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Tunable Raman photons in singly charged p-doped quantum dots
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The obtention of spontaneous Raman photons is analyzed in singly charged p-doped quantum dots in the
absence of an external magnetic field. The use of a far detuned single driving laser allows one to obtain a Raman
photon line which exhibits a subnatural linewidth, and whose center can be tuned by changing the detuning and/or
the Rabi frequency of the driving field. The Raman photons are produced along the undriven transition and they
arise from a weak interaction of the trion states with the nuclear spins. The operating point for the gate voltage
of the heterostructure can also be used to modify the linewidth and the peak value of the fluorescent signal.
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I. INTRODUCTION

The optical properties of quantum dots (QDs) closely
resemble those found in real atoms. They have been pro-
posed as a basic unit to implementing qubits due to their
large coherence times and their relatively high immunity to
the surrounding environment [1]. Coherent manipulation of
exciton wave functions [2], optical pumping [3–9], partial
rotations of the spin vector [10–13], resonance fluorescence
[14–21], and single photon generation [22–24] are some of the
challenging experiments which have revealed their potential
in the field of quantum information science.

Quantum entanglement plays a central role in quantum
repeaters. The underlying protocol requires the creation of
entanglement between two distant emitters by making the
single photons arising from them to spectrally overlap on
a beam splitter [25]. Such entanglement, which has been
previously demonstrated in ions [26], atoms [27], and nitrogen
vacancy (NV) centers [28], has been recently demonstrated in
p-doped QDs in the Voigt geometry [29]. In the latter system,
the entanglement generation relies on the application of far
detuned pulses which produce Raman photons [30], whose
detection projects the composite system wave function onto
the desired entangled state.

The aim of this work is to extend previous investigations
on the production of Raman photons carried out in n-doped
QDs in the Voigt geometry [30]. Here, we consider p-doped
QDs in the absence of an external magnetic field. The paper is
organized as follows: Section II establishes the model, i.e., the
Hamiltonian of the system and the keys of the main dissipative
processes which are needed to derive the time-evolution
equations of the atomic operators. We also presents the basis
for the analysis of the spectral properties of the fluorescent
photons when the system is driven by a far detuned coupling
laser. Section III presents numerical results assuming typical
data for QDs taken from experimental studies. Finally, Sec. IV
summarizes the main conclusions.

II. THEORETICAL MODEL

We consider InAs/GaAs Stranski-Krastanov self-
assembled QDs with the growth direction along the Z axis.
The QDs are separated from a Fermi sea of holes by a p-doped
back contact layer with a thickness of several nanometers.
An external bias voltage applied between the top gate and

the back contact allows the charge of the QD. The ground
hole states are labeled |1〉 ≡ |⇓〉 and |2〉 ≡ |⇑〉, while the
excited trion states are |4〉 ≡ |⇓ ⇑ ↑〉 and |3〉 ≡ |⇓ ⇑ ↓〉.
Here, ⇑(⇓) and ↑(↓) denote a heavy hole (HH) and an
electron with spins along (against) the Z axis. The energy
level diagram is depicted in Fig. 1. The optical transition
|1〉 ↔ |3〉(|2〉 ↔ |4〉) is driven by a σ+(σ−) polarized laser
field, while the transitions |1〉 ↔ |4〉 and |2〉 ↔ |3〉 remain
dark due to selection rules. The application of an external
magnetic field along the Z axis, in the so-called Faraday
geometry, lifts the degeneracy of the hole/electron levels
according to E

h(e)
Zm = 1

2μBgh(e)Bz, where E
h(e)
Zm stands for the

Zeeman energy shift relative to Bz = 0 T, with Bz and μB

being the external magnetic field and the Bohr magneton,
respectively. The quantity gh(e) is the Landé factor of carrier
h(e).

The Hamiltonian that governs the dynamics of the QD can
be expressed as

H = HA + HInt + Hns. (1)

The free Hamiltonian HA of the four-level QD system reads

HA =
4∑

j=1

Ejσjj , (2)

where Ej = �ωj is the energy of the j th QD level and σij are
the Pauli operators of the excitation electron-hole pair.

The interaction Hamiltonian HInt is taken in the rotating-
wave approximation

HInt = ��3e
iω3Ltσ13 + ��4e

iω4Ltσ24 + H.c., (3)

and it accounts for the interaction of the QD with the
optical fields of angular frequencies ω3L and ω4L which drive
transitions |1〉 ↔ |3〉 and |2〉 ↔ |4〉, respectively. The Rabi
frequencies are explicitly given by �3 = 	μ13 · 	E3/2�, and
�4 = 	μ24 · 	E4/2�, with 	E3 and 	E4 being the slowly varying
amplitudes of the optical fields. Finally, Hns is the part of the
Hamiltonian which accounts for the electron spin interaction
with the nuclear spins which can be modeled as

Hns = ��Nσ34 + H.c., (4)

where �N = geμBB
xy
int /� is the angular Rabi frequency of

the exciton electron spin precession, and B
xy
int stands for the
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FIG. 1. Four-level scheme illustrating the ground and excited
states of self-assembled QDs. In the absence of an external magnetic
field, both the ground and excited states are degenerate. The transition
|1〉 ↔ |3〉(|2〉 ↔ |4〉) is driven by a σ+(σ−) laser field with a Rabi
frequency �3(�4) and optical detuning δ3(δ4).

in-plane internal magnetic Overhauser field. In arriving at
Eq. (4) we have considered the interaction of a localized
electron spin with the surrounding nuclear spin ensemble
given by [31] He

hyp = ν0
8

∑
i A

e
i |ψ(Ri)|2(Îi · σ̂ ), where ν0 is the

volume of the unit cell, ψ(Ri) is the electron envelope wave
function at the ith nucleus, Îi(σ̂ ) stands for the spin operator of
the ith nuclear (electron) spin, and the sum runs over all nuclei i
in the lattice. Ae

i is the hyperfine coupling strength determined
by the value of the electron wave function at the site of each
nucleus. We resort to describing the effect of the hyperfine
interaction through an effective magnetic field felt by the
QD spin, the so-called Overhauser field, BN = ν0

8
Ae

geμB
〈∑i Îi〉,

where Ae is an average spin-nuclei coupling constant. Due to
the arbitrary direction of the Overhauser field, the spin excited
states become admixed. For the kinds of situations considered
in this work, we can treat the hyperfine field as a purely
classical field with a correlation time in the millisecond scale.
Thus, assuming that the nuclear field is described through a
Gaussian distribution of zero mean and with variance Bnuc,
the hyperfine interaction reduces to the one given in Eq. (4).
Note that the z component of BN only leads to a small Zeeman
splitting which is reabsorbed into the energy of the upper
levels. A similar approach was used by Dreiser et al. [32]
to describe the effect of a hyperfine interaction through an
effective magnetic field. Typical values of Bnuc range from 9
to 30 mT [9,32]. The hyperfine interaction of the hole with
the spin nuclei Hh

hyp can be considered to be negligible to
leading order due to the p-like symmetry of the hole Bloch
wave function. Measurements on individual QDs using optical
detection with a high spectral resolution allow one to measure
simultaneously the hole Overhauser shift and that for the
electron: The ratio between the all-element-averaged hole Ah

and electron (Ae) was found to be Ah/Ae ≈ −0.1 in InP and
InGaAs QDs [33].

The dissipative processes are described through operator
Lρ, which in the Linblad form reads as

Lρ = 	12σ21ρσ12 − 	12

2
(σ11ρ + ρσ11) + 	21σ12ρσ21

−	21

2
(σ22ρ + ρσ22) + 	34σ43ρσ34

− 	34

2
(σ33ρ + ρσ33)

+	43σ34ρσ43 − 	43

2
(σ44ρ + ρσ44) + 	0σ24ρσ42

− 	0

2
(σ44ρ + ρσ44) + 	0σ13ρσ31 − 	0

2
(σ33ρ + ρσ33).

(5)

The terms involving 	0 arise from Linblad operators
L1(

√
	0σ13) and L2(

√
	0σ24) and account for the spontaneous

photons produced along the transitions |3〉 ↔ |1〉 and |4〉 ↔
|2〉, respectively. The action of a Linblad operator is defined
as L(C) = CρC† − 1

2 (ρC†C + C†Cρ).
The terms proportional to 	21 and 	12 arise from an

incoherent relaxation process which couples states |1〉 ↔ |2〉
bidirectionally. They arise from an exchange interaction with
the Fermi sea of holes in the back contact giving rise to
spin-flip cotunneling. Let VA and VB be the gate voltages
which determine the single hole charging region. For V < VA

no hole is charged in the QD, whereas for V > VB the QD
accommodates two holes. The state with the lowest energy
depends on the gate voltage and the QD attempts to reach it by
either attracting or repelling holes from or into the reservoir.
The cotunneling at a certain gate voltage Vg in the absence of
an external magnetic field can be shown to be given by [32]

	12 = �	2
t

∫
ε

∣∣∣∣∣ 1

ε + qe(Vg − VA)/λ + i �	t

2

+ 1

−ε + qe(Vg − VA)/λ + i �	t

2

∣∣∣∣∣
2

g(ε)dε, (6)

with qe, 	t , and λ being the charge of the electron,
the tunneling rate, and a constant describing the geomet-
ric lever arm of the heterostructure, respectively. g(ε) =
f (ε)[1 − f (ε)], where f (ε) stands for the Fermi function,
f (ε) = 1/[1 + exp(ε/kBT )], with kB(T ) being the Boltzman
constant (temperature). ε stands for the detuning from the
reservoir’s Fermi energy εF of the hole state in the reservoir
which couples with the hole in the QD to form a virtual
state which finally relaxes, producing the hole spin flip. The
imaginary part in the denominator in Eq. (6) introduces a
finite lifetime to the hole states given by 	t , which is relevant
for those regions of the integral with a vanishing real part.
The decay rate for relaxing from an energetically higher into
a lower state is different from the opposite direction. The
two processes are related by thermal equilibrium and read
as 	21 = 	12e

−Eh
Zm/kBT . The terms proportional to 	43 and 	34

arise from a similar cotunneling process involving the trion
states, and the following condition 	43 = 	34e

−Ee
Zm/kBT holds.

The Hamiltonian in an appropriate rotating frame reads as

H = �(δ3 − δ4 + ω43)σ22 + �δ3σ33 + �(δ3 + ω43)σ44

+�(�3σ13 + �4σ24 + �Nσ34 + H.c.), (7)

where δ3 = ω31 − ω3L and δ4 = ω42 − ω4L stand for the
optical detunings. The equations of motion of the density
matrix elements are derived in Appendix A.

Quantum optical experiments allow one to also investigate
the statistics of emitted light. Here, we focus on the spectral
properties of the fluorescent photons, in particular, the so-
called resonance fluorescence spectrum (RFS) of the QDs.
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In the steady-state regime, this spectrum is proportional
to the Fourier transformation of the correlation function
limt→∞ 〈E+(r,t ′ + t) · E−(r,t)〉, where E−(r,t)/E+(r,t) is the
negative/positive frequency part of the radiation field in the
far zone. The radiation field consists of a free-field operator
and a source-field operator that is proportional to the atomic
polarization operator [34]. Therefore, the steady-state RFS can
be expressed in terms of the atomic correlation function

S(ω) = Re

[
lim
t→∞

∫ ∞

0
〈E+(t ′ + t) · E−(t)〉e−iωt ′dt ′

]
, (8)

where Re[ ] denotes the real part of the magnitude enclosed
in square brackets, and E+(t) is the positive frequency part of
the fluorescent field which in the far-field zone (|	r| � c/ωij ,
i = 4,3, j = 1,2) reads

	E+(	r,t) = ω2
31

c2|	r| 	μ13σ31(t − |	r|/c) + ω2
42

c2|	r| 	μ24σ42(t − |	r|/c),

(9)

and E−(t) = [E+(t)]†. We will assume that ω31 ≈ ω42.
We remind here that the following conditions hold, 	μ13 =
μ( ûx√

2
− i

ûy√
2
), 	μ24 = μ( ûx√

2
+ i

ûy√
2
), whereas the direction of

detection of the fluorescent field is perpendicular to the plane
XY which contains the atomic dipole moments 	μ13 and 	μ24.

In writing Eq. (8), we abbreviate ω − ω3L(ω − ω4L) by ω,
but we should interpret ω as a frequency measured relative
to the laser frequency ω3L(ω4L) since we will assume that
the QD is singly driven by �3(�4). The calculation of S(ω)
requires one to evaluate two-time correlation functions, which
can be performed by means of the quantum-regression theorem
[34,35] (see Appendix A for details). The RFS given in Eq. (8)
has two contributions: One of them is due to the dipole operator
σ31 [the term involving Û13(τ ) as defined in Appendix A],
while the other arises from the dipole operator σ42 [the term
involving Û24(τ )]. The numerical solution of the equations
of interest make use of a collection of scripts written in
OCTAVE [36].

III. NUMERICAL RESULTS

Let us start considering how the gate voltage Vg influences
the cotunneling rates 	12 and 	34. Previous studies on neutral
excitons in n-doped QDs have shown that cotunneling rates are
characterized by their nonlinear voltage dependence, showing
an ultrasteep slope at the edges of the voltage plateau, and a
weak dependence on voltage in the plateau center [37]. The
results for negatively charged excitons also shown a similar
trend [32]. Here, we address the problem for the case of p-
doped QDs in the absence of an external magnetic field. The
decay rates obtained through Eq. (6) (not shown) reproduce
quite well the results for the hole spin lifetime and the trion
spin lifetime at the plateau center reported in Refs. [8,9] for
the following set of parameters: 	t = 0.433 ns−1 for the hole
states, 	t = 0.137 ns−1 for the trion states, and VA = −VB =
−50 mV, kBT = 362 μeV, and λ = 5. Changing the gating
voltage should result in the modification of the cotunneling
rates by more than six orders of magnitude. We will show that
the tuning of V should influence the linewidth of the Raman
photons.

In order to study the Raman photons, we assume free space
radiative decay rates of the transitions of �	0 = 4.83 μeV. The
magnitude ��N is taken to be 0.73 μeV, which corresponds
to an average internal Overhauser magnetic field of 21 mT.
These data are obtained from experimental studies [8,9]. In
what follows, we also consider a single driving field �3

nonresonant with transition |1〉 ↔ |3〉, i.e., δ3 �= 0 and �4 = 0.
Numerical results are displayed in Fig. 2(a) for �3 = 1.5	0

and δ3 = −5	0. We set the gate voltage to V = −40 mV,
which is far from the plateau center, thus preventing hole spin
pumping. The solid line corresponds to the contribution to RFS
from the correlation U13(τ ) and exhibits a Mollow-like triplet.
Most interestingly, the dashed line represents the contribution
to RFS from the correlation U24(τ ) and exhibits a two-peak
structure: One of the peaks, the blue detuned, which is close to
ω = 0, exhibits a subnatural linewidth (the Raman photons),
whereas the other peak has a linewidth close to 	0. The photons
arising from these two correlations can be isolated by making
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FIG. 2. Steady-state RFS [S(ω)] vs ω of the out of resonance singly driven QD (�3). (a) δ3 = −5	0, �3 = 1.5	0. The solid line (dashed
line) represents the resonance fluorescence arising from the correlation U13(τ ) [U24(τ )]. The gating voltage was set to V = −40 mV. (b) RFS
[S(ω)] vs ω arising from the correlation U24(τ ) (thick solid line) when δ3 = +5	0, �3 = 1.5	0. Lorentzians obtained in the dressed state basis
[Eq. (B11)]. The thin solid line is the RFS obtained as the sum of the three Lorentzians [Eq. (B10)].
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FIG. 3. (a) Peak position of the Raman photons (−λ3) in GHz measured relative to ω3L vs the Rabi frequency of the driving field �3 (solid
line), and FWHM of the Raman photon line (2	c′2) vs the Rabi frequency of the driving field �3 (dashed line) for δ3 = −5	0. (b) Peak value
of the Raman photon line (max[Sc(ω)]) vs the Rabi frequency of the driving field �3 for δ3 = −5	0.

use of a polarization selective detection geometry. Based on
the characteristic of the current QD, we estimated the full
width at half maximum (FWHM) of this peak to be in the
order of 0.66 GHz, which is around 11 times lower than
the value of the spontaneous emission rate (	0 = 7.33 GHz).
Most interestingly, the narrow spectral feature can be tuned
by changing the detuning of the external laser as shown in
Fig. 2(b), which demonstrates the appearance of a red detuned
subnatural peak for the Raman photons (thick solid line) when
the detuning of the driving laser is set to δ3 = +5	0 while
keeping the rest of the parameters fixed. It is worth noting that
the Overhauser field is responsible for the appearance of such
a narrow spectral feature: In the case of setting �N = 0 (which
is a meaningless physical situation), the spontaneous photons
(Raman photons) cannot decay to level |2〉 since levels |3〉 and
|4〉 eventually decouple one another.

The RFS in the dressed state picture (DSP) for the Raman
photons is obtained in Appendix B when δ3 �= 0. There, it is
shown that RFS of the Raman photons arises from the correla-
tion U24(τ ), and we show that in the secular approximation the
RFS for the photons produced along the |2〉 ↔ |4〉 channel
can be described as transitions between states of adjacent
manifolds: from state |j,N〉 to |2,N − 1〉, j = a′,b′,c′, with
N being the number of photons. Equation (B10) shows that
RFS is given as a sum of three different Lorentzians. In the
case of δ3 < 0, the Raman photon line is obtained through
the transition |c′〉 ↔ |2〉: It is centered at ω = −λ3, and
the linewidth is 2	c′2. In the case with δ3 > 0, the Raman
photon line arises from the transition |a′〉 ↔ |2〉, is centered
at ω = −λ1, and the linewidth is 2	a′2. The amplitudes of the
different Lorentzians are obtained by solving Eqs. (B3)–(B5).
Figure 2(b) also shows the individual Lorentzians obtained for
that particular situation, demonstrating the adequacy of the
description in the DSP which catches the peak positions and
reproduces the shape of the spectrum. We checked that the
FWHM of Sa(ω) is 2	a′2 = 0.656 GHz, in good agreement
with the numerical determination using the full RFS.

The Rabi frequency of the driving field �3 can be also
used as a knob to tune the peak location and linewidth of

the Raman photon line. Such tunability is shown with a solid
line in Fig. 3(a), which was produced while keeping constant
δ3 = −5	0 and V = −40 mV. In addition, we also plot in
the same panel the FWHM in GHz of this spectral feature.
These curves were obtained through the values of λ3 and 	c′2,
respectively, as defined in Appendix B. This figure reveals
that large changes of the peak location are obtained at the
expense of increasing the linewidth, which, however, remains
subnatural. This increase of the linewidth is just a consequence
of power broadening. The negative value for the peak position
is just an indication that the Raman photons are blue detuned
with regard to the laser field. Figure 3(b) shows the peak value,
i.e., the maximum value of Sc(ω), in arbitrary units versus
the Rabi frequency of the driving field. This curve shows the
existence of a Rabi frequency which maximizes the signal of
the Raman line. The use of a large value for δ3 = −10	0 also
allows one to obtain a large degree of tunability, in the order
of 44 GHz for the largest Rabi frequency, accompanied by a
slight reduction of the maximum linewidth up to 2.2 GHz. In
this case the maximum signal shifts to large values of �3. In
summary, the Raman photon signal can be tuned by changing
the detuning and/or the Rabi frequency of the driving field.

A change of the gating voltage results in the modification
of the cotunneling of the lower and upper levels. This in turn
results in changes in the linewidth and the peak value of the
Raman line as depicted in Fig. 4. These curves were produced
while keeping constant the Rabi frequency and the detuning
of the driving field. Here, we observe a nonlinear character
of the linewidth when the gate voltage is changed, while it
remains almost constant at the voltage plateau. This result can
be explained by the nonlinearity of the cotunneling rates given
by Eq. (6). The reduction in the linewidth at the center of the
voltage plateau (where efficient optical pumping is obtained)
is accompanied by a drop of the peak value of the Raman line
by more than two orders of magnitude.

One may wonder whether spectral fluctuations (SDs) [38]
should affect the spontaneous Raman photons. Signatures of
such influences on the RFS in QDs have been experimentally
found [39–41]. In what follows, we assume that the effect
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FIG. 4. (a) FWHM of the Raman photon line (2	c′2) vs the gate voltage. (b) Peak value of the Raman photon line (max[Sc(ω)]) vs the gate
voltage. �3 = 1.5	0 and δ3 = −5	0.

of SDs can be accounted for by considering a Gaussian
weighting function W (δ3) = exp [−1/2(δ3/diff)28 ln 2], with
diff being the diffusion coefficient, thus the effective RFS is
obtained as a convolution of the unweighted RFS [obtained
from Eq. (A6)] and the Gaussian line shape W (δ3). Matthiesen
et al. [39] have provided experimental evidence that diff

depends on the average excitation detuning (δ3 in our notation).
Assuming a value of diff ≈ 140 MHz, we computed the
linewidth of the resulting Raman photon line which after
convolution shows very minor changes in the width (in the
second decimal place) in relation to the unweighted spectrum.
This result is expected: When convolving two functions of
very different widths, the one with the largest width (2	c′2)
dominates over the other (diff).

IV. CONCLUSIONS

In this work we present a theoretical description of the
spontaneous Raman photons in singly charged p-doped QDs.
The QDs are modeled as a four-level-like atomic system where
the interaction of the electron spin with the nuclei of the QD
is taken into account using a frozen model for the nuclear
spins. We present numerical simulations using data taken from
experimental studies which show that the center and linewidth
of the Raman photon line can be changed by all optical methods
by changing either the detuning and/or the Rabi frequency of
the far detuned driving laser. We also analyze the influence
of the gating voltage on the linewidth and the peak value
of the fluorescent signal. In contrast with n-doped quantum
dots, the current scheme does not require the application of an
external magnetic field, making the current system a candidate
for quantum information applications.
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APPENDIX A: DENSITY MATRIX EQUATIONS OF
MOTION AND RFS IN THE BARE STATE BASIS

The equations of motion of the density matrix elements are
obtained through ρ̇ = − i

h
[H,ρ] + Lρ, and are rewritten in

terms of time averaged σ operators for convenience, and read

∂〈σ22〉
∂t

= (	0 − 	12)〈σ44〉 − (	12 + 	21)〈σ22〉 − 	12〈σ33〉
+	12 − i�4〈σ24〉 + i�∗

4〈σ42〉,
∂〈σ33〉

∂t
= −(	34 + 	0)〈σ33〉 + 	43〈σ44〉

+ i�3〈σ13〉 − i�∗
3〈σ31〉 − i�N 〈σ34〉 + i�N 〈σ43〉,

∂〈σ44〉
∂t

= 	34〈σ33〉 − (	43 + 	0)〈σ44〉
+ i�4〈σ24〉 − i�∗

4〈σ42〉 + i�N 〈σ34〉 − i�N 〈σ43〉,
∂〈σ12〉

∂t
= −F12〈σ12〉 + i�∗

3〈σ32〉 − i�4〈σ14〉,
∂〈σ13〉

∂t
= −F13〈σ13〉 + i�∗

3(〈σ33〉 − 〈σ11〉) − i�N 〈σ14〉,
∂〈σ14〉

∂t
= −F14〈σ14〉 − i�∗

4〈σ12〉 + i�∗
3〈σ34〉 − i�N 〈σ13〉,

∂〈σ23〉
∂t

= −F23〈σ23〉 − i�∗
3〈σ21〉 + i�∗

4〈σ43〉 − i�N 〈σ24〉,
∂〈σ24〉

∂t
= −F24〈σ24〉 + i�∗

4(〈σ44〉 − 〈σ22〉) − i�N 〈σ23〉,
∂〈σ34〉

∂t
= −F34〈σ34〉 + i�3〈σ14〉 − i�∗

4〈σ32〉
+ i�N (〈σ44〉 − 〈σ33〉) . (A1)

To obtain the above equations we made use of the
following definition for the generalized dephasings: F12 =
(	12 + 	21)/2 + i(δ3 − δ4 − Ee

Zm), F13 = (	12 + 	34 +
	0)/2 + iδ3, F14 = (	12 + 	43 + 	0)/2 + i(δ3 − Ee

Zm),
F23 = (	21 + 	34 + 	0)/2 + i(δ4 + Ee

Zm), F24 = (	21 +
	43 + 	0)/2 + iδ4, F34 = (	43 + 	34 + 2	0)/2 − iEe

Zm. We
also assume that we are dealing with a closed system, i.e.,
〈σ11〉 + 〈σ22〉 + 〈σ33〉 + 〈σ44〉 = 1. In writing Eq. (A1) we
take into account that ρkl(t) = 〈σlk(t)〉.
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Let us define the vector U (t) = [σ22(t),σ33(t),σ44(t),σ12(t),
σ21(t),σ13(t),σ31(t),σ14(t),σ41(t),σ23(t),σ32(t),σ24(t),σ42(t),
σ34(t),σ43(t)]T , where T stands for transpose. Thus Eq. (A1)
can be written in matrix form as

d U (t)

d t
= MU (t) + B, (A2)

with M being a 15 × 15 matrix of coefficients and B the
independent term which can be easily derived from Eq. (A1).

The evaluation of the two-time correlation functions that
appear in Eq. (8) can be recast to

S(ω) = f 2(r)|μ|2 Re

[∫ ∞

0
(〈σ31(τ )σ13(∞)〉

+ 〈σ42(τ )σ24(∞)〉)e−iωτ dτ

]
. (A3)

The two-time correlation functions which appear in Eq. (A3)
can be determined with the aid of the quantum-regression
theorem [34,35] and the optical Bloch Eq. (A1). To this end,
we define the column vector

Ûjk(τ ) = [〈σ22(τ )σjk(∞)〉, 〈σ33(τ )σjk(∞)〉, 〈σ44(τ )σjk(∞)〉,
〈σ12(τ )σjk(∞)〉, 〈σ21(τ )σjk(∞)〉, 〈σ13(τ )σjk(∞)〉,
〈σ31(τ )σjk(∞)〉, 〈σ14(τ )σjk(∞)〉, 〈σ41(τ )σjk(∞)〉,
〈σ23(τ )σjk(∞)〉, 〈σ32(τ )σjk(∞)〉, 〈σ24(τ )σjk(∞)〉,
〈σ42(τ )σjk(∞)〉, 〈σ34(τ )σjk(∞)〉, 〈σ43(τ )σjk(∞)〉]T
(j = 1, k = 3) (j = 2, k = 4), (A4)

where the superindex T stands for transpose. According to
the quantum-regression theorem, for τ > 0, the vector Ûjk

satisfies

d Ûjk(τ )

dτ
= MÛjk(τ ) + B〈σjk(∞)〉. (A5)

By working in the Laplace space we obtain the steady-state
resonance fluorescence spectrum. Specifically, we have

S(ω) ∝ 	0 Re

{
l=15∑
l=1

R7,l(iz)

(
Û

(l)
13 (∞) + B

〈σjk(∞)〉
iz

)

+
l=15∑
l=1

R13,l(iz)

(
Û

(l)
24 (∞) + B

〈σjk(∞)〉
iz

)}
, (A6)

where Û
(l)
jk (∞) is the value of the lth component of the vector

Ûjk(τ ) evaluated at τ = 0, i.e., in the steady state. Rjk(iz) is
the (j,k) element of the matrix R(iz) defined as

R(iz) = (izÎ − M)−1, (A7)

with Î being the 15 × 15 identity matrix, and z ≡
(ω − ω3L)/	0.

APPENDIX B: RAMAN PHOTONS IN THE DRESSED
STATE BASIS

Here, we address the problem of computing the RFS in the
dressed state picture for the case of using a single driving
field (�3 �= 0 and �4 = 0) when the system is driven out
of resonance (δ3 �= 0) and with no external magnetic field,

i.e., B = 0. This simple case allows for the obtention of an
analytical expression for the spectrum of the emitted Raman
photons. The atomic and coherent part of the Hamiltonian
reads

H = �δ3σ33 + �δ3σ44 + �(�3σ13 + �Nσ34 + H.c.). (B1)

The eigenvalues are obtained through the roots of the following
polynomial, −λ3 + 2δ3λ

2 − λ(δ2
3 − �2

N − �2
3) − �2

3δ3, and
are labeled as λj (j = 1,2,3). They are sorted in ascending
order, i.e., |λ3| < |λ2| < |λ1|. The corresponding eigenstates
are

|a′〉 = a1|1〉 + a3|3〉 + a4|4〉,
|b′〉 = b1|1〉 + b3|3〉 + b4|4〉,
|c′〉 = c1|1〉 + c3|3〉 + c4|4〉,
|d ′〉 = |2〉 . (B2)

The coefficients are given by a1 = �3
A1λ1

, a3 = 1
A1

, and a4 =
− �N

A1(δ3−λ1) , where A1 =
√

1 + (�3/λ1)2 + (�N/(δ3 − λ1))2.
The coefficients bj (cj ) are obtained from aj by making the
replacement λ1 → λ2(λ3).

The emitted Raman photons are related with the correlation
function U24(τ ) = 〈σ42(τ )σ24(∞)〉. In the secular approxima-
tion this correlation reduces to U24(τ ) ≈ a2

4〈σa′2(τ )σ2a′(∞)〉 +
b2

4〈σb′2(τ )σ2b′ (∞)〉 + c2
4〈σc′2(τ )σ2c′ (∞)〉, and can be com-

puted using the quantum-regression theorem. Thus, we need
the equations of motion of population and coherences of the
dressed states in Eq. (B2) which are derived in the secular
approximation. The equations of interest read

d〈σa′a′(t)〉
dt

= 	a′a′ 〈σa′a′ 〉 + 	a′b′ 〈σb′b′ 〉 + 	a′c′ 〈σc′c′ 〉 + 	0
a′a′ ,

(B3)

d〈σb′b′ (t)〉
dt

= 	b′a′ 〈σa′a′ 〉 + 	b′b′ 〈σb′b′ 〉 + 	b′c′ 〈σc′c′ 〉 + 	0
b′b′ ,

(B4)

d〈σc′c′ (t)〉
dt

= 	c′a′ 〈σa′a′ 〉 + 	c′b′ 〈σb′b′ 〉 + 	c′c′ 〈σc′c′ 〉 + 	0
c′c′ ,

(B5)

d〈σa′2(t)〉
dt

= −	a′2〈σa′2〉, (B6)

d〈σb′2(t)〉
dt

= −	b′2〈σb′2〉, (B7)

d〈σc′2(t)〉
dt

= −	c′2〈σc′2〉, (B8)

with

	a′a′ = −(	12 + 	21)a2
1 + (	34 + 	43)a2

3a
2
4 + 	0a

2
1a

2
3

− (	34 + 	0)a2
3 − (	43 + 	0)a2

4,

	a′b′ = −	21a
2
1 + 	34a

2
4b

2
3 + 	43a

2
3b

2
4 + 	0a

2
1b

2
3,

	a′c′ = −	21a
2
1 + 	34a

2
4c

2
3 + 	43a

2
3c

2
4 + 	0a

2
1c

2
3,

	0
a′a′ = 	21a

2
1,
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	b′a′ = −	21b
2
1 + 	34b

2
4a

2
3 + 	43b

2
3a

2
4 + 	0b

2
1a

2
3,

	b′b′ = −(	12 + 	21)b2
1 + (	34 + 	43)b2

3b
2
4 + 	0b

2
1b

2
3

− (	34 + 	0)b2
3 − (	43 + 	0)b2

4,

	b′c′ = −	21b
2
1 + 	34b

2
4c

2
3 + 	43b

2
3c

2
4 + 	0b

2
1c

2
3,

	0
b′b′ = 	21b

2
1,

	c′a′ = −	21c
2
1 + 	34c

2
4a

2
3 + 	43c

2
3a

2
4 + 	0c

2
1a

2
3,

	c′b′ = −	21c
2
1 + 	34c

2
4b

2
3 + 	43c

2
3b

2
4 + 	0c

2
1b

2
3,

	c′c′ = −(	12 + 	21)c2
1 + (	34 + 	43)c2

3c
2
4 + 	0c

2
1c

2
3

− (	34 + 	0)c2
3 − (	43 + 	0)c2

4,

	0
c′c′ = 	21c

2
1,

	a′2 = 	21/2 + 	12a
2
1/2

+ (	34 + 	0)a2
3/2 + (	43 + 	0)a2

4/2,

	b′2 = 	21/2 + 	12b
2
1/2

+ (	34 + 	0)b2
3/2 + (	43 + 	0)b2

4/2,

	c′2 = 	21/2 + 	12c
2
1/2

+ (	34 + 	0)c2
3/2 + (	43 + 	0)c2

4/2. (B9)

The spectrum of the Raman photons is finally derived
making use of the Laplace transform for the correlation
function U24(τ ), and reads

SRam(ω) = Sa(ω) + Sb(ω) + Sc(ω), (B10)

where

Sa(ω) = Re

{
a2

4
〈σa′a′ (∞)〉

	a′2 − i(ω + λ1)

}
,

Sb(ω) = Re

{
b2

4
〈σb′b′ (∞)〉

	b′2 − i(ω + λ2)

}
, (B11)

Sc(ω) = Re

{
c2

4
〈σc′c′ (∞)〉

	c′2 − i(ω + λ3)

}
.
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M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J.
Warburton, Nature (London) 451, 441 (2008).

[8] D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai,
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Badolato, and M. Atatüre, Phys. Rev. B 81, 035332 (2010).

[22] H. S. Nguyen, G. Sallen, C. Voisin, Ph. Roussignol, C.
Diederichs, and G. Cassabois, Appl. Phys. Lett. 99, 261904
(2011).

[23] C. Matthiesen, A. N. Vamivakas, and M. Atatüre, Phys. Rev.
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