . Here S =
4, N ′ = 3, and B ′ is selected to be Si with permittivity ε′

B =
12.11 and its thickness d ′

B = 100 nm. The other parameters
are the same as those used for Fig. 7(b). It is seen from
Fig. 9(a) that the cavity mode inside the dispersionless gap
remains nearly invariant with incident angles, owing to phase
variation compensation effect. The dependence of the cavity
mode on incident angle also can be quantitatively denoted
with a relative quantity, δcav = (ωcav,θ − ωcav,0)/ωcav,0, where
ωcav,θ and ωcav,0 are the angular frequencies of cavity modes
at oblique incidence and at normal incidence, respectively.
Our results show that the maximum of δcav is just 0.0029.
Therefore the dependence of cavity mode on incident angle
is very weak, which exhibits the dispersionless properties. To
see the variance of Q factors of cavity modes, we give the
transmittance spectra of the structure at three representative

angles, as is shown in Fig. 9(b). It is seen that the peak
positions of cavity modes at incident angles of 0°, 30°, and 60°
are nearly unchanged, which is in accordance with Fig. 9(a).
Besides, Q factors of cavity modes change very little at
three incident angles. Of course, because of absorption, the
transmittance peak values of the cavity modes are reduced
from 1 in the lossless case to about 0.3. Moreover, since
this nearly dispersionless cavity mode is a consequence of
interference within the whole structure, its frequency position
will change with the size of the defect layer. Therefore we can
tune the cavity mode at the desired frequency by changing the
thickness of the defect layer.

The dispersionless cavity mode obtained in our structure
can be highly relevant to applications, as it enables alternative
types of possible high-Q cavity modes that can be excited with
quantum dot types of sources. Moreover, the dispersionless
cavity modes are very beneficial in nonlinear wave mixing
process. For conventional cavity modes, phase matching that is
critical in coherent nonlinear optical process cannot be satisfied
for all angles of incidence [34]. By contrast, the dispersionless
cavity mode provides all-angle phase matching in coherent
nonlinear optical process, especially in the degenerate four-
wave mixing process.

IV. CONCLUSION

In summary, we reveal the phase variation compensation
effect in a 1DPC composed of a HMM and a dielectric. This
effect originates from the anomalous wave-vector dispersion
of HMMs. Based on phase variation compensation effects, dis-
persionless gaps can be realized in 1DPCs containing (lossy)
HMMs which are mimicked by a 1D subwavelength metal-
dielectric stack. Moreover, dispersionless gaps are robust to
the change of structural parameters. The simple 1D structure,
together with a wide parameter space, provides a convenient
method for experimental implementation of dispersionless
gaps. The dispersionless gaps and cavity modes via doping
the gaps will possess significant applications for all-angle
reflectors, and high-Q filters excited with quantum dot types of
sources as well as all-angle nonlinear wave mixing processes.
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APPENDIX

Generally speaking, both an extraordinary and an ordinary
wave would be present in a uniaxial material such as a HMM.
However, in the case where the magnetic H field of a TM
polarized wave or the electric E field of a transverse-electric
(TE) polarized wave is perpendicular to the optical axis of the
HMM, one would obtain either only the extraordinary or only
the ordinary mode. We will demonstrate this issue. We start
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from the full Maxwell’s equations. For the electromagnetic
wave propagation in a HMM, E and H satisfy the following
Maxwell equations:

∇ × E = iωμH, ∇ × H = −iωε0 ¯̄ε · E, (A1)

where time factor exp(−iωt) is assumed and ¯̄ε is the relative
permittivity tensor of the HMM medium. The coordinate
system is selected to be the same as that shown in Fig. 1
and the HMM is assumed to have a planar geometry similar to
medium A. The surface of HMM is on the xy plane and the ¯̄ε
of HMM is presumed to have a diagonal form

¯̄ε =
⎡
⎣εx

εx

εz

⎤
⎦, (A2)

where εx and εz are the principle permittivity along the x (y)
and z directions, respectively. From Eq. (A2), the principal axis
along the z direction is the optical axis; also see Eq. (9.1-15) in
Ref. [26]. Then we solve Eq. (A1) when a TM or TE plane wave
propagates in the HMM with a ¯̄ε of Eq. (A2), respectively.

(1) For TM polarization, H is along the y direction
which is perpendicular to the optical axis and E is on
the xz plane, as is shown in Fig. 1. E and H can
be written as E = [Ex, 0, Ez]T exp[i(kxx + kzz)] and H =
[0, Hy, 0]T exp[i(kxx + kzz)], where Ex and Ez are the
amplitudes of the x and z components of E, respectively; Hy

is the amplitude of the y component of H ; kx and kz are the x

and z components of the wave vector, respectively. Substituting
above E, H , and Eq. (A2) into Eq. (A1), we obtain

kzHy = ωε0εxEx, (A3a)

kxHy = −ωε0εzEz, (A3b)

kzEx − kxEz = ωμ0Hy. (A3c)

Substituting Eqs. (A3a) and (A3b) into Eq. (A3c), we
further obtain

k2
x

εz

+ k2
z

εx

= k2
0 . (A4)

Equation (A4) gives the dispersion of the wave vector just
for an extraordinary wave. Therefore, in the case where H of
a TM polarized wave is perpendicular to the optical axis of
HMM, only an extraordinary wave is present.

(2) For TE polarization, E is along the y direc-
tion and H is on the xz plane. E and H can
be written as E = [0, Ey, 0]T exp[i(kxx + kzz)] and H =
[Hx, 0, Hz]T exp[i(kxx + kzz)], where Ey is the amplitude of
the y component of E; Hx and Hz are the amplitudes of the
x and z components of H , respectively. Substituting above E,
H , and Eq. (A2) into Eq. (A1), we obtain

kzHx − kxHz = −ωε0εxEy, (A5a)

kzEy = −ωμ0Hx, (A5b)

kxEy = ωμ0Hz. (A5c)

Substituting Eqs. (A5b) and (A5c) into Eq. (A5a), we
further obtain

k2
x + k2

z = εxk
2
0 . (A6)

Equation (A6) gives the dispersion of the wave vector just
for an ordinary wave. Therefore, in the case where E of a
TE polarized wave is perpendicular to the optical axis of the
HMM, only an ordinary wave is present.

Accordingly, in general cases a 4 × 4 transfer-matrix
method is needed if a multilayer contains a uniaxial material
because both an ordinary and an extraordinary wave would
be present in the uniaxial material [35]. However, in case (1)
above, a 2 × 2 transfer-matrix method is appropriate to solve
the wave propagation in a multilayer containing a HMM
because only the extraordinary wave is excited in the HMM.
In the 2 × 2 transfer-matrix method, wave impedance for TM
polarization in an anisotropic layered medium is defined by the
ratio of tangential electric field and tangential magnetic field,
i.e., ηz = Ex/Hy = kz/(ωε0εx). Then, similar to the case in an
isotropic layered medium, the dispersion relation of a 1DPC
composed of a HMM and an isotropic dielectric can be derived
as Eq. (3).
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