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The GW approximation is a well-known method to improve electronic structure predictions calculated
within density functional theory. In this work, we have implemented a computationally efficient GW approach
that calculates central properties within the Matsubara-time domain using the modified version of ELK, the
full-potential linearized augmented plane wave (FP-LAPW) package. Continuous-pole expansion (CPE), a
recently proposed analytic continuation method, has been incorporated and compared to the widely used
Padé approximation. Full crystal symmetry has been employed for computational speedup. We have applied
our approach to 18 well-studied semiconductors/insulators that cover a wide range of band gaps computed
at the levels of single-shot G0W0, partially self-consistent GW0, and fully self-consistent GW (full-GW ), in
conjunction with the diagonal approximation. Our calculations show that G0W0 leads to band gaps that agree
well with experiment for the case of simple s-p electron systems, whereas full-GW is required for improving the
band gaps in 3d electron systems. In addition, GW0 almost always predicts larger band gap values compared to
full-GW , likely due to the substantial underestimation of screening effects as well as the diagonal approximation.
Both the CPE method and Padé approximation lead to similar band gaps for most systems except strontium
titantate, suggesting that further investigation into the latter approximation is necessary for strongly correlated
systems. Moreover, the calculated cation d band energies suggest that both full-GW and GW0 lead to results in
good agreement with experiment. Our computed band gaps serve as important benchmarks for the accuracy of
the Matsubara-time GW approach.
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I. INTRODUCTION

Calculations using density functional theory [1,2] (DFT)
have become the standard ab initio technique to study the
electronic and structural properties of molecules, nanoparti-
cles, and periodic solids [3–6]. However, it is well known
that the electronic band gap of semiconductors and insulators
is severely underestimated within DFT due to the lack of
a derivative discontinuity in standard exchange-correlation
potentials [7]. This deficiency hinders the theory’s useful appli-
cation in fields such as optics, photovoltaics, thermoelectrics,
and transport that require an accurate characterization of
excited state properties.

The GW approximation, originally proposed by Hedin [8],
provides a route to improve electronic descriptions and band
gap results using many-body perturbation theory. The central
quantity in this approach is the exchange-correlation self-
energy (�xc), which incorporates (i) the exact electronic
exchange interaction and (ii) the complex electron-electron
correlation accounting for screening effects often treated
within the random phase approximation (RPA) [9,10]. This
approach has been applied to a wide variety of materials and
provides electronic structure results in better agreement with
experiments compared to its DFT counterpart [11–17].

Although studies employing the GW approximation have
enjoyed early success in improving band gap predictions, many
implementations rely on the pseudopotential (PP) approxi-
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mation that treats pseudo wave functions and valence-core
interactions at the level of DFT [18–21]. To avoid the PP
approximation, several all-electron GW implementations have
been reported in recent years based on the full-potential
linearized augmented plane wave (FP-LAPW) [22–26], the
linearized muffin-tin orbital (LMTO) [26], and the projector-
augmented wave (PAW) [27] in conjunction with a plane-
wave basis [13,28]. Most of these all-electron studies have
only implemented the G0W0 approximation due to its lower
computational cost [26,29,30]; however, these single-shot
calculations are plagued by violations of momentum, energy,
and particle conservation laws [31–33]. They also introduce
a troubling dependence on the choice of Kohn-Sham (K-S)
basis used as a zeroth-order starting point [15,34]. Fully self-
consistent GW , in which the single-particle Green’s function
(G) and self-energy (�, defined in the GW framework) are
iterated by solving the Dyson equation to full self-consistency,
avoids these issues and provide an unbiased physical picture
predicted by GW theory. To date, few studies have performed
self-consistent GW calculations within an all-electron frame-
work [22,35,36], with one study performing the self-consistent
GW method within the Matsubara-time domain [22,37,38], as
first implemented by Ku and Eguiluz [22]. In that method,
� and hence G have been approximated diagonally in the
K-S basis, which is known as the diagonal approximation.
However, this approach has only been applied to bulk Si and
Ge, and its applicability to other semiconductors and insulators
requires further examination.

There are two main advantages of performing GW cal-
culations within the Matsubara-time domain. First, � is
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simply the product of the single-particle Green’s function
(G) and screened Coulomb interaction (W ). In contrast,
the solution for � in Matsubara-frequency space requires
a convolution of G and W that usually demands more
frequency points to reach convergence [39]. Second, the
Green’s function in Matsubara-time lacks singular points that
can arise in frequency space, which leads to smoother single-
particle Green’s functions compared to those in the frequency
domain. Despite these advantages, the need for a reliable
analytic continuation technique makes accurate calculations
within Matsubara-time particularly challenging. The Padé
approximation is often adopted for this purpose due to its
simple implementation and low computational effort [40]. In
this approach, the quantities of interest (e.g., � and G) are
expressed as fractional polynomials that are fitted to computed
values in the Matsubara-frequency domain. Such expressions
are then analytically continued into the real-frequency do-
main. The reliability of this approximation remains under
debate, and recently Staar and co-workers have proposed the
continuous-pole expansion (CPE) as an alternative algorithm
for analytic continuation from the Matsubara-frequency to the
real-frequency domain [41]. Unlike the Padé approximation,
this method explicitly takes into account the physical causality
that places a constraint on the self-energy.

In this paper, we build upon an all-electron GW code
we have already developed [11,42] by calculating � within
the Matsubara-time domain, which improves the code’s
computational efficiency and provides self-consistent GW

(full-GW ) calculations within the diagonal approximation. We
implement this method in conjunction with the CPE to solve
for the quasiparticle energies in the real-frequency domain.
We validate this method by investigating the electronic band
gaps of a wide range of semiconductors and insulators
at different levels of GW approximation. Our calculations
demonstrate that the band gaps for 3d electron systems are
often in better agreement with experiment when using full-GW

than the commonly used G0W0 approximation, whereas the
latter approximation often yields reasonable experimental
agreement in simple s-p electron systems. We also find that
both the CPE and Padé approximation yield very similar
electronic band gaps among most tested systems; however,
the CPE method provides a better electronic description of
strongly correlated strontium titanate.

The rest of the paper is organized as follows. Section II
outlines the full-GW approximation and Sec. III describes its
implementation within the existing all-electron DFT package.
Results and discussion are then presented in Sec. V, followed
by the conclusion in Sec. VI.

II. BASICS OF THE THEORY

Within the single-particle picture, the excitation properties
of solids can be determined by the single-particle Green’s
function via the Dyson equation. When expressed in the real-
space and Matsubara-time domain, the Dyson equation reads

G(r,r′|τ ) = G0(r,r′|τ ) +
∫ β

0
dτ1

∫ β

0
dτ2

∫
dr1

∫
dr2

×G0(r,r1|τ − τ1)��(r1,r2|τ1 − τ2)G(r2,r′|τ2),

(1)

where G and G0 are the Green’s functions associated with
the interacting system of interest and a preselected reference
system, respectively. In this work, the noninteracting K-S
system calculated within DFT is adopted as the reference
system. τ is the Matsubara-time argument that in general
falls within [−β,β] where β = 1/kBT , kB is Boltzmann’s
constant, and T is the temperature. Given that G obeys the
relation G(r,r′, − τ ) = −G(r,r′, − τ + β) for τ ∈ [0,β], it is
sufficient to restrict our study to τ ∈ [0,β]. �� is the change
in the electron-electron interaction between the interacting and
reference K-S systems:

��(r,r′|τ ) = �(r,r′|τ ) − �0(r,r′)δ(τ ), (2)

�(r,r′|τ ) = �H (r)δ(r − r′)δ(τ ) + �xc(r,r′|τ ), (3)

�H (r) =
∫

dr1
ρ(r1)

|r − r1| , (4)

ρ(r) = G(r,r|τ → 0−). (5)

Here, � is the electron self-energy that captures the
complicated electron-electron interactions. It is composed of
the Hartree (�H ) and exchange-correlation (�xc) components
of the self-energy. �H relates to the updated electronic charge
density (ρ) and �0 is the sum of Hartree and exchange-
correlation potentials in the reference K-S system. δ(τ ) is the
Dirac delta function.

Given the high computational cost of calculating �xc,
the standard method used to find this quantity is the GW

approximation, which can be expressed in real-space and
Matsubara-time as [37]

�xc(r,r′|τ ) = −G(r,r′|τ ) · W (r,r′|τ ). (6)

Here, W is the dynamically screened Coulomb potential,
which describes the interactions between quasiparticles while
including screening effects. The screened Coulomb potential
obeys the Dyson equation that reads

W (r,r′|τ ) = v(r,r′)δ(τ ) +
∫ β

0
dτ ′

∫
dr1

∫
dr2v(r,r1)

×P (r1,r2|τ − τ ′)W (r2,r′|τ ′), (7)

where v(r,r′) = 1/|r − r′| is the bare Coulomb potential, and
P is the irreducible polarization within the RPA:

P (r,r′|τ ) = G(r,r′|τ ) · G(r,r′| − τ ). (8)

In addition, �xc(τ ) is often expressed as the sum of
the exchange self-energy, �x(τ ) = −G(τ ) · vδ(τ ), which cor-
responds to the Fock exchange term, and the correlation
self-energy, �c = −G(τ ) · [W (τ ) − vδ(τ )]. Note that the self-
energy in the Matsubara-time domain is simply a product of the
Green’s function and screened Coulomb potential, in contrast
to the corresponding expression in the Matsubara-frequency
domain that requires a convolution of G and W . The electron
self-energy within the GW approximation [its exchange-
correlation part is given in Eq. (6)] correlates with the Green’s
function, and thus both need to be solved self-consistently via
Eq. (1).

The set of intercorrelated equations presented above allows
us to compute G and � self-consistently. Once they are
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converged to the required accuracy, a Fourier transform of
� from the Matsubara-time to Matsubara-frequency domain
is performed, i.e., {�(τ )} → {�(iωn)} where {ωn = (2n +
1)π/β} are the Matsubara frequencies with n being integers,
and the spatial dependence of � is neglected for simplicity.
This is then followed by an analytic continuation to real
frequency space, {�(iωn)} → {�(ω + iη)}, with η being
a positive infinitesimal number, which yields the Green’s
function in the real-frequency domain and the excitation
spectrum of the system.

III. IMPLEMENTATION OF THE SELF-CONSISTENT
GW METHOD

In this section, we describe the full-GW approach in the
Matsubara-time domain with the diagonal approximation,
which has been implemented in the modified version of the
ELK FP-LAPW package [42,43]. The approach is essentially
similar to the one proposed by Ku and Eguiluz [22], but with
more efficient computational schemes. In particular, (i) we
have employed the more efficient uniform power mesh (UPM)
in the Matsubara-time domain as proposed by Stan et al. [44],
(ii) we have adopted the CPE for analytic continuation in
conjunction with our full-GW method, and (iii) full crystal
symmetry has been taken into account to significantly reduce
the computational load. We briefly summarize these improve-
ments in the subsections below.

A. Matsubara-time sampling

The Green’s function G in the Matsubara-time domain
varies smoothly in the range 0 � τ � β and does not have
any singularity points; however, it varies rapidly near τ = 0
and β. To capture this behavior without losing computational
efficiency, we employ the UPM to sample the τ axis on the grid
{τ0 = 0,τ1,τ2, . . . ,τM = β} as proposed by Stan et al. [44],
which is a modified version of the original one by Ku and
Eguiluz [22]. The UPM grid can be characterized by a pair of
integers (p, m) as well as the length of the interval β, in which p

is the number of nonuniform subintervals generated between 0
and β with 2m − 1 evenly distributed grid points inside each of
these sub-intervals. A UPM mesh with given (p, m) results in
2pm + 1 grid points (including the endpoints) in the interval.
In this scheme, the grid density increases for values of τ closer
to the endpoints in order to capture the varying behavior of
G. Using this scheme, explicit evaluation of quantities such
as the self-energy and Green’s function, which is normally
computationally expensive, now only requires a coarse UPM
grid. Thus, implementation of this grid significantly reduces
the computational effort. For τ domain integrals that require
knowledge of the integrand on a dense uniform τ grid, e.g.,
solving the Dyson equation, a higher-order interpolation such
as cubic spline can be subsequently applied.

B. Scheme for full-GW in Matsubara-time domain

In this work, we expand and compute the Green’s function
G and self-energy � using the K-S basis ({�nk(r)} in spinor
form, i.e. �nk(r) = [ψ↑

nk(r),ψ↓
nk(r)]), whereas we evaluate the

polarization function P and the screened Coulomb potential W
in reciprocal space ({G}). We also adopt the diagonal approx-

imation such that � and G become approximately diagonal in
the K-S basis, significantly reducing computational effort. This
approximation has been shown to provide reasonable results
for a variety of systems [13,26,29]. A direct generalization to
include off-diagonal elements of �, i.e., removing the diagonal
approximation, will be completed in the future. The full-GW

approach is outlined below.

1. Green’s function in the reference K-S system G0

As a first step in full-GW , we construct the Green’s function
in the reference K-S system (G0):

G0
j (k|τ ) = − exp(−εjkτ )[1 − nF (εjk)], 0 � τ � β (9)

where {εjk} are the K-S eigenenergies measured from the
chemical potential μ of the system, nF = [exp(βεjk) + 1]−1

is the Fermi-Dirac distribution, and k is a wave vector. In the
zero-temperature limit, the results for a system with a nonzero
band gap are insensitive to the choice of μ provided that it is
placed inside the gap.

2. Irreducible polarization

The irreducible polarization P in the reciprocal space {G}
can be obtained via Fourier transformations in Eq. (8) that
reads,

PGG′ (q|τ ) = 1

�

∫
dr

∫
dr′e−i(q+G)·rP (r,r′|τ )ei(q+G′)·r′

,

(10)

where � is the volume of the unit cell, and q falling within the
first Brillouin zone (BZ). Using the relation between P and
G in real space via Eq. (8), and by transforming the Green’s
function from the K-S basis to real space,

G(r,r′|τ ) =
BZ∑
k

∑
j,σ

ψσ
jk(r)Gj (k|τ )[ψσ

jk(r′)]∗, (11)

it is straight-forward to show that the irreducible polarization
in the reciprocal space can be expressed as follows,

PGG′(q|τ ) = 1

�Nk

BZ∑
k

∑
j1,j2

Mk
j2j1

(G,q)

×Qj1j2 (k,q|τ )
[
Mk

j2j1
(G′,q)

]∗
, (12)

Qj1j2 (k,q|τ ) = Gj1 (k + q|τ )Gj2 (k| − τ ),
(13)

Mk
nm(G,q) =

∑
σ

∫
dr

[
ψσ

nk(r)
]∗

e−i(q+G)·rψσ
mk+q(r).

Here, j1 and j2 are dummy band indices that run through both
valence and conduction bands, σ is the dummy spin index, q
is a reciprocal vector, and G is a reciprocal lattice vector. It is
clear that the irreducible polarization P at any two distinct τ1

and τ2 in [0, β] are decoupled. Therefore, parallelization over
τ can be performed efficiently when P is evaluated.

3. Screened Coulomb potential

The screened Coulomb potential (W ) can be computed
once P is determined. Instead of directly solving for W ,
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during which the emergence of the Dirac delta function δ(τ )
(see Eq. (7)) may lead to numerical instability, we work
with W̃ (τ ) ≡ W (τ ) − vδ(τ ) (only τ dependence is indicated
for simplicity). This formulation yields a correlation self-
energy, �c(τ ) = −G(τ ) · W̃ (τ ), and exchange self-energy,
�x(τ ) = −G(τ )v · δ(τ ), such that �xc(τ ) = �x(τ ) + �c(τ ).
In reciprocal space and Matsubara-time domain, W̃ obeys the
following Dyson equation

W̃GG′(q|τ ) =
∑
G2

⎡
⎣∑

G1

vGG1 (q)PG1G2 (q|τ )

⎤
⎦vG2G′(q)

+
∫ β

0
dτ ′ ∑

G2

⎡
⎣∑

G1

vGG1 (q)PG1G2 (q|τ − τ ′)

⎤
⎦

× W̃G2G′(q|τ ′), (14)

where vGG′(q) = 4πδGG′/|q + G|2 is the Fourier transform of
the bare Coulomb potential. We follow the algorithm proposed
by Stan et al. [44] to discretize the τ -axis using the generated
UPM grid. The above equation can then be re-arranged to form
a linear matrix equation that reads

M∑
r=0

∑
G2

[
δGG2δp,r − AGG2 (q|τ (p) − τ (r))�τ (r)

]
W̃G2G′(q|τ (r))

=
∑
G2

AGG2 (q|τ (p))vG2G′(q),

AGG2 (q|τ ) ≡
∑
G1

vGG1 (q)PG1G2 (q|τ ). (15)

Here, the increments �τ are positive, with �τ (i) = (τ i+1 −
τ i−1)/2 for 1 � i � M − 1. At the endpoints, �τ (0) = (τ 1 −
τ 0)/2 and �τ (M) = (τM − τM−1)/2.

4. Evaluating the self-energy

With W̃ (τ ) and G(τ ) in hand, the correlation self-energy
(�) can be evaluated as

�c
n(k|τ ) = − 1

�Nk

BZ∑
q

∑
GG′

∑
j

[
M

k−q
jn (G,q)

]∗

×OGG′
j (k,q|τ )Mk−q

jn (G′,q),

OGG′
j (k − q|τ ) = Gj (k − q|τ )W̃ (q|τ ). (16)

On the other hand, the exchange self-energy �x is evaluated
in real-space due to the slow convergence of �x in reciprocal
space [11],

�x
nk = −

∑
k′∈BZ

occ∑
m

∫
dr

∑
σ

[
ψσ

nk(r)
]∗

ψσ
mk′ (r)

×
∫

dr′
∑

σ ′
[
ψσ ′

mk′(r′)
]∗

ψσ ′
nk(r′)

|r − r′| fmk′ , (17)

where fjk = Gj (k|0−) is the occupation number of the K-S
eigenfunction �jk(r). Similarly, the Hartree potential is

expressed as

�H
nk =

∑
σ

∫
dr

∣∣ψσ
nk(r)

∣∣2

×
∫

dr′
∑

k′∈BZ

∑
σ ′,m

∣∣ψσ ′
mk′ (r′)

∣∣2

|r − r′| fmk′ . (18)

5. Dressed Green’s function

During the full-GW calculation, the Green’s function (G) is
updated in each iteration using the newly obtained self-energy
� in the Dyson equation, which reads

GN
j (k|τ ) = G0

j (k|τ ) +
∫ β

0
dτ2Zjk(τ,τ2)GN

j (k|τ2), (19)

Zjk(τ,τ2) = Zx
jk(τ,τ2) + Zc

jk(τ,τ2), (20)

Zx
jk(τ,τ2) = G0

j (k|τ − τ2)
[
�x

N,j (k) + �H
N,j (k) − �0,j (k)

]
,

(21)

Zc
jk(τ,τ2) =

∫ β

0
dτ1G

0
j (k|τ − τ1) · �c

N,j (k|τ1 − τ2). (22)

The integrals along the τ axis in Eqs. (19) and (22) may
have substantial numerical errors when performed on the UPM
mesh that becomes coarse farther away from the end points of
0 � τ � β. To overcome this issue, a cubic spline interpolation
is applied to the Green’s function and self-energy elements
between two adjacent τ grid points, in which the increment
�τ in the resulting dense uniform τ grid is selected as τ1 − τ0.
This is also the smallest �τ in the UPM mesh. Then the Dyson
equation is solved on the generated, denser uniform τ mesh.
Similar to the algorithm for W̃ as proposed by Stan et al. [44],
the Dyson equation for G along τ axis can be rearranged to
form a linear matrix equation:

N∑
r=1

[δp,r − �τ (r)Zjk(τ (p),τ (r))]GN
j (k|τ (r)) = G0

j (k|τ (p)).

(23)

During the full-GW calculation, we repeat the steps
mentioned above in each iteration using the newly obtained
Green’s function G, as indicated in Eqs. (12), (15)–(18),
and (21)–(23). We solve for the self-energy and the Green’s
function in the Matsubara-time domain self-consistently until
any given accuracy is reached. Note that this corresponds
to the single-shot G0W0 if the self-consistent calculation is
terminated at the first iteration. The approximated calculation
known as GW0 can also be performed if the screened Coulomb
potential W is kept constant after the first iteration, whereas G

is updated during the self-consistent loop.

6. Analytic continuation

To obtain quantities that can be measured in experiments,
such as the excitation spectrum, knowledge of G and �

in the real-frequency domain is required. This is achieved
by a two-step procedure performed after calculating the
converged self-energy in the Matsubara-time domain [�xc(τ )].
First, a Fourier transformation from the Matsubara-time to
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Matsubara-frequency domain is employed. For a given band
index j and k, this reads

�xc
j (k|iωn) =

∫ β

0
dτ eiωnτ�xc

j (k|τ ), (24)

where ωn = (2n + 1)π/β is the Matsubara frequency with n

being an integer. We use a cubic spline interpolation of the
UPM grid for the accurate evaluation of the integral. Second,
we implement analytic continuation using the CPE method
proposed by Staar et al. [41] to yield the self-energy in the
real-frequency domain [�xc(ω + iη)]. Unlike the commonly
used Padé approximation [40], where the self-energy elements
are simply expanded as polynomials, the CPE takes advantage
of the fact that the self-energy in the upper complex plane (z)
can be expressed as

�xc
j (k,z) = 1

2π

∫ +∞

−∞
dω

Im
[
�xc

j (k,ω + iη)
]

ω − z
, (25)

Im
[
�xc

j (k,ω + iη)
]

< 0, (26)

where η is a positive infinitesimal and Eq. (26) arises
from causality. For each j and k, Im �xc

j (k|ω + iη) can be
expanded as a set of piecewise linear functions of ω with
undetermined coefficients {anj (k)}. This leads to �xc

j (k,z) =∑
m amj (k)�mj,k(z) where �mj,k(z) is some analytic function

defined in the upper complex plane z. With the set of computed
elements {�̃xc

j (k|iωm)} in hand and Eq. (26) as the constraint,
for each given j and k, {anj (k)} are then determined by
minimizing the norm function � defined as

�j (k) =
M∑

m=0

∣∣�̃xc
j (k|iωm) − �xc

j (k|iωm)
∣∣2

, (27)

with M being the number of positive Matsubara frequencies.
Given the fitted �xc

j (k|ω), for each j and k, the Green’s func-
tion associated with the interacting system can be determined
using

Gj (k|ω) = 1[
G0

j (k|ω)−1 − �xc
j (k|ω) − �H

j (k)
] . (28)

The quasiparticle energies, and hence the electronic band gap,
can be directly obtained from the spectral function Ajk(ω) =
− 1

π
Im[Gjk(ω)] for given j and k.

C. Use of crystal symmetry for computational speedup

Calculating the elements of �c(τ ) can be computationally
expensive as it involves the evaluation of Eqs. (12), (13), (15),
and (16). Such computational effort can be considerably
reduced using crystal symmetry to decrease the number of
required operations. The allowed crystal symmetry operations
are those that leave the Hamiltonian invariant. Using these
operations, reciprocal vectors in the first BZ {kBZ} are
decomposed to a number of subsets. The reciprocal vectors in
each of these subsets are related via the action of the symmetry
operations. Therefore, the first BZ can be represented using a
reduced set of k vectors that form the irreducible BZ (IBZ),
denoted as {kIBZ}.

Suppose Su ≡ {(Ri |ti),i = 1, . . . ,Nu} is the set of symme-
try operations in which R is a 3 × 3 rotation matrix and t the

translation vector in real space. The application of a given
symmetry operation, Bi = (Ri |ti), on the real-space vector r
and reciprocal vector in IBZ lead respectively to

Bir = Rir + ti , (29)

kBZ = BikIBZ = RikIBZ + GRi , (30)

where GRi is the reciprocal lattice vector that brings RikIBZ

back to the first BZ. For a given qBZ that is associated with
qIBZ via R and G using Eq. (30), it is straightforward to prove
that the plane-wave matrix M in Eq. (13), the irreducible
polarization P (τ ) in Eq. (12), and W̃ (τ ) in Eq. (15) obey
the following relations:

Mk
nm(G,qBZ) = MR−1k

nm [G1,qIBZ]

× exp[−i(RqIBZ + GR + G) · t], (31)

PGG′(qBZ|τ ) = PG1G′
1
(qIBZ|τ ) exp[−i(G − G′) · t], (32)

W̃GG′(qBZ|τ ) = W̃G1G′
1
(qIBZ|τ ) exp[−i(G − G′) · t], (33)

where G1 = R−1(G + GR) and G′
1 = R−1(G′ + GR). It fol-

lows that the correlation self-energy can be rearranged as

�c
n(k|τ ) = − 1

�Nk

∑
qIBZ

∑
R

∑
GG′

W̃GG′(qIBZ|τ )

×
∑

j

[
M

R−1k−qIBZ
jn (G,qIBZ)

]∗

×Gj (R−1k − qIBZ|τ )MR−1k−qIBZ
jn (G′,qIBZ). (34)

Here, R−1k − qIBZ is assumed to fall in the set of {kBZ}
vectors. It is thus sufficient to compute the summands in the
above equation for the sets of {qIBZ} and {kBZ} vectors, which
leads to significant reduction to computational time. Similarly,
the computation of the elements of �x can be sped up with
the use of symmetry operations for k. According to Eq. (17),
in particular, k associated with �x can be confined to the IBZ,
whereas k′ runs over the first BZ.

IV. COMPUTATIONAL DETAILS

The full-GW scheme has been applied to calculate the elec-
tronic band gaps of 18 diverse semiconductors and insulators.
We have adopted the experimental lattice parameters of 5.43 Å
(Si), 5.658 Å (Ge), 5.66 Å (GaAs), 4.35 Å (SiC), 5.91 Å
(CaSe), 3.57 Å (diamond), 5.64 Å (NaCl), 4.21 Å (MgO),
3.62 Å (cubic BN), 4.01 Å (LiF), 3.91 Å (cubic SrTiO3),
4.27 Å (Cu2O), 4.52 Å (GaN), 4.58 Å (zinc-blende ZnO),
5.42 Å (zinc-blende ZnS), 5.67 Å (zinc-blende ZnSe), 6.05 Å
(zinc-blende CdSe), and 5.82 Å (zinc-blende CdS) throughout
this work. All DFT calculations have been carried out using the
modified version of the ELK FP-LAPW package [42,43]. The
augmented plane wave + local orbitals (APW+lo) basis [45]
with a single second-order local orbital per core or semicore
state has been adopted. The local density approximation
(LDA) [46] has been utilized for the exchange-correlation
functionals. When expanding the interstitial potential and
charge density, the maximum length of the reciprocal lattice
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vector |G| has been chosen as 12 a.u. The angular momentum
has been truncated as �max = 8 for the expansions of muffin-tin
charge density, potential, and wave function. In the expansion
of the wave function, |G + k|max = 8.0/Ravg has been used,
where Ravg is the average of the muffin-tin radii (RMT ) in each
system. Linearization energy (E�,ν), which is associated with
each radial function labeled with ν, is chosen at the center of
the corresponding band with �-like character. The first BZ has
been sampled by a 4 × 4 × 4 k mesh for all the systems except
for diamond, where a 6 × 6 × 6 k mesh has been used instead.
All the aforementioned parameters have been carefully tested
to achieve total energy convergence.

In the GW calculations, the cutoff for |G + q| used in
Eqs. (12) and (16) has been set 4.0 a.u. for all the systems
except for the systems of ZnO, diamond, and cubic BN (c-BN),
where a cutoff of 5.0 a.u. has been selected instead. These
length cutoffs correspond to a kinetic-energy cutoff of 16 Ry
and 25 Ry, respectively. The Matsubara-time (τ ) domain has
been sampled with a (9,5) UPM mesh, which consists of
91 grid points between 0 and β associated with an artificial
temperature of 300 K. A minimum of 150 conduction bands
have been included for the band summations in Eqs. (12)
and (16) for the systems studied to ensure the convergence
of the band gaps. In the GW0 and full-GW calculations,
states with an energy falling in the energy window of ±15 eV
around the DFT-LDA Fermi energy have been updated, and
the number of iterations has been set to 4. In the transformation
indicated in Eq. (24), a set of 128 positive Matsubara
frequencies has been adopted, which is subsequently used
in analytic continuation schemes of both the CPE and Padé
approximation. For comparison, we have also performed
G0W0 calculations using the plasmon-pole approximation
(PPA), in which we have selected the model proposed by
Godby and Needs [47] that has proven to be in consistent
agreement with numerical integration method [11,48]. All the
above parameters are carefully examined to ensure the band
gap values converged to within 50 meV.

V. RESULTS AND DISCUSSION

A. Benchmarking Si, Ge, and GaAs

We first apply the Matsubara-time GW method to study the
electronic properties of bulk silicon (Si), a prototypical system
that has been studied as a benchmark for previous GW code
developments. Figures 1(a) and 1(b) illustrate the Matsubara-
time Green’s functions [G(τ )] of the band-edge states at �v

and Xc at different levels of GW approximations, where
Kv (Kc) denotes the highest occupied (lowest unoccupied)
single-particle state at K . G(τ ) approaches −1 and 0 at each
end of the τ axis. For the case of the valence (conduction)
band state in a semiconductor/insulator, G(β−) → −1 (0)
to account for the occupation number of that state. It can
be seen that, in the Matsubara-time domain, full-GW leads
to substantial changes of G compared to G0W0. It is worth
pointing out that the dressed G at �v upon full-GW becomes
very similar to that from the LDA, i.e., G0. On the other hand,
the full-GW leads to more deviation of G at Xc from G0,
suggesting that GW corrections to the conduction bands are
likely more pronounced than to the valence bands. Figure 1(c)

(a)

(b)

(c)

FIG. 1. Single-particle Green’s functions Gnk at the (a) valence
band maximum (�v) and (b) conduction band minimum (Xc) of
bulk Si in the Matsubara-time domain. (c) Single-particle Green’s
function of bulk Si in the Matsubara-frequency domain from full-GW

calculations.

shows the typical Green’s function in Matsubara-frequency
domain (both real and imaginary parts) for the band edge
states of bulk Si from full-GW calculations.

The calculated band gaps for bulk Si are tabulated in Table I.
When the non-self-consistent G0W0 calculation is performed,
the direct band gap at � and the indirect band gap from �

to X are, respectively, 3.40 and 1.38 eV. These values are
in relatively good agreement with experimental values [49].
Compared to those obtained from plane-wave pseudopotential
(PP) based and/or all-electron G0W0, our computed G0W0

direct band gap and the indirect band gap are 0.1 and 0.2 eV
higher, respectively. Moreover, we notice that band gap values
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TABLE I. Band gap values of bulk Si for various levels of
approximation. The values in parentheses are computed using the
Padé approximation. All values are in eV.

�v − �c �v − Xc

This work
LDA 2.52 0.58
G0W0 3.40 (3.38) 1.38 (1.36)
GW0 3.69 (3.68) 1.59 (1.58)
full-GW 3.41 (3.57) 1.44 (1.44)

Plane-wave PP, G0W0

Tiago et al.a 3.24 1.18
All-electron, G0W0

Hamada et al.b 3.30 1.14
Kotani et al.c 3.13
Ku et al.d 3.12
Gomez-Abal et al.e 1.15

All-electron, full-GW
Ku et al.d 3.48

Experimentf 3.35 1.25

aReference [50].
bReference [51].
cReference [52].
dReference [22].
eReference [29].
fReference [49].

are further increased by 0.2 eV upon implementing the
partially self-consistent, GW0 calculation. However, fully self-
consistent GW brings the direct and indirect band gap values
close to those calculated within the G0W0 approximation. Our

full-GW results are also comparable with the previous study
by Ku et al., which uses a similar implementation to the present
method. We also compare the results at different levels of GW

using either the CPE method or Padé approximation. Band
gap results using the Padé approximation generally agree well
with those using CPE analytic continuation within 0.02 eV.
However, the Si direct band gap value predicted by the Padé
approximation is 0.16 eV higher than the CPE value, and
is 0.09 eV higher than the value by Ku et al. This also
shows that CPE results are generally in better agreement with
experiment. In addition, all levels of GW calculations, from
G0W0 to full-GW , overestimate the experimental indirect band
gap value by 0.13 to 0.34 eV. The overestimation arising by
full-GW also agrees with the previous GW study [13].

Note that the important effect of core electrons on the
valence-core interaction, and hence exchange self-energy, has
been discussed for bulk Si in the previous study [22]. We have
also evaluated the exchange self-energy elements of band edge
states �v and Xc with and without the core electrons. The
difference in self-energy can be as large as 2 eV, in line with
values given in that study.

We have also compared the spectral functions [Ajk(ω)] of
the band edge states �v and Xc of bulk Si from CPE to those
obtained from the Padé approximation, as shown in Figs. 2(a)
and 2(b) for the cases of G0W0 and full-GW , respectively. In
the case of Si, results from these two approaches of analytic
continuation are very similar in terms of peak position as well
as the broadening of peaks that is related to the lifetime of the
associated quasiparticle states.

Finally, we demonstrate the computational advantage of
the current implementation by evaluating silicon’s G0W0 band
gaps with a similar parameter set but using a direct numerical

(a) (b)

(c) (d)

FIG. 2. Spectral functions of band edge states �v and Xc of bulk Si from (a) G0W0 and (b) full-GW . Spectral functions of band edge states
Rv and �c of SrTiO3 from (c) G0W0 and (d) full-GW .
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TABLE II. Band gap values of bulk Ge for various levels of
approximation. The values in parentheses are computed using the
Padé approximation. All values are in eV.

�v − �c �v − Lc �v − Xc

This work
LDA −0.19 0.03 0.64
G0W0 0.49 (0.51) 0.58 (0.59) 0.65 (0.70)
GW0 1.09 (1.10) 0.85 (0.86) 1.35 (1.33)
full-GW 1.11 (1.11) 0.85 (0.85) 1.30 (1.30)

Plane-wave PP, G0W0

Tiago et al.a 0.85 0.65 0.98
All-electron, G0W0

Kotani et al.b 0.89 0.57
Ku et al.c 1.11 0.51 0.49

All-electron, full-GW
Ku et al.c 1.51 0.79 0.71

Experimentd 0.90 0.74 1.30

aReference [50].
bReference [52].
cReference [22].
dReference [49].

integration method in the real-frequency domain. We find
that more than 1000 frequency points are needed to achieve
the converged results. Since the computational load at each
frequency or Matsubara-time grid point is similar, it is clear
that significant computational speedup can be accomplished
when GW calculation is performed in the Matsubara-time
domain (91 τ points used in this work).

Table II summarizes the band gaps at different levels of
theory for bulk Ge. The minimal, indirect band gap of bulk
Ge is between �v and Lc according to experiment [49]. It is
clear that both LDA and G0W0 predict a minimal band gap as
direct at �, inconsistent with experiment. It is only when the
self-consistency is considered in GW (either GW0 or full-GW )
that the correct indirect band gap can be predicted. Note that
the results from full-GW agree well with experimental data,
and also very close to those from GW0, regardless of the CPE
or Padé approximation being adopted. It is worth pointing
out that there is a substantial difference between our results
and those by Ku et al., with a band gap difference as large
as 0.5 eV. We believe that such discrepancy is due mainly to
the insufficient amount of empty bands used in their study, as
pointed out in the previous study by Tiago et al. [50].

Gallium arsenide is another common compound we use as a
benchmark, with computed band gap results shown in Table III.
This compound has also been extensively investigated, which
has a direct electronic band gap at �. Our calculations show
that G0W0 results in the best agreement with experiment [53],
and also agree with previous all-electron G0W0 studies with a
∼0.2 eV difference. Moreover, both full-GW and GW0 lead
to larger band gap values compared to the G0W0 results, and
are overestimated by around 0.3 eV compared to experiment.
Such trends regarding G0W0 and full-GW are also in line with
previous GW studies within the plane-wave PAW potential
framework [13]. Similar to the aforementioned compounds
investigated, the CPE and Padé approximation lead to results
that are very close to each other. Our full-GW results presented

TABLE III. Band gap values of bulk GaAs for various levels of
approximation. The values in parentheses are computed using the
Padé approximation. All values are in eV.

�v − �c �v − Lc �v − Xc

This work
LDA 0.23 0.81 1.31
G0W0 1.48 (1.47) 1.62 (1.62) 1.98 (1.94)
GW0 1.82 (1.83) 2.00 (2.00) 2.31 (2.30)
full-GW 1.80 (1.81) 1.95 (1.96) 2.23 (2.25)

Plane-wave PP, G0W0

Tiago et al.a 1.38 1.65 1.83
All-electron, G0W0

Kotani et al.b 1.20 1.40 1.46
Gomez-Abal et al.c 1.29
Friedrich et al.d

Experimente 1.52 1.82 1.98

aReference [50].
bReference [52].
cReference [29].
dReference [24].
eReference [53].

here also serve as important predictions for this level of theory
since there are no previous all-electron-based, self-consistent
GW results for GaAs.

In general, G0W0 accurately predicts Si and GaAs band
gap values but predicts inaccurate bulk Ge band gap values
compared to experiment. On the other hand, full-GW band
gaps agree fairly well with experiment across all three
elements, and GW0 generally worsens the band gaps compared
to full-GW .

B. Band gap calculations for other
semiconductors and insulators

Having demonstrated the accuracy of full-GW calculations
for predicting electronic band gaps in benchmark materials,
we next report results for 18 semiconductors/insulators that
have band gaps covering a wide range of values from less
than 1 eV to over 10 eV. The calculated minimal band gaps
are summarized in Table IV, comparing all levels of approx-
imation, and also in Fig. 3, which visualizes LDA, G0W0,
GW0, and full-GW results. As expected, the LDA band gaps
are always severely underestimated compared to experimental
values. Upon GW corrections, the electronic band gaps for
all the systems studied are substantially improved. In the
following, we discuss the effects of G0W0 and full-GW band
gap corrections by categorizing the compounds studied into
three groups: (1) simple s-p electron systems involving Si,
SiC, C, BN, LiF, NaCl, and MgO; (2) systems with deep
d electron levels relative to the valence band maximum,
including Ge, GaAs, GaN, CaSe, CdS, CdSe, ZnO, ZnS, and
ZnSe; and (3) systems with relatively shallow d electron levels,
including SrTiO3 and Cu2O.

Concerning simple s-p electron systems, the G0W0 cor-
rected band gaps are in very good agreement with experimental
data, with a relative band gap error of ±10% for most
compounds with the exception of diamond, for which G0W0
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TABLE IV. Electronic band gap (in eV) of various semiconductors and insulators calculated by DFT-LDA, different levels of Matsubara-time
GW (G0W0, GW0, and full-GW ), and PPA-G0W0. Values in the parentheses are obtained using the Padé approximation. The experimental
values (Expt.) are also given for comparison.

LDA G0W0 GW0 full-GW PPA-G0W0 Expt.

Si 0.58 1.38 (1.36) 1.59 (1.58) 1.44 (1.44) 1.28 1.25a

Ge 0.03 0.58 (0.59) 0.85 (0.86) 0.85 (0.85) 0.71 0.74a

GaAs 0.24 1.48 (1.47) 1.82 (1.83) 1.80 (1.81) 1.51 1.52b

SiC 1.27 2.44 (2.45) 2.90 (2.90) 2.64 (2.56) 2.30 2.40a

CaSe 2.00 3.89 (3.94) 4.60 (4.64) 4.35 (4.34) 3.89 3.85c

C 4.14 6.15 (6.15) 6.42 (6.43) 6.10 (6.11) 6.09 5.48a

NaCl 4.74 8.09 (8.11) 9.00 (9.02) 8.27 (8.28) 8.11 8.5d

MgO 4.65 7.79 (7.78) 8.74 (8.74) 7.94 (7.94) 7.75 7.83e

BN 4.34 6.71 (6.73) 7.16 (7.18) 7.10 (7.11) 6.58 6.1–6.4f

LiF 8.94 14.51 (14.54) 15.78 (15.81) 14.45 (14.47) 14.55 14.20g

SrTiO3 1.75 3.58 (4.08) 7.01 (7.13) 6.87 (7.22) 3.86 3.25h

Cu2O 0.52 1.61 (1.54) 2.16 (2.17) 2.00 (2.02) 1.59 2.17i

GaN 1.70 3.01 (3.05) 3.61 (3.66) 3.36 (3.38) 3.03 3.27j

ZnO 0.60 2.31 (2.35) 3.69 (3.71) 3.53 (3.56) 2.32 3.44k

ZnS 1.80 3.46 (3.43) 4.06 (4.09) 3.92 (3.85) 3.43 3.91k

ZnSe 1.01 2.43 (2.48) 3.03 (3.09) 2.94 (2.96) 2.50 2.95a

CdS 0.86 2.01 (2.03) 2.63 (2.66) 2.49 (2.50) 2.06 2.50a

CdSe 0.34 1.42 (1.51) 1.97 (1.98) 1.92 (1.93) 1.46 1.83a

aReference [49].
bReference [53].
cReference [54].
dReference [55].
eReference [56].
fReference [57].
gReference [58].
hReference [59].
iReference [60].
jReference [61].
kReference [62].

overestimates the experimental gap by 0.6 eV (12%). This
may be attributed to the RPA that leads to more severe
underestimation of the screening effect in diamond, as pointed
out in a previous study [13]. Results using PPA are remark-
ably close to general G0W0 calculations, differing by only
0.1 eV or less. Our G0W0 band gaps are all comparable to
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FIG. 3. Computed electronic band gap at DFT-LDA as well as
GW levels versus the experimental counterpart for all the compounds
studied in this work except for Ge. A logarithmic scale is adopted for
both axes.

previous all-electron G0W0 calculations [24,29]. When full
self-consistency is taken into account, our calculations show
that full-GW may further overestimate the electronic band gap
due probably to the underestimated screening effect by RPA,
in agreement with previous findings [13,65]. The exceptions
are diamond and the ionic crystals NaCl and LiF, for which
the inclusion of self-consistency tends to improve results.
Furthermore, the band gaps at different levels of GW have also
been computed based on the CPE and Padé approximation.
According to our results, they are in remarkable agreement
with each other, with a typical difference of 0.1 eV or less in
all the cases. This also confirms the applicability of the Padé
approximation and the analytic continuation approach for s-p
electron systems.

It is worth pointing out that the band gaps from partially
self-consistent GW0 are considerably higher than full-GW

ones, which contrasts previous findings [13,66]. This different
trend is likely due to differences in method implementa-
tion. Specifically, the Green’s function under the diagonal
approximation is fully updated during the GW0 iteration in
our approach. In contrast, previous GW0 studies have only
shifted the quasiparticle energies to update the presumedly
diagonal Green’s function [13], or within the Hermitian
approximation to the full self-energy [66]. Such a different
trend may also relate to the diagonal approximation for the
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TABLE V. The average positions of cation outermost filled d

bands at � (in eV) for GaAs, GaN, ZnO, ZnS, ZnSe, CdS, and CdSe
with zinc-blende structure, as calculated using DFT-LDA, different
levels of Matsubara-time GW (G0W0, GW0, and full-GW ) along with
CPE. The experimental values (Expt.) are also given for comparison.

LDA G0W0 GW0 full-GW Expt.

GaAs −14.91 −16.79 −19.37 −19.42 −(18.7–18.82)a

GaN −13.62 −16.49 −18.54 −18.53 −17.0b

ZnO −5.30 −7.21 −7.71 −7.64 −(7.5–8.81)a

ZnS −6.30 −7.46 −9.31 −9.29 −9.03a

ZnSe −6.55 −7.68 −9.59 −9.57 −(8.9–9.2)a

CdS −7.62 −8.56 −9.71 −9.70 −(9.2–10.0)a

CdSe −7.86 −8.70 −9.91 −9.91 −(9.9–10.7)a

aReference [63].
bReference [64].

Green’s function in our approach. Compared to our full-GW

results, the further overestimation of GW0 band gaps may be
attributed to the further underestimation of screening due to
the screened potential (W ), which is not updated iteratively
within GW0. This also highlights the importance of the full
self-consistency.

For systems with deep 3d electrons, we have observed
that G0W0 corrected band gaps are typically still underesti-
mated. Fully self-consistent GW calculations are necessary
to achieve better agreement with experimental data. The
exception involves CaSe and GaAs, in which full-GW leads to
overestimated band gaps by about 0.3–0.5 eV, corresponding
to a relative difference of more than 12%. Compared to
full-GW , GW0 results in about 5% larger band gap values
in the systems studied. The difference is smaller than in the
case of s-p electron systems. Moreover, in the cases of ZnO
and Cu2O, it is clear that band gaps resulting from G0W0 are
substantially underestimated by at least 0.5 eV compared to
the experimental values. In particular, the G0W0 band gap of
ZnO is 1 eV lower than the experimental data, agreeing well
with previously underestimated values [13]. Upon full-GW ,
the band gaps of these systems are significantly improved such
that they are within 0.2 eV of experimental results.

To study the systems with deep 3d electrons in more
detail, we have computed the energies of the outermost cation
filled d shell at � for GaAs, GaN, ZnO, ZnS, ZnSe, CdS,
and CdSe (e.g., 4d and 3d for Cd and Zn, respectively).
They are estimated as the average of all the corresponding
d band energies, and are shown in Table V. For Cu2O and
SrTiO3, given that the 3d bands are substantially hybridized
and broadened, a simple averaging cannot give a clear picture
so we will study them in more depth in a separate study. It is
clear that the d band levels predicted by DFT-LDA are offset by
at least 2 eV compared to the experimental data, as expected.
On the other hand, G0W0 tends to improve the d band levels
of all the systems studied, but the discrepancy can still be as
large as 1 eV in systems such as GaAs and CdSe. Our G0W0

results are in good agreement with the previous all-electron
study [30]. Upon self-consistency, we observe that full-GW

leads to excellent agreement with experiment except for GaN,
in which the deep Ga 3d band energy is substantially below
the experimental value by 1.5 eV. It is worth pointing out

that GW0 leads to remarkably similar results to those from
full-GW across all the systems.

Electronic structure predictions for the perovskite, SrTiO3,
provide our most inaccurate and intriguing results. Our G0W0

approach overestimates the band gap by about 0.3 eV, which
is also consistent with the studies by Friedrich et al. [24] and
Kang et al. [67], and both full-GW and GW0 worsen the band
gap prediction further with a result of more than 6.8 eV, much
higher than the experimental value of 3.25 eV. We have further
varied parameters such as the number of conduction bands and
the cutoff of reciprocal lattice vectors, and the corresponding
results only slightly change.

A previous GW study by Cappellini et al. also showed
that the minimal band gap of SrTiO3 can be severely over-
estimated even at the level of G0W0 (5.07 eV) [68], Such an
overestimation may be attributed to the improper description of
local field effects by their model dielectric function. Moreover,
our full-GW band gap of SrTiO3 is indeed in line with the
previous findings, in which the band gap is overestimated
by around 0.9 eV in all-electron quasiparticle self-consistent
GW [69], whereas such overestimation becomes 1.8 eV in
full-GW with the diagonal approximation in the plane-wave
PAW potential framework [67]. Such a severe overestimation
of the calculated full-GW band gap is thus likely due to the
poor accuracy of the diagonal approximation adopted for G,
which leads to unchanged charge and spin densities during
full-GW . For systems with strongly correlated 3d electrons
near the band edge, such as SrTiO3, the quasiparticle wave
functions may substantially deviate from K-S wave functions,
resulting in considerable change in charge density and errors
to the electronic band gap. Future work will include an
investigation into how the diagonal approximation affects
electronic structure predictions of transition metal oxides and
other strongly correlated systems.

Another possibility is the missing electron-hole correlation
effects in RPA [69]. Such effects have proven to be crucial in
conjunction with self-consistency to predict correct electronic
band gaps [65]. Further investigation excluding the diagonal
approximation and/or including screening effects beyond RPA
is necessary and will be conducted in the future. Similar to the
other two types of systems, the CPE and Padé approximation
lead to similar band gaps differing within 0.05 eV. The
only exception is SrTiO3, for which the band gap from both
approaches can differ by as much as 0.5 eV, as indicated in
Table IV and shown via the spectral functions in Figs. 2(c)
and 2(d). Regarding the spectral functions of band edge
states, difference in weight of spectral functions indicates
that the estimated lifetime of the quasiparticle states may
differ substantially. CPE appears to be the more valid method
for analytic continuation given its general agreement with
experiment for a wide range of systems. Still, the applicability
of the Padé approximation is justified for many systems based
on our calculations.

VI. CONCLUSION

To summarize, we have implemented an efficient
Matsubara-time GW approach in conjunction with CPE, a
newly developed analytic continuation method. The method
has been used in a detailed study of the electronic band
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gaps across 18 semiconductors and/or insulators at the levels
of G0W0, GW0, and full-GW approximations. Benchmark
calculations of silicon’s electronic structure demonstrate the
accuracy and computational speedup of our Matsubara-time
method compared to previously used frequency-domain cal-
culations, indicating nearly an order of magnitude outper-
formance (in speed) of our Matsubara-time method over
traditional frequency-domain GW approaches. Nevertheless,
a systematic evaluation regarding the performance of our
method is required and will be carried out in future work.
Our results demonstrate that, for most of the simple s-p
electron systems, G0W0 leads to reasonable agreement with
experiments, and full-GW tends to overestimate the calculated
band gaps, whereas full-GW is required for more accurate
band gaps in the cases of 3d transition metal chalcogenides.
These findings are in line with the previous GW studies,
likely due to the underestimated screening effects by RPA
during full-GW . We have also found that the band gap of
strongly correlated systems such as SrTiO3 can be substantially
overestimated within the current framework, and off-diagonal

elements in G as well as the electron-hole correlation effects
beyond RPA may need to be included for more accurate results
in those systems. Moreover, we have compared the results from
both the CPE and Padé approximation. In general, CPE results
are more consistently in agreement with experimental data in
a wide range of systems, suggesting the applicability of CPE
for analytic continuation as a standard for GW calculations.
Finally, our calculations of average cation d band energies
suggest that both full-GW and GW0 lead to results in good
agreement with experiment.
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