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Composition and stress of SiGe nanostructures on curved substrates
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Recent experimental studies of Ge nanoislands on silicon-on-insulator (SOI) substrates have provided a
defect-free strain relaxation mechanism through the bending of the substrate. Here, using atomistic Monte Carlo
simulations and analytical modeling, we couple this relaxation mechanism with interdiffusion and alloying and
observe composition profiles that are completely different from those observed in flat nanoislands. Moreover,
for comparable SOI and island thicknesses, intermixing can be greatly reduced and Ge content in the islands is
highly preserved.
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I. INTRODUCTION

Various strain relaxation mechanisms affect the properties
of heteroepitaxial nanostructures, such as Ge nanoislands
grown on Si substrates. The epitaxial strain due to the lattice
mismatch between Ge and Si is typically relaxed through
plastic deformation (dislocations) and/or through intermixing
and alloying, depending on the growth conditions. When the
substrate thickness is much greater than that of the deposited
film, strain partitioning leaves the substrate with much less
strain than that in the film and minimization of the free energy
mostly involves the nanoisland region.

However, as the substrate is made thinner, and eventu-
ally becomes comparable with the deposited film, energy
minimization also affects the substrate. Such is the case of
nanoisland formation on silicon-on-insulator (SOI), where Ge
is deposited on a thin layer of Si on top of an oxide. It has been
demonstrated [1–6] that in this case strain significantly affects
the thin Si layer through the introduction of local bending
induced by the nanoisland. This behavior is distinctively
different from that observed during Ge growth on thick Si
substrates. A big advantage is that it leads to defect free
structures. Yet, it is totally unknown how local bending affects
the island composition and its distribution.

This is crucial to understand for device applications, since
it is well known that suitable control of alloying and stress
in nanocrystals can be used to modulate their electronic
properties [7]. In Si and SiGe, strain provides a mechanism
for control of both carrier mobility and band offsets. For
example, sufficient biaxial tensile strain can transform Ge
into a direct-band-gap material with strongly enhanced light
emission efficiency [8].

Here, we study for the first time the effect of curvature
on the composition properties of nanostructures, using as a
prototype Ge nanoislands on top of a Si (001) substrate.
We couple the effect of curvature to that of interdiffusion
and demonstrate that the resulting composition profile (CP)
significantly differs from that of flat nanoislands, a case
which is well studied. We also show that for comparable
template and island thicknesses, the Ge content in the
islands can be highly preserved as intermixing is slowed
down.

II. METHODOLOGY

We study the system at both global equilibrium conditions,
as well as at constrained equilibrium (kinetically limited)
conditions. The former case corresponds to conditions at
which substantial intraisland diffusion and redistribution of
the alloy species can take place, [9] such as during growth
by the chemical vapor deposition (CVD) method [10,11].
For this case, we use a Monte Carlo (MC) method that
has been extensively tested in similar situations [9,12–14].
A deeper understanding is obtained by analytical modeling,
coupling the curvature and intermixing effects. The latter
case corresponds to conditions at which high diffusion
barriers and other geometrical and kinetic factors constrain
the diffusion of species at typical growth temperatures. An
example of such nonequilibrium conditions is given in the
work of Ref. [15], reporting growth by the molecular beam
epitaxy (MBE) method. This case is studied by analytical
modeling.

In the MC method, the system is allowed to equilibrate, both
geometrically and compositionally, by employing three types
of random moves: atomic displacements and volume changes,
for geometrical relaxation, and mutual identity exchanges
between atoms of different kinds, which lead to compositional
equilibration and mimic atomic diffusion in the system. The
simulations are run in a parallel-processing mode, which
speeds considerably the algorithm and allows us to investigate
structures similar in size to the ones which are experimentally
observed. The energy is calculated using well-established
interatomic potentials for Si/Ge [16]. In order to speed up
the processes, we initially confined the study to quasi-3D
structures, by keeping the thickness in one of the epitaxial
dimensions small (∼15 Å). We later on selectively analyzed
fully 3D structures and verified that the results obtained are
valid. We treat the thin Si template of the SOI structure
as if free standing, since the role of the insulator can be
ignored to a first approximation [4]. We verified that the
structures with the islands on curved SOI substrates are
always more stable than the equivalent (having the same
amount of Ge) curved conformal 2D configurations on thin Si
substrates.

2469-9950/2016/93(12)/125307(6) 125307-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.125307


T. LEONTIOU AND P. C. KELIRES PHYSICAL REVIEW B 93, 125307 (2016)

FIG. 1. The equilibrium composition profile at 900 K of a Ge-rich
(65% Ge) {111} pyramid for both flat and curved geometries. The
units of the curvature κ are 10−3 nm−1. The graph shows the Ge
fraction, averaged laterally, along the growth direction (in relative
units).

III. RESULTS

A. Shape of composition and stress profiles

We first examine the effect of bending on the shape of the
CP of a typical pyramidal nanoisland, having {111} facets
and 45◦ contact angles. The composition in the island is kept
fixed at 65% Ge during equilibration. Thus, for the moment, we
focus on the island ignoring what happens in the substrate. The
results at 900 K, as curvature is gradually increased, are shown
in Fig. 1. The flat geometry gives rise to the well established
Si-rich core area [9–11], with Ge enriching the periphery and
the top. A dramatic change to the CP occurs when curvature κ is
introduced. Initially, the Si-rich core is gradually reduced and
at a certain value of κ (∼2.86 × 10−3 nm for this composition)
completely disappears (top right). Notably, this is accompanied
by strong segregation of Si to the upper regions of the island
and of Ge to the lower ones, especially to the basal corners,
forming a radically different CP compared to the flat case. The
dramatic reduction of Ge content along the growth direction
with increasing curvature is quantified in the accompanying
graph. The range of values used for κ is close to what was
experimentally observed [1,2], so we expect such CP to be
readily extracted by proper techniques (e.g., grazing-incidence
XRD or selective etching [17]). Other nanoisland structures on
curved substrates, such as shallow angle pyramids or domes
exhibit the same dramatic change in shape.

The associated stress profiles for various values of κ are
shown in Fig. 2, for both a pure and an alloyed Ge pyramid.
In the pure case, curvature reduces the compressive stress in
the island core but does not completely eliminate it. Alloying
further relaxes the elastic energy and at κ∼3.33 × 10−3 nm−1

the bulk stress is completely neutralized. Although the curved
CP shape is very different from the flat CP shape, it can still be
largely explained on the basis of elastic energy minimization,
i.e., Si accumulating in compressed areas and Ge preferring to
accumulate in less compressed areas [9]. We have also verified

FIG. 2. The stress profile at 900 K of a pure and a 65% Ge alloyed
pyramid, for both flat and curved geometries. The units of curvature
κ are 10−3 nm−1. Stress contours derived from average hydrostatic
atomic stresses; sign convention: positive values denote compression,
negative values denote tension.

that the overall shape of the simulated CP, besides some minor
changes, remains the same in the temperature range between
300 and 1200 K. This observation indicates and emphasizes
that the major driving force behind the formation of the CP is
the elastic strain energy.

This new unique CP is not exclusive to the specific Ge
composition chosen, but it is global. To demonstrate this, we
performed simulations in the semi-grand canonical ensem-
ble [12,13], in which different compositions are generated by
varying the chemical potential difference �μ between Si and
Ge. The results, for a fixed curvature, are shown in Fig. 3. We
see the same general trend in the shape of the CP, characterized
by the segregated areas, at all Ge contents. We expect

14% G e 33% Ge

60% Ge 82% Ge
Δμ=0.05 eV Δμ=0.15 eV

Δμ=−0.15 eV Δμ=−0.05 eV

FIG. 3. The composition profile at 900 K for a curved pyramid
(κ = 3.33 × 10−3 nm−1) for various Ge fractions (obtained in the
semi-grand canonical ensemble).
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that quantum dots with such CPs may have a significantly
different optoelectronic response compared to dots on flat
substrates.

B. Thermodynamic model for SOI systems

We now extend our analysis to the whole SOI system
(nanoisland plus thin Si template). Our aim is to determine
its bending and composition at the same time as a function of
the relative thickness of its components. For this, we apply
analytical modeling of free-energy minimization. We first
start with elastic energy minimization, assuming no alloying
between Ge nanoisland and Si template. Under this constrain,
the elastic energy is given by [4]

U = Cs

2

∫ 0

−ts

e2
s dz + Ci

2

∫ ti

0
e2
i

(
1 − z

ti

)2

dz, (1)

where es = κ(z − z0) and ei = κ(z − z0) + em represent the
biaxial strain in the substrate and island, respectively. The
substrate and island thicknesses are ts and ti , while em is
the misfit strain and z0 the position of the neutral plane (see
Appendix for more details). Cs and Ci are the elastic constants
for the substrate and the island.

The induced curvature is derived from Eq. (1) by minimiza-
tion with respect to κ and z0. This yields an expression for the
curvature that has the form

κ = −6αβem

ts
γ, (2)

where α = Ci/Cs , β = ti/ts is the ratio of the thicknesses of
the two components, and γ is a function of α and β [4]. The
values for the induced bending as a function of β predicted by
this model are in excellent agreement with the values produced
by the MC simulations (see Appendix). This agreement
verifies the accuracy of the model in treating the elastic
interactions in the system. For more details about this effect,
see Refs. [2,4].

The next and crucial step in the study of the composition
properties of the whole system is to allow for alloying between
the nanoisland and the Si template. This effect can be modeled
by expressing the average free energy per atom in the general
form

F = x(1 − x)� + Ū − T S. (3)

The first term describes the chemical energy in the system.
� is the interaction parameter in regular-solution theory and
x the Ge fraction. For �, we use the value of 9 meV/atom,
obtained from first-principles calculations [18]. Ū is the elastic
energy as expressed in Eq. (1) with the strains in the substrate
and island region modified to read es = κ(z − z0) + xsem and
ei = κ(z − z0) + xiem in order to account for intermixing. xs

and xi are the Ge fractions in the substrate and island regions,
respectively, obeying to the relation xs = f

1−f
(1 − xi), where

f is the fraction of the number of atoms in the island. Also,
the elastic constants Cs and Ci are modified to account for
alloying, and are given as linear interpolations of the elemental
values according to the Vegard’s law.

By assuming full configurational entropy, we model the
case where the system is allowed to reach its thermodynamic
equilibrium state. The alloy follows ideal mixing, thus the

change in entropy, �S, is given by

�S = f kB[xi ln(xi) + (1 − xi) ln(1 − xi)]

+ (1 − f )kB[xs ln(xs) + (1 − xs) ln(1 − xs)]. (4)

However, in most cases of interest, when short times are
available during device processing, nonequilibrium effects
and processes are dominant. These effects arise from kinetic
limitations due to high diffusion barriers [9,19], coupled to
various geometrical factors [20,21] related to diffusion in
the bulk, at and near surface layers, island facets, corners,
edges and trenches, etc. We capture such effects within our
constrained equilibrium analysis in a generic way, without
incorporating the details of the atomistic processes involved,
by varying the contribution of �S to the free energy from
lower values, corresponding to strongly kinetically limited
intermixing and suppression of intraisland bulk diffusion, to
progressively higher values leading to the full equilibrium
state.

Given these concepts, and assuming that interdiffusion and
bending can occur simultaneously, the Ge fraction in the island
and the value of the curvature are calculated by minimizing
the free energy with respect to xi and κ . The results of this
analysis in terms of the relative thickness β are shown in
Fig. 4. A number of striking conclusions can be drawn from
this analysis. On the left, we see that when both modes of
stress relaxation are operating the induced curvature is smaller,
compared to the case where no intermixing is allowed, for all
values of β. Furthermore, minimizing the entropy contribution
leads to maximum bending.

On the right, we see that the Ge fraction in curved islands
is always higher compared to flat islands. The effect is small

FIG. 4. (Left) Bending as a function of β in nonalloyed (solid
line) and in alloyed SOI structures for the two extremes of entropic
mixing. (Right) The Ge fraction as a function of β in alloyed SOI
structures compared to the flat case. Dotted line describes Ge fraction
with full entropy (unconstrained diffusion) under large curvature (κ =
−3 × 10−2 nm−1) conditions. “Zero entropy” is the limiting case of
constrained diffusion, used to highlight the upper bound in the Ge
content of the island. In the limit β → 0, the island disappears, so the
Ge fraction becomes zero, while for β � 1, the substrate disappears
leading to a system composed of 100% Ge.
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for β � 1, i.e., for very small islands, when the Ge fraction
diminishes and the role of curvature becomes unimportant.
This is the case where the island elastic energy contribution
is minimal. However, for a system like SOI where film
and substrate thicknesses are comparable, this contribution
becomes significant and the induced curvature drives to higher
Ge fractions compared to the flat case. The effect is pronounced
in kinetically limited conditions where entropic mixing is
reduced. Even higher Ge fractions can be achieved by fixing
the curvature to large values (see dotted line in Fig. 4). This
situation may be closely relevant to cases where Ge islands
are grown on patterned structures with high curvatures, such
as stripe ridges and mesa edges [22].

C. Diffusion model and kinetic effects

A more rigorous treatment of kinetic effects can be obtained
through a 1D kinetic diffusion model that was developed
by us earlier [23] in order to study the diffusion of Ge in
Ge/Si(001) dislocated structures. This model yields not only
the average Ge fraction in the whole island but also the Ge
fraction, averaged laterally, as one moves from the basal plane
vertically to the top. The key element in this model is the
equation for the diffusion currents for the two species,

j = −M(∇μa − ∇μb), (5)

where μa and μb are the chemical potentials for each element.
The μ′s are functionals of the Ge fraction x, which is now
a function of time and position. Assuming that no voids are
formed, the continuity equation, ∂x(z,t)/∂t = −∇j , can be
iteratively solved in order to yield the final Ge CP from any
initial condition (see Appendix).

The results of the application of this kinetic model are
summarized in Fig. 5. The computed CP, under kinetically
limited conditions expressed by suppressing �S by 85%,
is given for both a flat island and for curved islands with
increasing values of the curvature. Also given for comparison
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FIG. 5. The Ge fraction (CP) along the axial direction (z axis)
from a kinetic diffusion model. The z axis is in relative units. The
entropy of mixing is suppressed by 85% and the Ge fraction is
plotted for flat (κ = 0) and curved islands. Also shown are CPs under
equilibrium conditions.

are the CPs for a flat and curved island under full equilibrium
conditions.

Let us first note the difference between the equilibrium
and the kinetically limited CP of the flat structure. Although
these model CPs do not show the lateral variations and do
not include the kinetics of the island growth, they roughly
reproduce the well known experimental result that the CP in
islands grown at near-equilibrium conditions [10] (including
intraisland diffusion) and the CP in islands grown at kinetically
limited conditions [15] (mainly surface diffusion) are different.
A more rigorous 3D atomistic simulational treatment of this
problem in both cases, revealing the detailed shape of the CPs
as they grow, was given elsewhere [9].

Now, let us compare the CPs of the flat and curved
islands. In the flat case (κ = 0), Ge on average enriches the
upper regions of the island (more under kinetically limited
conditions, see also Refs. [9,11,15]) while Si enriches the
bottom. As curvature is gradually introduced, this is reversed:
Ge is depleted from the upper regions and is concentrated
in the lower ones, while Si segregates to the top. This is in
excellent agreement with the results of the MC simulations
as summarized in the graph of Fig. 1). Also, the kinetic
model clearly predicts that bending leads to the suppression
of intermixing and drastically limits the outdiffusion of Ge
into the Si thin film, thus strengthening the efficiency of the
quantum dots. The values used for κ are comparable with the
experimentally observed values in SOI systems.

IV. CONCLUSIONS

In conclusion, we have demonstrated that the effect of cur-
vature can dramatically alter the composition state of alloyed
heteroepitaxial systems. We have studied Ge nanoislands on
top of a thin Si layer, such as those resulting from SOI, where
the elastic energy partitioning between substrate and island is
comparable. Based on Monte Carlo simulations and analytic
modeling, we observe that both the shape of the composition
profile and the Ge content of the island are strongly affected.
The presence of curvature can reduce alloying in the system,
particularly when kinetic effects are important. This is the first
time where these two effects, local bending and interdiffusion,
are coupled together. This methodology is general and can be
applied to other similar heteroepitaxial systems.
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APPENDIX

In this appendix, more information is given regarding
the compatibility of free energy minimization with the
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FIG. 6. The contour plot of the biaxial stress component, σy . The
broken line indicates the position of the neutral plane. Two graphs
are also included (a) the value of the curvature from Eq. (2) of the
paper (solid line) compared with the value obtained from the Monte
Carlo simulations after energy minimization. A 60-nm high pyramid
was used and the curvature was measured for various values of the
substrate thickness. (b) The biaxial stress component as a function of
the island height (z).

methodology of Liu et al. [2]. More information on the kinetic
model is also provided.

An equation for the curvature was derived in Ref. [2]
[Eq. (2)], where the key ingredient was the minimization of
the elastic energy. In graph (a) of Fig. 6, we compare the
curvature resulting from our Monte Carlo (MC) simulations
with this equation. There is an excellent agreement between
the two. In graph (b) of Fig. 6, we plot the average biaxial stress
component, from the base to the top of the pyramid. The biaxial
stress is linearly decreasing from a maximum at the base of the
pyramid to a zero value at the top. Such a linear variation was
also used in modeling the elastic energy [Eq. (1)]. In addition,
we show the stress profile of the biaxial stress component, σy ,

FIG. 7. The Ge composition profile of a SiGe pyramid on SOI
for flat and curved (κ = −5 × 10−3 nm−1) substrates.

for the entire structure where the position of the neutral plane
is identified.

We now give some more details about the kinetic model
used in our work and developed earlier in Ref. [23]. Assuming
that no voids form, we have equal and opposite diffusion
currents for the two species, obeying

j = −M(∇μa − ∇μb), (A1)

M = mbxbmaxa

maxa + mbxb

. (A2)

Here, ma and mb are the elemental mobilities, xa and xb

are the respective concentrations, and μa and μb are the
chemical potentials for each element, calculated numerically
from the gradient of the free energy [Eq. (3)]. For simplicity,
we assume ma = mb, so that M = x(1 − x)m, where x is the
Ge fraction. In general, m may itself depend on composition
and on stress but these dependencies are expected to be small
corrections to the effects discussed here, so we omit any such
dependence.

We obtain the spatial and time evolution of the composition
by solving, through discretization, the continuity equation
∂x(z,t)/∂t = −∇j , with the flux given by Eq. (A1). The
application of the above model is described in the main article
where it is evident that by reducing the entropic contribution
the degree of alloying is also reduced. For comparison, Fig. 7
illustrates this phenomenon through Monte Carlo simulations.
For a fixed value of curvature, we show the Ge fraction of
a quantum dot on top of a SOI substrate with comparable
thickness. It is evident from the CP that intermixing with the
Si template is highly suppressed in the presence of curvature.
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[17] J. Stangl, V. Holý, and G. Bauer, Rev. Mod. Phys. 76, 725 (2004).
[18] J. L. Martins and A. Zunger, Phys. Rev. Lett. 56, 1400 (1986).
[19] X. B. Niu, G. B. Stringfellow, and F. Liu, Phys. Rev. Lett. 107,

076101 (2011).
[20] J. B. Hannon, M. Copel, R. Stumpf, M. C. Reuter, and

R. M. Tromp, Phys. Rev. Lett. 92, 216104 (2004); N. Paul,
S. Filimonov, V. Cherepanov, M. Çakmak, and B. Voigtländer,
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