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Classical and quantum theories of proton disorder in hexagonal water ice
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It has been known since the pioneering work of Bernal, Fowler, and Pauling that common, hexagonal (Ih)
water ice is the archetype of a frustrated material: a proton-bonded network in which protons satisfy strong local
constraints (the “ice rules”) but do not order. While this proton disorder is well established, there is now a growing
body of evidence that quantum effects may also have a role to play in the physics of ice at low temperatures. In
this paper, we use a combination of numerical and analytic techniques to explore the nature of proton correlations
in both classical and quantum models of ice Ih. In the case of classical ice Ih, we find that the ice rules have two,
distinct, consequences for scattering experiments: singular “pinch points,” reflecting a zero-divergence condition
on the uniform polarization of the crystal, and broad, asymmetric features, coming from its staggered polarization.
In the case of the quantum model, we find that the collective quantum tunneling of groups of protons can convert
states obeying the ice rules into a quantum liquid, whose excitations are birefringent, emergent photons. We
make explicit predictions for scattering experiments on both classical and quantum ice Ih, and show how the
quantum theory can explain the “wings” of incoherent inelastic scattering observed in recent neutron scattering
experiments [Bove et al., Phys. Rev. Lett. 103, 165901 (2009)]. These results raise the intriguing possibility that
the protons in ice Ih could form a quantum liquid at low temperatures, in which protons are not merely disordered,
but continually fluctuate between different configurations obeying the ice rules.

DOI: 10.1103/PhysRevB.93.125143

I. INTRODUCTION

We learn as children that matter can exist in three dif-
ferent phases: solid, liquid, and gas. This concept is usually
introduced through the example of water, familiar as a liquid
(water), a gas (steam), and a solid (ice). However, at least as far
as its solid phase is concerned, water is a spectacularly unusual
material. At atmospheric pressure, water molecules freeze into
a structure known as “ice Ih,” illustrated in Fig. 1. Ice Ih is
remarkable in that the oxygen ions (O2−) form an ordered
lattice, while the protons (H+) lack any kind of long-range
order, in flat contradiction with the usual paradigm for solids.

This extraordinary property of water ice was first elucidated
more than 80 years ago by Bernal and Fowler [1]. Bernal
and Fowler argued that ice should be viewed as a molecular
solid, in which distinct water molecules are bound together
by hydrogen bonds. Each water molecule forms four such
hydrogen bonds and, as a result, the proton configurations
obey strong local constraints, commonly referred to as the “ice
rules” [1,2]. The ice rules lead to strong correlations between
protons, but can be satisfied by an exponentially large number
of different proton configurations [2,3]. As a result, the protons
remain disordered, and possess an extensive residual entropy.
This “ice entropy” is observed in experiments on Ih water ice
[4], and persists down to the lowest temperatures measured,
in apparent defiance of the laws of thermodynamics. Eighty
years on, these striking discoveries continue to exert a profound
influence on research into water ice [5] and a wide range of
other materials [6–17].

Recent experiments by Bove et al. [18] suggest a new twist
on the behavior of protons in ice Ih; not only are protons
disordered, but they remain mobile, even at temperatures as

low as 5 K. This might seem surprising since any attempt
to move a proton will lead to a violation of the ice rules,
at considerable cost in energy [5]. This problem is avoided,
however, if the proton dynamics consists of coherent collective
quantum tunneling on hexagonal plaquettes, of the type
illustrated in Fig. 2. This mechanism for proton dynamics in ice
Ih finds support from ab initio calculations [19,20], with recent
results suggesting that, while the high-temperature dynamics
proceeds via single-proton hopping, collective motion around
loops becomes important at low temperatures [20]. And an
analogous correlated tunneling of protons has recently been
observed in an artificial assembly of four water molecules [16].

There are, in fact, many classes of system whose low-
temperature physics is subject to strong local constraints,
similar to those found in water ice. The most celebrated of
these are the magnetic systems known as the “spin ices,” whose
low-temperature spin configurations are in correspondence
with the proton configurations in water ice [6,7,10]. Icelike
physics also arises in models of frustrated charge order [12,13],
proton-bonded (anti)ferroelectrics [14,15,21–25], dense poly-
mer melts [26], and dimer models [27,28]. In these systems,
violations of the ice rules take on the character of fractionalized
charges [13]. This point has attracted particular attention in the
case of the spin ices since these charges behave as effective
magnetic monopoles [29–32]. And, in fact, a direct analogy
may be drawn between these magnetic monopoles and ionic
defects in water ice [29,33,34].

The effect of quantum tunneling, of the type proposed
by Bove et al. [18], has been studied in a range of other
icelike problems, with striking results. Quantum tunneling
has been shown to give rise to a quantum “spin liquid,”
comprising a coherent superposition of an exponentially large
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FIG. 1. Crystal structure of hexagonal (Ih) water ice. Water ice
can be viewed as a frozen configuration of water molecules, satisfying
the Bernal-Fowler “ice rules” [1,2], in which each oxygen (red
sphere) forms two short, covalent bonds, and two long, hydrogen
bonds with neighboring protons (white spheres). Oxygen atoms form
an ordered lattice, belonging to the hexagonal space group P 63/mmc,
with a four-site primitive unit cell. Protons do not show any long-range
order. (a) Structure viewed perpendicular to the hexagonal symmetry
axis (the crystallographic c axis). (b) Structure viewed along the
hexagonal symmetry axis.

number of states obeying the ice rules, in models derived
from spin ice [35–41]. Equivalent quantum liquids have
also been found in three-dimensional quantum dimer models
[42–44]. In both cases, the low-energy excitations of the liquid
are gapped, fractionalized, “charges” and gapless, linearly

FIG. 2. Collective quantum tunneling between different proton
configurations satisfying the ice rules in hexagonal (Ih) water ice.
The crystal structure of ice Ih contains two distinct types of hexagonal
plaquette, each containing six oxygen atoms (red spheres). Tunneling
between different ice configurations is mediated the by correlated
hopping of protons (white spheres) around such a plaquette. Where
protons form an alternating sequence of short (S) and long (L) bonds
(e.g., S-L-S-L...-S-L), it is possible to tunnel to another, degenerate,
ice configuration in which long and short bonds are interchanged
(i.e., L-S-L-S...-L-S) [18–20]. (a) Tunneling on hexagonal plaquette
of “type I” in the plane perpendicular to the hexagonal symmetry
axis. This process has a matrix element g1 in our model for proton
dynamics Hhexagonal

tunneling [Eq. (4)]. (b) Tunneling on hexagonal plaquette
of “type II,” connecting different hexagonal planes. This process has
a matrix element g2.

dispersing, “photons,” in direct correspondence with the theory
of electromagnetism [35,42].

A similar “electromagnetic” scenario has also been dis-
cussed in the context of a simplified model of water ice by
Castro Neto et al. [45]. Finding that quantum fluctuations
drive the protons to order in a two-dimensional model of
water ice [15,46–48], these authors argued, by extension,
that quantum effects in a three-dimensional water ice could
drive a finite-temperature phase transition between a low-
temperature proton-ordered phase, and a high-temperature
proton-disordered phase. Within this scenario, ordered and
disordered phases of protons in hexagonal water ice (ice Ih and
ice XI [5]) would correspond to the confined and deconfined
phases of a compact, frustrated U(1) lattice-gauge theory
[49,50], similar to that proposed in the context of quantum
spin ice [35,37].

In the work which we present here we do not attempt to
establish the conditions under which the protons in hexagonal
water ice order, but instead seek to characterize their decon-
fined, disordered phase. To this end, we develop theories which
describe the proton correlations in both classical and quantum
models of hexagonal (Ih) water ice, making explicit predictions
for scattering experiments.

In the case of classical ice Ih, we find that the ice rules have
two, distinct, consequences for proton correlations, directly
visible in scattering experiments. First, algebraic correlations
of the uniform polarization lead to “pinch points” ( singular
features in scattering) visible in a subset of Brillouin zones.
Second, exponential correlations of the staggered polarization
lead to broad, asymmetric features in a different subset of
Brillouin zones. This analysis provides new insight into diffuse
scattering experiments on ice Ih [51,52], and makes explicit
the differences between ice Ih and spin ice, or (cubic) ice Ic.
It also provides the starting point needed to construct a theory
of ice Ih in the presence of quantum tunneling.

In the case of quantum ice Ih, we find that it is possible to
describe the proton configurations in terms of a lattice-gauge
theory in which the connection with electromagnetism, long
implied by the ice rules, is made explicit. The deconfined,
proton-liquid phase of this theory is shown to support two
types of excitation: gapless, linearly dispersing photons with
birefringent character, and weakly dispersing optical modes,
corresponding to local fluctuations of the electric polarization.
The predictions of this lattice gauge theory are shown to be in
quantitative agreement with the results of variational quantum
Monte Carlo simulations.

Throughout our analysis we will emphasize the ways in
which proton correlations in hexagonal water ice differ from
spin correlations in cubic spin ice, paying particular attention to
the new structure which arises in both the classical continuum
field theory and the quantum lattice-gauge theory.

The remainder of the paper is structured as follows: In
Sec. II, we introduce a model of ice Ih which includes
tunneling between different proton configurations obeying the
“ice rules,” and describe those aspects of the symmetry and
geometry of the ice Ih lattice which are important for our
discussion. In Sec. III, we develop a coarse-grained, classical
field theory describing the correlations of protons in ice Ih, in
the absence of quantum tunneling, and compare this with the
results of an equivalent, lattice-based calculation, developed
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in Appendix C. The two approaches are shown to agree in the
long-wavelength limit. The lattice-based calculation is also
used to make explicit predictions for scattering experiments
on a ice Ih. These are summarized in Fig. 6.

In Sec. IV, we develop a quantum U(1) lattice-gauge
theory describing the correlations of protons in ice Ih, in the
presence of quantum tunneling. We construct the excitations of
this lattice-gauge theory, which include birefringent emergent
photons, and make quantitative predictions for their signature
in inelastic scattering experiments. Key results are summarized
in Figs. 7 and 8. In Sec. V, we discuss our results in the context
of published experiments on Ih water ice. We consider in
particular the long-wavelength features seen in diffuse neutron
scattering, the incoherent inelastic neutron-scattering experi-
ments of Bove et al. [18], and the thermodynamic properties of
ice at low temperatures. We conclude in Sec. VI, with a sum-
mary of our results and a brief discussion of open questions.

Technical aspects of this work, including comparison with
classical and quantum Monte Carlo simulations, are developed
in a series of appendixes. Appendix A provides details of
the ice Ih lattice and of the coordinate system used to
describe it. Appendix B provides details of the derivation of
the classical, continuum field theory introduced in Sec. III.
Appendix C provides details of the microscopic calculation of
the proton-proton correlations in a classical ice Ih, described in
Sec. III. Appendix D provides explicit relationships between
the measurable proton correlations and the correlations of the
fields appearing in our continuum theory. Appendix E provides
details of the quantum U(1) lattice-gauge theory introduced
in Sec. IV. Appendix F provides a comparison between
the analytic predictions for proton correlations described in
Secs. III and IV, with Monte Carlo simulation of both classical
and quantum ice Ih. Appendix G provides the derivation of the
structure factor for inelastic, incoherent neutron scattering as
measured by Bove et al. in Ref. [18].

II. CLASSICAL AND QUANTUM MODELS
OF HEXAGONAL (IH) WATER ICE

The key to understanding the structure of water ice is the
realization, due to Bernal and Fowler, that water molecules
retain their integrity on freezing [1]. It follows that each oxygen

remains covalently bonded to two protons, while at the same
time forming two, weaker, hydrogen bonds with protons on
neighboring water molecules. In the frozen state, the oxygen
atoms form an ordered lattice, held together by intermediate
protons, each of which forms one long (hydrogen) and one
short (covalent) bond with a neighboring oxygen. This type
of bonding favors a tetrahedral coordination of oxygen atoms,
but does not select any one structure, with 17 different forms
of ice crystal known to exist [5].

Hexagonal (Ih) water ice, illustrated in Fig. 1, is the most
common form of water ice, formed at ambient pressure. In it,
oxygen atoms form a crystal with the hexagonal space group
P 63/mmc. This structure can be thought of as a set of buckled
honeycomb lattices, composed of center-symmetric bonds of
the type shown in Figs. 3(a) and 3(b). These honeycomb layers
are linked by mirror-symmetric bonds, parallel to the hexago-
nal symmetry axis, of the the type shown in Figs. 3(c) and 3(d).
The two types of bond have almost exactly the same length,
leading to a near-perfect tetrahedral coordination of oxygen
atoms [5,53–56]. The primitive unit cell of ice Ih contains
four oxygen atoms or, equivalently, four water molecules, with
eight associated protons. This should be contrasted with the
two-site primitive unit cell needed to describe the diamond
lattice of oxygen atoms in cubic (Ic) water ice (space group
Fd3m), or its magnetic analog, spin ice [57].

While the oxygen atoms in ice Ih form an ordered lattice,
protons do not. The way in which water molecules bond
together does not select any one proton configuration [1], but
rather an exponentially large set of

� ∼ ( 3
2

)N
(1)

proton configurations, where N is the number of oxygen atoms
(equivalently, water molecules) in the lattice [2,3]. As a conse-
quence, the protons do not show any long-range order. While
unusual, extensive degeneracies of this type are by no means
unique to water ice, occurring in “spin ice” [7,10], problems
of frustrated charge order on the pyrochlore lattice [12,13],
and in a wide range of problems involving the hard-core dimer
coverings of two- or three-dimensional lattices [27,28].

The principles governing the arrangement of protons in
water ice are neatly summarized in the Bernal-Fowler “ice
rules” [1,2,5]:

FIG. 3. Different types of bond within the ordered oxygen lattice of hexagonal (Ih) water ice. The Ih lattice can be viewed as a stack of
buckled, honeycomb lattices, composed of bonds which are symmetric under inversion about the center of the bond. These honeycomb layers
are connected by bonds running parallel to the hexagonal symmetry axis, which are symmetric under reflection in the plane perpendicular to
the bond. This lattice is bipartite, i.e., it may be divided into two sublattices, here colored red and blue. (a) Center-symmetric bond, viewed
from a direction perpendicular to the bond. (b) Center-symmetric bond, viewed along the bond direction. (c) Mirror-symmetric bond, viewed
from a direction perpendicular to the bond. (d) Mirror-symmetric bond, viewed along the bond direction.
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(1) Each bond between oxygen atoms contains exactly one
proton.

(2) Each oxygen has exactly two protons adjacent to it.
Since the ice rules define one of the simplest models with an

extensive ground-state entropy, they have proved a rich source
of inspiration for statistical studies [3,21,58], particularly in
two dimensions, where the corresponding “six-vertex model”
can be solved exactly [59–65].

Violations of the ice rules cost finite energy, and fall into
two types. Violations of the first ice rule, double-loaded or
empty bonds, are known as Bjerrum defects [66]. Violations
of the second rule occur where a proton is transferred from
one water moleule to another, creating a pair of “ionic”
defects, hydroxil (OH−) and hydronium (H3 O+) [1,5,33].
These ionic defects are in direct correspondence with the
fractional charges found in models of frustrated charge order
on the pyrochlore lattice [13], and the magnetic monopoles
observed in spin ice [29–32].

While the proton configurations which satisfy the ice rules
do not exhibit long-range order, they do possess a definite
topological structure. This, and the connection between the
ice rules and electromagnetism, is most easily understood if
proton configurations are viewed in terms of a conserved flux.

The mapping onto a flux representation starts with the
observation that, in the absence of Bjerrum defects, all proton
configurations can be represented by a set of arrows on the
bonds of the oxygen lattice. Each arrow points in the direction
of the displacement of the proton from the midpoint of that
bond, as is illustrated in Fig. 4. Since the oxygen lattice is
bipartite (i.e., it may be divided into two sublattices), each
arrow can be thought of as the flux of a vector field P from one
sublattice to the other. The second ice rule then amounts to the
condition that flux is conserved, i.e., there are two incoming
arrows and two outgoing arrows at each oxygen vertex. This in
turn can be viewed as a zero-divergence condition on the flux,

∇ · P = 0, (2)

FIG. 4. Flux representation of proton configurations in hexagonal
(Ih) water ice. (a) Proton configuration, including a hexagonal
plaquette of type II (cf. Fig. 2). (b) Equivalent proton configuration
represented using arrows. The displacement of protons (white
spheres) from the midpoint of each oxygen-oxygen bond can be
mapped to an arrow on that bond. The ice rules require that two
“in” arrows and two “out” arrows meet at each vertex of the lattice
(oxygen atom). Where arrows form a closed loop, it is possible
to tunnel between different proton configurations satisfying the ice
rules, by reversing the sense of all arrows on that loop. The letters
A,B,C,D, and color coding, indicate the convention for labeling
oxygen sublattices adopted in Sec. III.

true at every vertex of the lattice.
The flux representation of water ice and related systems

is an approach with a long history [14], and is particularly
useful in two dimensions, where ice states map onto the
exactly soluble six-vertex model [65]. The existence of a
zero-divergence condition [Eq. (2)] suggests a natural analogy
with electromagnetism, which we will explore further in the
remainder of this paper. The flux representation also plays
a crucial role in understanding scattering experiments [14]
since both the electric polarization of a given bond and the
distribution of mass on that bond are determined uniquely by
the flux of P.

The topological structure of the ice states becomes evident
once periodic boundary conditions are imposed on the lattice.
In this case, the local conservation of flux (second ice rule)
gives rise to a distinct set of global topological sectors, with
definite, quantized, flux through the (periodic) boundaries of
the crystal. In a real crystal, with open boundary conditions,
these topological sectors correspond to the different possible
values of the electrical polarization of the crystal. The very high
dielectric constant of water ice [5] can therefore be interpreted
as evidence of fluctuations between different topological
sectors [29,33,67,68].

Quantum mechanics enters into the physics of ice through
the (quantum) tunneling of protons from one configuration to
another. Since it is energetically expensive to violate the ice
rules, tunneling should occur between different configurations
which satisfy the ice rules. This can be accomplished through
the collective tunneling of a group of protons, on any closed
loop within the lattice, where the associated flux “arrows” also
form a closed loop, as illustrated in Fig. 4.

Where such a loop exists, it is possible to generate a
second proton configuration satisfying the ice rules, simply by
interchanging long and short proton bonds. This is equivalent
to reversing the sense of all fluxes on the loop. The shortest
loops for which this is possible in ice Ih consist of six
oxygen-oxygen bonds, as illustrated in Fig. 2. Quantum
tunneling of the form considered in this paper preserves
the topological sector since this is unchanged by any local
rearrangements of protons which preserve the condition of
local flux conservation. As a consequence, the conserved flux
is elevated to the role of a quantum number [44]. We note
that, since all of these properties follow from the topological
structure of ice, they are independent of the mechanism by
which quantum tunneling occurs [69].

The effect of quantum tunneling on loops of six bonds
has previously been explored in the context of quantum dimer
models on the diamond lattice [42–44], and of quantum effects
in spin ice [35,37,39,40]. These models have the same cubic
symmetry Fd3m as Ic water ice, for which the shortest closed
loop of bonds defines the edge of a hexagonal plaquette. Since
all such plaquettes are related by lattice symmetries, a minimal
model for quantum tunneling can be obtained by introducing
a single tunneling matrix element g:

Hcubic
tunneling = −g

∑
�

[|�〉〈� | + |�〉〈� |], (3)

where the sum on � runs over all hexagonal plaquettes in the
lattice, and tunneling occurs between loops with the opposite
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sense of flux. We emphasize operators in Eq. (3) act only on
those plaquettes on which the flux arrows form a closed loop,
as highlighted in Fig. 2. These plaquettes are those described
as “proton-ordered rings” in, e.g., Refs. [18,20].

In ice Ih, in contrast, there are two inequivalent types
of six-sided plaquette, illustrated in Fig. 2. The first is
composed entirely of center-symmetric bonds (cf. Fig. 3), and
comprises the buckled hexagonal plaquettes which make up
the hexagonal-symmetry layers of the Ih structure. A crystal
with N oxygen atoms contains N/2 such plaquettes, which
we label as type I [cf. Fig. 2(a)]. The second is composed
of four center-symmetric and two mirror-symmetric bonds,
linking neighboring layers of the lattice. There are 3N/2 such
plaquettes, which we label as type II [cf. Fig. 2(b)].

Since there are two, inequivalent, types of six-sided
plaquette in the Ih lattice, the minimal model for quantum
effects in ice Ih comprises two distinct matrix elements

Hhexagonal
tunneling = −g1

∑
�∈I

[|�〉〈� | + |�〉〈� |]

−g2

∑
�∈II

[|�〉〈� | + |�〉〈� |], (4)

acting on the space of all possible proton configurations
obeying the ice rules. Symmetry alone does not place any
constraints on the values of g1 and g2, and a priori, these
matrix elements can take on either sign.

It is important to note that collective coherent quantum
tunneling of the kind described by Eq. (4) is distinct from
incoherent single-proton tunneling. The study of proton
tunneling in ice has rather a long history. The motion of single
protons plays an important role in theories of ice’s dielectric
properties [70] and it was believed for some time that this
motion may proceed by single-particle quantum tunneling [5].
However, it is now generally believed that tunneling of single
protons is not effective in ice Ih at low temperature and ambient
pressure [71]. Collective tunneling of protons, however, may
still play a role in ice Ih, as it does in many other H-bonded
systems [16,72–74]. The experimental results of Bove et al.
[18] indicate that collective tunneling of protons on rings of
six H-bonds can indeed occur in ice Ih.

Various ab initio studies have considered the possibility
of proton tunneling in water ice. Much of this work has
been motivated by interest in the successive transformations
between cubic, high-pressure phases of ice, and in particular
by ice X, an extreme high-pressure phase where the Bernal-
Fowler ice rules no longer apply [75]. Benoit et al. [76] find
that the transformation from ice VIII to ice VII (which do obey
the ice rules) is driven by quantum tunneling of individual
protons. This becomes more favorable under pressure, as the
oxygen-oxygen distance decreases. A later study by Lin et al.
[77] reinforces this conclusion, and highlights the emergence
of collective, quantum tunneling of groups of protons in cubic
ice VII. Lin et al. note that this type of tunneling might also
be effective in hexagonal ice Ih, albeit with a much smaller
tunneling matrix element.

The case considered in this paper (collective, quantum
tunneling of protons in ice Ih) was recently studied in
detail by Drechsel-Grau and Marx, using a combination
of density-functional, molecular-dynamics, and path-integral

techniques [20]. Considering a cluster of 48 water molecules,
containing a single “proton-ordered” ring of the type shown
in Fig. 2, Drechsel-Grau and Marx find that proton dynamics
at low temperatures are dominated by the collective quantum
tunneling of protons from one ordered state of the ring to the
other. A further study by the same authors [78] finds that partial
deuteration of ice Ih will suppress this collective quantum
tunneling, in agreement with experimental results of Bove
et al. [18]. Another recent ab initio study of nuclear quantum
effects on the dielectric constant of water ice also finds strong
quantum fluctuations of the proton system, consistent with the
findings of Drechsel-Grau and Marx [79].

If tunneling of the form of Eq. (4) were to occur on a
single isolated plaquette, the resulting ground state would be
a quantum superposition of the two opposite senses of proton
ordering on the ring, in direct analogy with the resonating
ground state of single benzene ring. However, in a typical
state obeying the ice rules, approximately a quarter of the
plaquettes are “ordered,” and quantum tunneling on these
plaquettes allows the system to explore an exponentially large
number of different states obeying the ice rules.

In related three-dimensional quantum dimer and quantum
spin ice models, dynamics of this type have been shown
to stabilize a quantum liquid state, formed by a coherent
superposition of an exponentially large number of states
[35,37,39,40,42–44]. In water ice, such a state would be a
massively entangled superposition of proton configurations
obeying the ice rules, in which the molecular character of
water molecules was preserved, but individual protons could
no longer be assigned to a given water molecule. This type
of liquid should be contrasted with the “plaquette-ordered”
phase found in simplified two-dimensional models of water
ice, which are dominated by local resonances [45–48].

At this time, we are not aware of any attempt to indepen-
dently determine the two different matrix elements g1 and g2,
which define our model Hhexagonal

tunneling [Eq. (4)], from ab initio
simulation of ice Ih. And to the best of knowledge, the only
available estimate of the magnitude of collective tunneling in
ice Ih is

g ∼ 1.46 × 10−4 eV ≈ 1.7 K, (5)

taken from the density-functional calculations of Ihm [19].
Intriguingly, this value is consistent with the energy scale of
proton dynamics observed in inelastic neutron scattering [18].
And it is somewhat larger than the corresponding estimates for
the putative “quantum spin ice” materials [37]. Taken at face
value, this would suggest that water ice is potentially a more
favorable place to look for the formation of an exotic quantum
liquid state than are the quantum spin ices.

With this in mind, in Sec. IV, we develop a theory of
disordered proton configurations in the presence of quantum
tunneling, based on the minimal quantum model of ice Ih,
Hhexagonal

tunneling [Eq. (4)]. We make the assumption that

g1 > 0, g2 > 0, (6)

so that the model is accessible to quantum Monte Carlo
simulation. Before examining the quantum model, however,
it is necessary to understand the classical proton correlations
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which arise simply from the ice-rule constraint. This will form
the subject of Sec. III.

III. PROTON CORRELATIONS IN A CLASSICAL
MODEL OF ICE IH

In what follows, we develop a theory of proton correlations
in a classical model of ice Ih, neglecting all quantum tunneling
between different proton configurations. This theory provides
a detailed and microscopically derivable phenomenology to
explain the diffuse scattering which arises as a result of static
proton disorder in ice Ih [51,52,58,80–87].

We start, in Sec. III A, by developing a long-wavelength,
classical field theory of proton configurations in ice Ih. This
field theory has parallels with those developed to explain pinch
points in proton-bonded ferroelectrics [14] and spin ice [57],
but displays a number of new features, which will become
important in the quantum case. The details of these calculations
are described in Appendix B.

In Sec. III B, we introduce a lattice theory of proton
correlations in classical ice Ih, and show that this reproduces
the predictions of Sec. III A. The details of these calculations,
which are based on a generalization of a method introduced
for spin ice by Henley [57], are developed in Appendix C.

Then, in Sec. III C, we use the lattice theory introduced in
Sec. III B to make explicit predictions for the structure factors
measured in x-ray [81] and neutron scattering [51,52,82]
experiments. These show a number of interesting features,
which we interpret in terms of the classical field theory
developed in Sec. III A.

A. Continuum field theory for protons in classical ice Ih

The natural place to start in constructing a theory of proton
disorder in ice Ih is from the ice rules [1,2,5]. The first ice rule
states that each bond of the oxygen lattice contains exactly
one proton (cf. Sec. II). This proton is displaced, relative to
the center of the bond, towards one of the two oxygen atoms
which make up the bond (cf. Fig. 1). The displacement of this
proton from the center of the bond (rr′) can be described using
the Ising variable

σrr′ = ±1, (7)

where σrr′ = +1 if the proton is displaced towards r′, and
σrr′ = −1 if it is displaced towards r. It follows that

σrr′ = −σr′r. (8)

The second ice rule states that each oxygen must form
exactly two short (covalent) and two long (hydrogen) bonds
with neighboring protons. Written in terms of the Ising variable
σrr′ , this becomes a condition that, at every oxygen lattice site r

mr ≡
∑
nn i

σr+dri r = 0, (9)

where the sum runs over the four nearest neighbors within
the oxygen lattice, located at sites r + dri . For this purpose,
it is necessary to divide the lattice of oxygen sites into four
inequivalent sublattices as illustrated in Fig. 4. These four sets
of oxygen sites have different associated vectors dri , defined
in Appendix A.

Just as in proton-bonded ferroelectrics [14], or spin ice [57],
we can understand the proton correlations arising from Eq. (9)
by considering the spatial variation of the flux field represented
by the arrows on the bonds in Fig. 2. For each oxygen-oxygen
bond (rr′), we assign a flux

Prr′ = r − r′

aO
σrr′ , (10)

where aO is the oxygen-oxygen bond distance. This flux points
in the direction of the polarization of the associated H-bond, as
illustrated in Fig. 4. The total flux from the four arrows around
a single oxygen site is thus

Pr ≡
∑
nn i

1

aO
dri σr+dri r. (11)

Knowledge of the fields mr [Eq. (9)] and Pr [Eq. (11)] on
half of the oxygen sites (e.g., those on the A and C sublattices,
shown in Fig. 4) is sufficient to uniquely determine the proton
configuration of the entire lattice. We can see this as follows:
if, for a given oxygen site r, we know both mr (which must be
zero for an ice-rule state) and Pr we can determine the value of
all of the surrounding bond variables σr+dri r using the relation

σr+dri r = 1

4

(
mr + 3

aO
dri · Pr

)
. (12)

Every bond belongs either to one A oxygen site or one C

oxygen site [cf. Fig. 2(b)] so knowing mr and Pr on just the A

and C sites (or equivalently just the B and D sites) is sufficient.
We may imagine generating a proton configuration by set-

ting mr = 0 on every A and C oxygen site and letting the flux
Pr vary between those sites. For the configuration thus obtained
to be consistent with the ice rules we would need it to satisfy
mr = 0 on all of the B and D tetrahedra as well. Naturally, this
implies some constraints on the spatial variation of Pr. These
constraints control the form of the proton correlations.

The constraints on the spatial variation Pr arising from the
ice rules may be understood by defining continuum fields (i.e.,
defined over all space, not just on the lattice) P̄A(r) and P̄C(r)
in such a way that evaluating them at the lattice sites rA,C

returns the value of Pr [Eq. (11)]. If we then assume P̄A,C(r)
to vary smoothly in space, we can use the condition that mr
must vanish at the B and D sites to obtain a constraint on the
fields P̄A,C(r) and their derivatives. This procedure is described
in more detail in Appendix B.

Neglecting terms beyond leading order in the bond distance
aO, we obtain

−3P̄ z
A(r) + 3P̄ z

C(r) − 2aO∇ · P̄A

+ 3aO∂zP̄
z
A − 3aO∂zP̄

z
C = 0, (13)

−3P̄ z
C(r) + 3P̄ z

A(r) − 2aO∇ · P̄C

+ 3aO∂zP̄
z
C − 3aO∂zP̄

z
A = 0, (14)

where z is the hexagonal symmetry axis of the crystal (i.e., the
crystallographic c axis). These equations can be decoupled by
introducing odd and even combinations of the fields P̄A,C(r):

P+(r) = 1√
2

[P̄A(r) + P̄C(r)], (15)
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P−(r) = 1√
2

[P̄A(r) − P̄C(r)]. (16)

It follows that the uniform polarization P+(r) satisfies a zero-
divergence condition

∇ · P+(r) = 0, (17)

while the staggered polarization P−(r) is governed by the
equation

P z
−(r) + 2

3aO∇ · P−(r) − aO∂zP
z
−(r) = 0. (18)

The very different form of the equations governing P+
and P− suggests that these fields have qualitatively different
correlations. Following [28,57,88], we can estimate these by
assuming a free energy of the form

F = −(kBT )
∫

d3r
Vu.c.

∑
υ=±

κυP2
υ

2
, (19)

where κυ is an (unknown) constant of entropic origin, and
Vu.c. is the volume of a unit cell. Within this approximation,
correlations of P± are controlled by a Gaussian distribution of
fields

p[Pυ] ∝ exp

[
−κυ

2

∫
d3r
Vu.c.

P2
υ

]
(20)

subject to the constraints (17) and (18).
We find that the correlations of P+ have the form of a

singular “pinch point” in reciprocal space

〈P α
+(−q)P β

+(q)〉 = 1

κ+

(
δαβ − qαqβ

q2

)
(α,β = x,y,z). (21)

Meanwhile, the correlations of P− in reciprocal space show
much broader, smoothly varying structure

〈P α
−(−q)P β

−(q)〉 = 1

κ−

(
δαβ − 4ζ 2qαqβ

1 + ζ 2q2
z + 4ζ 2q2

⊥

)
(α,β = x,y), (22)

〈P z
−(−q)P z

−(q)〉 = 1

κ−

(
1 − 1 + ζ 2q2

z

1 + ζ 2q2
z + 4ζ 2q2

⊥

)
, (23)

where

q⊥ = (qx,qy) (24)

and, for compactness, we have introduced the notation

ζ = aO

3
. (25)

Fourier transforming Eqs. (21)–(23), we find that correla-
tions of P+ decay algebraically in real space, with the dipolar
form

〈P α
+(r)P β

+(0)〉 = 4π

κ+

[
δ(r) + δαβr2 − 3rαrβ

r5

]
. (26)

Meanwhile, correlations of P− are very short ranged, decaying
over a length scale ζ [Eq. (25)]. It follows that proton
correlations at large distances are controlled by the field P+.

The algebraic correlations of P+ give rise to sharp pinch-
point singularities in structure factors, of the type observed
by Li et al. in neutron scattering from ice Ih [51]. However,
in some Brilluouin zones, pinch-point singularities are sup-
pressed by the lattice form factor, and scattering is instead
dominated by broad, asymmetric features coming from the
correlations of P−. We discuss this point further in Sec. III C,
where we develop an explicit theory for neutron and x-ray
scattering experiments.

The form of the constraint on P+(r) [Eq. (17)] strongly
suggests an analogy with electromagnetism, where the zero-
divergence condition on magnetic field

∇ · B = 0 (27)

can be resolved as

B = ∇ × A, (28)

and the electric and magnetic fields are connected by an
underlying U(1) gauge symmetry. This analogy, and the
distinction between the two classical fields P+ and P−, become
explicit once quantum effects are taken into account, as
described in Sec. IV.

B. Lattice theory of proton correlations in classical ice Ih

The classical fields P+ and P−, introduced in Sec. III A,
provide a complete description of the correlations of protons
in classical ice Ih at long wavelength, i.e., near to zone centers
in reciprocal space. However, x-ray and neutron scattering
experiments on water ice measure proton correlations at all
length scales. We have therefore developed a lattice-based
theory of proton correlations in classical ice Ih, valid for all
wave numbers. The approach we take is a generalization of the
method developed for spin ice by Henley [57], in which the
ice rules are expressed as a projection operator in reciprocal
space. In what follows, we explore how the predictions of this
theory relate to the those obtained from the continuum theory
described in Sec. III A. We reserve all technical details for
Appendix C.

The underlying structure of proton correlations in classical
ice Ih is most easily understood throughout the correlations of
the Ising variables σrr′ [Eq. (7)], which describe the alternating
long and short bonds between protons and neighboring oxygen
atoms. These are characterized by the structure factor

SIsing(q) =
∑
νν ′

〈σν(q)σν ′(−q)〉, (29)

where the sums on ν and ν ′ run over the eight distinct bonds
within the four-site primitive unit cell, and

σν(q) =
√

4

N

∑
rr′∈ν

exp(−iq · Rrr′)σrr′ ,

Rrr′ = r + r′

2
. (30)

In calculating σν(q), we label the four oxygen sublattices
within the unit cell A, B, C, D (cf. Fig 4), and adopt a sign
convention such that

r ∈ {A,C}, r′ ∈ {B,D}. (31)
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FIG. 5. Correlation of long and short proton bonds in a classical model of hexagonal (Ih) water ice. The structure factor SIsing(q) [Eq. (29)],
for the Ising variable σ [Eqs. (7)–(10)], is plotted in three orthogonal planes in reciprocal space. Near to zone centers, correlations are well
described by a combination of pinch-point singularities, reflecting the algebraic correlations of the field P+(q) [cf. Eq. (21)], and smooth
features, reflecting the short-range correlations of the field P−(q) [cf. Eqs. (22) and (23)], as discussed in Sec. III A. Calculations were
performed using the method outlined in Appendix C, in which the ice-rule constraints are written as orthogonality conditions in Fourier space
[57]. Reciprocal-lattice vectors are indexed to the orthorhombic unit cell defined in Appendix A, following the conventions of Nield and
Whitworth [52].

In Fig. 5, we show results for SIsing(q), calculated within
the lattice-based theory. The structure factor exhibits clear
pinch-point singularities, characteristic of the ice rules [14,57],
at a subset of Brillouin-zone centers typified by

Q∗
p = (0,0,2), (32)

where, following Nield and Whitworth [52], we index all
reciprocal-lattice vectors to the eight-site orthorhombic unit
cell defined in Appendix A.

Correlations near to reciprocal-lattice vectors (Brillouin-
zone centers) are described by the classical field theory
developed in Sec. III A, with contributions from both fields

P+ and P−. Near to a reciprocal lattice vector Q, for |q̃| 
 1,
the structure factor can be written

SIsing(Q + q̃) ≈
∑
υ=±

F Ising
υ (Q)

〈∣∣λ̂Ising
Q,υ · Pυ(q̃)

∣∣2〉, (33)

where the form factor F
Ising
υ (Q) [Eq. (D12)] and vectors λ̂

Ising
Q,υ

[Eq. (D13)] are defined in Appendix D, and the Fourier
transform Pυ(q̃) [Eq. (C14)] in Appendix C.

Sharp pinch points are seen for a subset of reciprocal lattice
vectors Qp, for which

F
Ising
− (Qp) = 0 . (34)
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In this case, correlations are controlled by the zero-divergence
condition on P+(q) [Eq. (17)], and it follows from Eqs. (21)
and (C14) that

SIsing(Qp + q̃) ≈ F
Ising
+ (Qp)

κ+

(
1 −

∣∣λ̂Ising
Q,υ · q̃

∣∣2
|q̃|2

)
. (35)

Considering the specific example of

Q∗
p = (0,0,2) (36)

for which

λ̂
Ising
Q∗

p,+ = (0,0,1), (37)

we have

SIsing(Q∗
p + q̃) ∝

(
1 − q̃2

z

q̃2

)
. (38)

This pinch point, aligned with the hexagonal-symmetry axis
(z axis), can be clearly resolved in Figs. 5(b) and 5(c).

While there are no reciprocal lattice vectors for which
F

Ising
+ (Q) vanishes identically with F

Ising
− (Q) remaining finite,

there are another set of lattice vectors Qm, for which

F
Ising
+ (Qm) 
 F

Ising
− (Qm) (39)

and the structure factor is dominated by the short-ranged
correlations of P− [Eq. (18)]. Correlations of this type occur
for

Q∗
m = (1,1,0) (40)

and are visible as a broad feature centered on this reciprocal
lattice vector in Fig. 5(a).

For a general reciprocal lattice vector Qpm

F
Ising
+ (Qpm) ∼ F

Ising
− (Qpm) (41)

and correlations reflect a combination of pinch points origi-
nating in P+(q) and broad features originating in P−(q). An
example of this occurs for

Q∗
pm = (2,0,0) (42)

visible in Figs. 5(a) and 5(c), where a pinch point has been
superimposed on a featureless background.

Near to zone centers, where they can be compared,
the lattice-based theory is in complete agreement with the
predictions of the classical field theory developed in Sec. III A.
In Appendix C, we show how the lattice-based theory reduces
to the continuum theory at long wavelength. We find the that
entropic coefficient κυ , which controls correlations of the fields
Pυ [Eqs. (21)–(23)], is independent of υ, i.e.,

κ = κ+ = κ− . (43)

To confirm the validity of the lattice-based theory for more
general q, we have also performed classical Monte Carlo
simulations of ice Ih, using local loop updates to sample proton
configurations within the manifold of states obeying the ice
rules. The results, described in Appendix F, are in excellent
agreement with the predictions of the lattice theory.

C. Predictions for scattering from protons in a classical
model of ice Ih

X-ray and neutron scattering experiments on water ice do
not measure the structure factor for bond variables SIsing(q)
[Eq. (29)], discussed in Sec. III B, but rather the Fourier
transform of the correlation function for the density of protons

Sproton(q) = 〈n(−q)n(q)〉. (44)

Information about the proton disorder is contained in the
diffuse part of this scattering, which is given by [82]

Sdiffuse
proton (q) =

∑
νν ′

〈σν(−q)σν ′ (q)〉 sin(q · aν) sin(q · aν ′ ), (45)

where σν(q) is given in Eq. (30), and aν is a set of vectors,
defined in Appendix A, such that the displacement of a proton
from the midpoint on any given bond ν is

Dν = σνaν (46)

with

|aν | ∼ 0.15 aO. (47)

In Fig. 6, we show the results for diffuse scattering from
protons in a classical model of ice Ih. The structure factor
Sdiffuse

proton (q) [Eq. (45)], was calculated using the lattice theory
introduced in Sec. III B. At small momentum transfers, the
scattering is suppressed by the factors of sin(q · aν) in Eq. (45)
and, as a result, there is essentially no scattering for |q| � 2.
For larger wave number, scattering shows a mixture of broad
and sharp features, centered on two different sets of reciprocal
lattice vectors. An example of broad feature can be seen near
to Q = (2,0,3) in Fig. 6(c). An example of a sharp feature,
a pinch point, can be seen near to Q = (4,0,0) in Figs. 6(a)
and 6(c).

We can relate both broad and sharp features to the
correlations of the classical fields P+ and P−, introduced in
Sec. III A. Expanding the structure factor Sdiffuse

proton (q) [Eq. (45)]
about the reciprocal-lattice vector Q, for |q̃| 
 1, we find

Sdiffuse
proton (Q + q̃) ≈

∑
υ=±

F proton
υ (Q)

〈∣∣λ̂proton
Q,υ · Pυ(q̃)

∣∣2〉, (48)

where the form factors F
proton
Q,υ [Eq. (D12)] and vectors λ̂

proton
Q,υ

[Eq. (D14)] are defined in Appendix D, and the Fourier
transform Pυ(q̃) [Eq. (C14)] in Appendix C.

Once again, there are a subset of reciprocal lattice vectors
Qp,H+ for which

F
proton
− (Qp,H+ ) ≡ 0, (49)

and correlations are controlled by the zero-divergence condi-
tion on P+ [Eq. (17)]. It follows from from Eqs. (21) and (C14)
that

Sdiffuse
proton (Qp,H+ + q̃) ≈ F

proton
+ (Qp,H+ )

κ+

⎛
⎝1 −

∣∣λ̂proton
Qp,H+ ,+ · q̃

∣∣2
|q̃|2

⎞
⎠.

(50)

Considering the specific example of

Q∗
p,H+ = (4,0,0) (51)
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FIG. 6. Prediction for diffuse scattering of neutrons or x rays from protons in a classical water ice described by the Bernal-Fowler “ice
rules.” The structure factor Sdiffuse

proton (q) [Eq. (45)] is plotted in three orthogonal planes in reciprocal space. The ice rules manifest themselves
as both “pinch points” [singular features in scattering visible at, e.g., Q∗

p,H+ = (0,0,4) in (c)] and broad, asymmetric features at zone centers
visible at, e.g., Q∗

m,H+ = (2,0,3) in (c). Results are shown for the theory described in Sec. III C and Appendix C, with reciprocal-lattice vectors
indexed to the orthorhombic unit cell defined in Appendix A, following the conventions of Nield and Whitworth [52].

for which

λ̂
proton
Qp,H+ ,υ = (1,0,0), (52)

we have

Sdiffuse
proton (Qp,H+ + q̃) ∝

(
1 − q̃2

x

q̃2

)
. (53)

A pinch-point singularity of this form is clearly visible near
Q = (4,0,0) in Figs. 6(a) and 6(c).

Similarly, while there are no reciprocal lattice vectors for
which F

proton
+ (Q) vanishes identically while F

proton
− (Q) remains

finite, there are another set of lattice centers Qm,H+ , for which

F
proton
+ (Qm,H+ ) 
 F

proton
− (Qm,H+ ) (54)

and scattering from protons reflects the short-ranged corre-
lations of P− [Eq. (18)]. An example of this type scattering
occurs for

Q∗
m,H+ = (0,4,1). (55)

A broad, asymmetric feature, centered on this reciprocal lattice
vector, is clearly visible in Fig. 6(b).

For a more general choice of zone center Qpm,H+ ,

F
proton
+ (Qpm,H+ ) ≈ F

proton
− (Qpm,H+ ), (56)

and scattering reflects the correlations of both P+ and P−. An
example of this type scattering occurs for

Q∗
pm,H+ = (0,4,3). (57)
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A combination of pinch points and broad, asymmetric features
can be seen near to this reciprocal-lattice vector in Fig. 6(b).

We conclude this discussion with a brief word of caution:
In some cases, the scattering from protons Sdiffuse

proton (q) [Eq. (45)]
exhibits pinch points at the same reciprocal-lattice vectors as
pinch points in the structure factor SIsing(q) [Eq. (29)], as can
be seen by comparing Figs. 5 and 6. However, in general

F
proton
− (Q) = 0 �⇔ F

Ising
− (Q) = 0, (58)

and pinch points in Sdiffuse
proton (q) do not, necessarily, occur at the

same reciprocal-lattice vectors as pinch points in SIsing(q).
We will present a detailed comparison of these results with

diffuse neutron scattering experiments on ice Ih in Sec. V A.

IV. PROTON TUNNELING AND EMERGENT PHOTONS
IN A QUANTUM MODEL OF ICE IH

The analogy between the ice rules and electromagnetism,
underpinning the classical analysis of Sec. III, becomes
complete once quantum effects are taken into account. In
what follows, we show that the minimal model for quantum
effects in ice Ih, Hhexagonal

tunneling [Eq. (4)], leads to a compact,
frustrated quantum U(1) lattice-gauge theory, with precisely
the form of electromagnetism on a lattice. We explore the new
features of a proton liquid described by such a theory, and
make explicit predictions for both inelastic and quasielastic
(energy-integrated) scattering of x rays or neutrons from
disordered protons in a quantum ice Ih. This discussion
proceeds as follows:

First, in Sec. IV A we outline the derivation of this
lattice-gauge theory. Technical details of these calculations
are provided in Appendix E. Then, in Sec. IV B we explore
some of the features of lattice-gauge theory in its deconfined
(proton-disordered) phase. In particular, we show how its low-
energy excitations can be thought of as the linearly dispersing,
birefringent “photons,” and how these relate to the classical
fields P+ and P− introduced in Sec. III. Finally, in Sec. IV C
we discuss the experimental signatures of quantum water ice,
described by the deconfined phase of the lattice-gauge theory.

A. Lattice-gauge theory

Our route to a lattice-gauge theory of ice Ih closely parallels
the cubic-symmetry case previously considered by Hermele
et al. [35] and Benton et al. [37]. The theory itself, however,
contains a number of new features.

We begin introducing a set of pseudospin- 1
2 operators

Sz,S+,S− defined on the bonds rr′ of the oxygen lattice. The
z component of the pseudospin is directly proportional to the
Ising variable σrr′ [Eq. (7)], introduced to describe proton
correlations in the classical case

Sz
rr′ = 1

2σrr′ = −Sz
r′r. (59)

In keeping with the directedness of Sz
rr′ [Eq. (59)], the ladder

operators obey the identity

S+
rr′ = S−

r′r. (60)

The minimal quantum model for ice Ih Hhexagonal
tunneling [Eq. (4)]

can be expressed in terms of these operators as

Hhexagonal
tunneling = −g1

∑
�∈I

[S+
1 S−

2 S+
3 S−

4 S+
5 S−

6 + H.c.]

− g2

∑
�∈II

[S+
1 S−

2 S+
3 S−

4 S+
5 S−

6 + H.c.]. (61)

A mapping to a U(1) lattice-gauge theory is then possible by
writing the spin- 1

2 operators in a quantum rotor representation
[35,45,89]

Sz
rr′ → Err′ , S±

rr′ → e±iArr′ , (62)

subject to the canonical commutation relation

[Err′ ,Ar′′r′′′ ] = i(δrr′′δr′r′′′ − δrr′′′δr′r′′ ). (63)

The commutation relation (63) is familiar in quantum electro-
magnetism as the commutation between an electric field E and
a vector potential A, and substituting the rotor representation
Eq. (62) into Eq. (61) results in a compact U(1) gauge theory

Hcompact
U(1) = −2g1

∑
�∈I

cos([∇� × A])

− 2g2

∑
�∈II

cos([∇� × A]), (64)

where the sum
∑

〈rr′〉∈CS runs over center-symmetric oxygen-
oxygen bonds,

∑
〈rr′〉∈MS runs over mirror-symmetric bonds

(cf. Fig. 3, and [∇� × A] represents the lattice curl of Arr′

around a hexagonal plaquette, which may be of type I or type
II (cf. Fig. 2).

The electric field Err′ subject to the constraint that

Err′ = ± 1
2 ∀ bonds rr′. (65)

Following [35,37], one may then argue that averaging over fast
fluctuations of the gauge field softens the constraint (65), and
leads to a noncompact gauge theory on the links of the ice Ih
lattice

HU(1) = U
2

∑
〈rr′〉∈CS

E2
rr′ + U ′

2

∑
〈rr′〉∈MS

E2
rr′

+ K
2

∑
�∈I

[∇� × A]2 + K′

2

∑
�∈II

[∇� × A]2.

(66)

The parameters U and U ′ may be thought of as Lagrange
multipliers fixing the average value of E2

rr′ on the two
inequivalent types of bond. The average over fast fluctuations
will in general renormalize K and K′ from their “bare” values

K0 = 2g1, K′
0 = 2g2. (67)

On general grounds [45,49], and by analogy with quantum
spin ice [35,36,39], we anticipate that this lattice-gauge theory
will possess both a deconfined phase, in which the protons form
a disordered quantum fluid, and confined phase(s), in which
the protons order. In what follows, we confine our discussion
to the deconfined phase, without attempting to characterize
any competing fixed points.
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Even with this restricted goal, the validity of HU(1)

[Eq. (66)] depends critically on the assumptions made in pass-
ing to a noncompact gauge theory. While these assumptions
are reasonable, they can ultimately only be validated through
quantum Monte Carlo simulation of the microscopic model
Hhexagonal

tunneling [Eq. (61)] (cf. [37,39,43,44]). We have therefore
used variational quantum Monte Carlo (VMC) simulation of
HU(1) to establish that the deconfined phase of the lattice-gauge
theory HU(1) [Eq. (66)] closely describes the correlations of
the microscopic model Hhexagonal

tunneling [Eq. (61)], for the symmetric
choice of parameters g1 = g2. These results are presented in
Appendix F.

In principle, it is also possible to extract the parameters of
of the lattice-gauge theory (U , U ′, K, and K′) from detailed
quantum Monte Carlo simulation of the microscopic model
Hhexagonal

tunneling [Eq. (61)] as a function of g1 and g2 (cf. Ref. [37]).
However, since the purpose of this paper is to explore the
properties of the deconfined phase, and no reliable estimates
are yet available for g1 and g2 in real water ice, we will continue
to treat U , U ′, K, and K′ as phenomenological parameters.

B. Phenomenology of the deconfined phase:
Why these photons?

In the absence of charges, the defining characteristic of
the deconfined phase of the U(1) lattice-gauge theory HU(1)

[Eq. (66)] is its “photon,” a transverse excitation of the gauge
field A, with definite polarization and linear dispersion at long
wavelength. Since HU(1) is quadratic in A, it can be solved
by introducing a suitable basis for transverse fluctuations of
the gauge field. This calculation is explained in detail in
Appendix E, following the methods described in Ref. [37].
Here, we concentrate instead on using this solution of HU(1)

to describe the new features which arise from the tunneling of
protons in water ice.

In Fig. 7, we show the dispersion of the excitations of
HU(1) [Eq. (66)], as they would appear in an inelastic neutron
scattering experiment on ice Ih. The dynamical structure factor
for coherent scattering from protons Scoh(q,ω) [Eq. (E21)] was
calculated for the symmetric choice of parameters

U = U ′, K = K′, (68)

and the dispersion has been normalized to the characteristic
energy scale of the lattice-gauge theory

√
UK. Within this

normalization, the excitations have an overall bandwidth

�ω√
UK

= f

(U ′

U ,
K′

K

)
, (69)

where, for this parameter set

f (1,1) ≈ 4.56.

On the basis of published simulations for quantum spin ice
[36–38], it is reasonable to expect that the bandwidth of the
excitations of the gauge theory �ω should be of the same order
of magnitude as the quantum tunneling g.

The excitations shown in Fig. 7 possess a number of striking
features, specific to ice Ih. At low energies, the model supports

two linearly-dispersing modes, with intensity which vanishes
linearly approaching zero energy. These are the emergent
“photons” of the lattice-gauge theory, and the fact that there
are two such modes reflects the two possible polarizations
of the photon. The vanishing intensity of the photons at low
energy is a feature shared with the emergent photons of (cubic)
quantum spin ice, and reflects the fact that neutrons scatter
from fluctuations of the proton density, and not directly from
the underlying gauge field [37]. However, in contrast with
the cubic case, the emergent photons of quantum ice Ih are
birefringent, i.e., they have a dispersion which depends on the
polarization of the photon. The splitting of these two modes
is clearly visible in Fig. 7, except for wave vectors parallel to
the hexagonal symmetry axis of the crystal, where they are
degenerate.

A second feature of note is the presence of gapped,
optical modes. These are clearly visible in Fig. 7 at the zone
center � at energies above the photon dispersion. There two
such modes, and away from high-symmetry points, they are
generally nondegenerate. The presence of these optical modes
distinguishes quantum ice Ih from quantum spin ice, where
the pure gauge theory only supports photons [37].

We wish to emphasize that the symmetric choice of
parameters [Eq. (68)] is made purely for illustrative purposes,
and that, as long as the lattice-gauge theory remains in
its deconfined phase, a more general choice of parameters
will lead to qualitatively the same behavior. In fact, as we
shall show, the signature features of quantum ice Ih, the
birefringence of the emergent photons, and the presence of
gapped optical modes, are strongly constrained by symmetry,
and follow naturally from the quantization of the two classical
fields introduced in Sec. III, P+ and P−.

The correspondence between these classical fields, and the
excitations of the lattice-gauge theory HU(1) [Eq. (66)], is a
consequence of the fact that both theories automatically respect
the ice rules. It follows that constraints on the classical fields,
Eqs. (17) and (18), remain valid in the presence of quantum
tunneling Hhexagonal

tunneling [Eq. (4)], and that the long-wavelength
dynamics of the quantum model can be found by quantizing
the fluctuations of the classical fields.

Let us consider first the case of P+. The constraint (17) can
be enforced by writing

P+ = ∇ × A′, (70)

where it is important to distinguish the course-grained field
A′ from the microscopic field Arr′ , entering into the lattice-
gauge theory HU(1). The form of the Lagrangian describing
fluctuations of A′ is then the Maxwell Lagrangian, subject to
the hexagonal symmetry of the lattice. Choosing the Coulomb
gauge

∇ · A′ = 0, (71)

this is given by

LP+ = 1

2

∫
dt

∫
d3r
∑
αβ

× [ραβ∂tA
′α∂tA

′β − ναβ (∇ × A′)α(∇ × A′)β], (72)
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FIG. 7. Prediction for inelastic scattering from disordered protons in a quantum model of ice Ih at zero temperature (T = 0). Results
for the dynamical structure factor SH+

coh(q,ω) [Eq. (E24)] are shown in three, orthogonal, planes in reciprocal space. The “photons” of the
lattice-gauge theory HU(1) [Eq. (66)] are visible as gapless, linearly dispersing excitations at long wavelength. These photons are birefringent,
with a dispersion which depends on the polarization of the photon, except along the optical axis z. As a result, two bands of photons are
visible on the path �-M-K-�, while only one appears on the path �-A-L-H -A. Additional spectral weight at higher energies is associated with
gapped, exponentially correlated excitations of the gauge field. The dynamical structure factor for coherent scattering from protons SH+

coh(q,ω)
[Eq. (E24)] was calculated using the U(1) lattice-gauge theory HU(1) [Eq. (66)]. Results are shown for the parameter set given in Eq. (68), and
were convoluted with a Gaussian of FWHM = 0.035

√
UK to mimic the effect of experimental resolution. The color scale shows the intensity

of the modes as they would appear in an inelastic scattering experiment, in the Brillouin zone centered on (h,k,l) = (0,2,4).

where the tensors ραβ and ναβ are diagonal in the crystal basis,
and have the form

ρ =
⎛
⎝ρ⊥ 0 0

0 ρ⊥ 0
0 0 ρz

⎞
⎠, (73)

ν =
⎛
⎝ν⊥ 0 0

0 ν⊥ 0
0 0 νz

⎞
⎠. (74)

As a consequence, the photons described by LP+ [Eq. (72)]
are degenerate when propagating with momentum parallel to
the crystallographic z axis, with dispersion

ω =
√

ν⊥
ρ⊥

|k|. (75)

However, they are nondegenerate when propagating in the
plane perpendicular to the crystallographic z axis, with

dispersion

ω1 =
√

ν⊥
ρz

|k|, ω2 =
√

νz

ρ⊥
|k|, (76)

which depends on the polarization of the photon.
We now turn to the field P−. This has exponentially, rather

than algebraically, decaying correlations in the classical limit
[Eqs. (22) and (23)], and no associated gauge symmetry. How-
ever, because of the form of the constraint (18), fluctuations
of P− can described by a Lagrangian written in terms of its
planar component P⊥

−:

LP− = 1

2

∫
dt

∫
d3r

⎡
⎣γ (∂tP⊥

−)2 − �(P⊥
−)2

−
∑

μν=x,y,z

∑
αβ=x,y

ε
μν
αβ ∂μP

⊥,α
− ∂νP

⊥,β
−

⎤
⎦, (77)
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with the z component of P− being fixed by Eq. (18). Once
again, the form of the tensor ε

μν
αβ is dictated by the symmetry of

the lattice. For a general choice of ε
μν
αβ , we find that Lagrangian

LP− supports two gapped modes, which become degenerate
approaching q = 0:

ω(q → 0) =
√

�

γ
. (78)

In light of this analysis, at long wavelength, we can identify
the gapless, birefringent emergent photons of HU(1) [Eq. (66)]
with quantized fluctuations of P+, and its gapped optical modes
with quantized fluctuations of P−. This correspondence is
demonstrated explicitly in Appendix E.

C. Predictions for diffuse, coherent inelastic neutron
scattering at low temperatures

The formation of the quantum liquid state at T = 0 would
have profound consequences for scattering experiments. In
this section, we will briefly comment on what one could
expect to observe in a measurement of the coherent scattering
from water ice, in the scenario where quantum tunneling of
protons leads to the formation of a fluctuating U(1) liquid state.
We shall postpone a consideration of the consequences for
measurements of incoherent scattering, such as that performed
by Bove et al. [18] until our discussion of existing experiments
in Sec. V.

Figure 8 shows the equal-time (energy-integrated) structure
factor for the diffuse coherent scattering from disordered
protons at T = 0:

SH+
coh(q,t = 0) = 4

∑
ij

sin(q · ai) sin(q · aj )

× 〈Sz
i (−q,t = 0)Sz

j (q,t = 0)
〉
. (79)

The pinch points are absent at T = 0, replaced by suppressions
of the scattering around Brillion zone centers [37,39,89].

This effect is most clearly understood by comparing Fig. 8
with the corresponding classical result shown in Fig. 6. Around
certain reciprocal lattice vectors, e.g.,

Qp = (2,0,0), (80)

the classical scattering is directly proportional to a correlation
function of the uniform polarization P+, with no contribution
from the staggered polarization P−, and takes the form given
in Eq. (53), i.e.,

Sdiffuse
proton (Qp + q) ∝

(
1 − (q · Qp)2

q2Q2
p

)
.

In the quantum case, the pinch-point form of Eq. (53) becomes
modified by a factor of q, suppressing the pinch point

SH+ (Qp + q,t = 0) ∝ q

(
1 −

(
q · Q2

p

)
q2Q2

p

)
. (81)

At finite temperature, these pinch points are restored with
a weight linear in T [37]. This being the case, the clearest
signature of the formation of a quantum liquid which could be
obtained from energy integrated scattering is the observation

of a pinch point at high temperature, the intensity of which
reduces in as the system cooled, heading towards a linear
suppression of the scattering of the form of Eq. (81) as T → 0.
The nodal lines which are predicted in the classical scattering
(Fig. 6) remain nodal in the quantum case (Fig. 8).

Around other reciprocal lattice vectors, e.g.,

Qm = (2,0,3), (82)

there is a large contribution to the scattering from the
fluctuations of P⊥

−. In these cases, the broad, asymmetric
features present in the classical scattering remain present in
the quantum case at T = 0, but are now shifted to finite energy
in accordance with the gapped nature of the fluctuations of P⊥

−.
Around reciprocal lattice vectors such as

Qpm = (0,4,3), (83)

where the classical scattering shows a combination of pinch
points and broad, asymmetric features, the quantum theory
predicts that the pinch-point contribution will be linearly
suppressed T = 0, as in Eq. (81), while the broad feature will
remain, albeit shifted to a finite energy.

This separation of the fluctuations of P+ and P− as
a function of energy would be clearly manifested in a
measurement of the inelastic scattering. This is illustrated in
Fig. 7 which shows a prediction for the inelastic scattering
around the reciprocal lattice vector Qin = (0,2,4) at T = 0.

The linearly dispersing photon modes are visible with
intensity I ∝ q ∝ ω, vanishing as they approach ω = 0 at the
zone center. The gapped modes have finite weight approaching
the zone center. Observation of these modes in an inelastic
scattering experiment would represent convincing evidence
for the formation of a protonic quantum liquid in ice Ih.

V. APPLICATION TO EXPERIMENT

In this paper, we have developed a comprehensive theory
of the disordered proton correlations in hexagonal (Ih) water
ice, considering both a classical model based on the “ice rules”
(Sec. III), and a quantum model allowing for coherent quantum
tunneling of protons (Sec. IV). We anticipate that the classical
theory should accurately describe proton correlations at tem-
peratures where quantum effects are unimportant, while the
quantum theory becomes of interest at low temperatures, i.e.,
temperatures comparable with the tunneling matrix elements
g1,2 in Hhexagonal

tunneling [Eq. (4)].
In what follows, we place these results in the context

of published experiment, exploring three particular themes:
ice-rule correlations, as revealed by diffuse neutron scattering
at relatively high temperatures (Sec. V A); low-energy exci-
tations of protons at low temperatures, as revealed by the
incoherent inelastic neutron scattering experiments of Bove
et al. [18] (Sec. V B); and the thermodynamics of ice at low
temperatures (Sec. V C).

A. Diffuse, coherent neutron scattering in the classical regime

In Sec. III C of this paper, we developed a theory of diffuse
neutron scattering from hexagonal water ice based entirely
on the Bernal-Fowler ice rules [1,2,5]. We found that the
ice rules give rise to both pinch-point singularities, arising
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FIG. 8. Prediction for coherent, quasielastic scattering from protons in a quantum model of ice Ih at zero temperature (T = 0). The pinch
points associated with the ice rules (cf. Fig. 6) are eliminated by quantum fluctuations (cf. Ref. [39]). At finite temperatures, these pinch points
will be restored with a weight linear in T [37]. Results are shown for the energy-integrated, equal-time structure factor SH+

coh(q,t = 0) [Eq. (79)],
calculated within the lattice-gauge theory HU(1) [Eq. (66)], for the same parameter set [Eq. (68)] as Fig. 7. Reciprocal-lattice vectors are indexed
to the orthorhombic unit cell defined in Appendix A, following the conventions of Nield and Whitworth [52].

from the algebraic correlations of the uniform polarization
P+ [Eq. (15)] and broad, asymmetric features, arising from
the short-ranged correlations of the staggered polarization P−
[Eq. (16)]. The way in which these two fields contribute is
controlled by form factors, and depends on the Brillouin zone
in question (cf. Appendix D). We now consider how these
predictions, summarized in Fig. 6, compare with experiment.

We consider first the pinch points, originating in the uniform
polarization P+. That the ice rules give rise to pinch-point
singularities in the structure factor is a very general result and
widely known from the study of icelike systems [14,28,57].
In the context of water ice, the prediction that the proton
correlation function should be singular at Brillouin zone
centers going back as far as Villain in 1972 [58]. These
pinch-point singularities are also visible in Monte Carlo

simulations of the structure factor, based on the ice rules
[81] and in reverse Monte Carlo fits to neutron scattering
data [51,52,83–85]. Other theoretical studies, which have
utilized random walk approximations [82,86] and graph series
expansions [87], while not specifically identifying the pinch
points, have noted the presence of nodal lines in the structure
factor.

Experimental observation of pinch points in water ice is
challenging since coherent scattering of both neutrons and x
rays from protons is very weak, and the pinch points are located
at reciprocal lattice vectors, where scattering is dominated by
Bragg peaks associated with the ordered lattice of oxygen
atoms. Nevertheless, pinch-point structures are visible in the
neutron scattering from deuterated water ice, D2O, where
coherent scattering is much stronger [51,52,81,84].
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Clear examples of pinch points, occurring at the zone
centers predicted by our theory, can be seen in, e.g., Fig. 2(a)
of Li et al. [51] or, equivalently, Fig. 5(a) of Wehinger et al.
[81]. These should be compared with Fig. 7(c) of this paper,
noting that these authors have indexed their reciprocal lattice
vectors to a hexagonal unit cell, such that

H H L (hexagonal)

→ 2H 0 L (orthorhombic). (84)

The pinch points present in the data are well reproduced by
the theory developed in Sec. III C. Nodal lines, connecting
the zone centers where there are pinch points, can also be
seen as marked suppressions of the scattering along certain
high-symmetry directions in both theory and experiment.

We now turn to the broad, asymmetric features, originating
in the staggered polarization P−. As well as pinch points, the
neutron scattering data of Li et al. [51] also shows zone-center
scattering with a broad, asymmetric character. An example
of a broad feature, arising from the correlations of P− can
be seen near to Q̃Li = (1,1,5) in Fig. 2(a) of Ref. [51] or,
equivalently, Fig. 5(b) of Ref. [81]. This should be compared
the scattering around Q = (2,0,5) in Fig. 7(c). The broad zone-
center features present in the data are well reproduced by
theory.

More generally, correlations at zone centers are described
by a combination of pinch points, originating in P+, and broad
features, originating in P−. An example of this type of feature
can be seen near to Q̃Li = (2,0,3) in Fig. 3(a) of Ref. [51] or,
equivalently, Fig. 5(c) of Ref. [81]. This should be compared
to the scattering around Q = (0,4,3) in Fig. 7(b), noting that

H 0 L (hexagonal)

→ 0 2K L (orthorhombic). (85)

Once again, there is good agreement between theory and
experiment.

Taking a broader view of reciprocal space, the proton
correlations measured by neutron scattering from D20 at 20 K
are generally well described by the ice rules, differing only
in a stronger diffuse background, and “streaks” of diffuse
scattering in certain Brillouin zones where static proton
correlations should not be visible [80,81]. Both effects can
be explained in terms of the thermal excitation of phonons
[81].

X-ray diffraction from protons does not suffer from the
same problems as neutron scattering, and can be performed
directly on H20. However, x-ray measurements present prob-
lems of cooling, and to date all experiments on ice Ih have been
carried out relatively high temperatures. In this case, diffuse
scattering reveals relatively little about the ice rules, being
dominated by a pattern of linelike “streaks,” characteristic of
thermally excited phonons [81].

B. Incoherent inelastic neutron scattering at low temperatures

At present, the strongest experimental evidence in support
of the collective quantum tunneling of protons in ice Ih comes
from the recent neutron scattering experiments of Bove et al.
[18]. In these experiments, inelastic, incoherent scattering
from protons in ice Ih at T = 5 K was observed for a range of

energies �ω ∼ 0.1 meV, outside the experimental width of the
elastic line. The authors found that the momentum dependence
of this incoherent signal was consistent with a “double-well”
model in which there is one proton on each bond, tunneling
between two sites. Since moving a single proton within a
state obeying the ice rules has a prohibitive energy cost, they
interpreted their result in terms of correlated tunneling of
protons on hexagonal plaquettes, of exactly the type described
by Hhexagonal

tunneling [Eq. (4)] (cf. Fig. 2). This interpretation finds
support in ab initio calculations for Ih water ice [19,20], and
the energy scale of the dynamics observed is broadly consistent
with the single published estimate of the scale of quantum
tunneling, g ∼ 0.1 meV [19].

Given this, it is interesting to compare the predictions of
the theory of water ice with quantum tunneling developed
in Sec. IV, with the neutron scattering experiments of Bove
et al. [18]. Since incoherent scattering probes only the local
proton correlations, it is not capable of distinguishing the
signal long-wavelength features of the lattice-gauge theory,
such as birefringent photons, or temperature-dependent pinch
points. Nonetheless, the results of the comparison remain very
intriguing.

In Fig. 9, we present the results of a calculation of the
incoherent scattering at finite temperature T = 5 K, within
the lattice-gauge theory HU(1) [Eq. (66)]. Calculations were
carried out for the symmetric choice of parameters

U = U ′, K = K′

[cf. Eq. (68)]. In the absence of further constraints on
parameters, we set

√
UK = 0.018 meV (86)

to give an overall bandwidth of excitations [Eq. (69)]

�ω ∼ 0.1 meV ∼ 1 K, (87)

consistent with ab initio estimates of g [19]. The details of the
calculation are given in Appendix G.

We find that the quantum tunneling of protons does
indeed produce “wings” of inelastic scattering which extend
appreciably beyond the experimental width of the elastic line,
as observed by Bove et al. [18]. Fine structure in the incoherent
inelastic scattering [Fig. 9(a)], coming from the details of
the dispersion (Fig. 7), is obscured by finite experimental
resolution [Fig. 9(b)], leading to broad wings on the elastic line
[cf. Fig. 9(c)]. The energy width of these wings is controlled by
the bandwidth of collective excitations of protons. Within the
lattice-gauge theory, this is set by

√
UK and, for the parameters

chosen, is a little less than that observed in experiment.
The good, qualitative, agreement between theory and

experiment is very encouraging. Nonetheless, it is hard to draw
a definitive conclusion on the nature of ice Ih from incoherent
scattering alone. A much cleaner test would be a measurement
of the dispersion of the emergent photons, and associated
gapped modes, as a function of wave vector. This would
require coherent inelastic scattering, which is rendered rather
challenging by the fact that incoherent neutron scattering cross
section for protons is approximately 50 times greater than the
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FIG. 9. Prediction for inelastic, incoherent scattering from protons in quantum ice Ih. (a) Prediction of the lattice-gauge theory HU(1)

[Eq. (66)], at a temperature of T = 5 K, for the same parameters set used in discussing coherent inelastic scattering (cf. Figs. 7 and 8).
(b) Prediction of the lattice-gauge theory, convoluted with a Gaussian of FHWM 0.07 meV to represent finite experimental resolution. (c)
Prediction of the lattice-gauge theory (blue), combined with the elastic contribution to the incoherent scattering (yellow). Both have been
convoluted with a Gaussian to represent finite experimental resolution. The combined line shape shows inelastic “wings,” similar to those
observed in experiments on ice Ih by Bove et al. [18]. Parameters are given in Eqs. (68) and (86), with details of calculations in Appendix G.

coherent cross section [90]. However, in some circumstances,
it is possible to separate coherent and incoherent scattering
using polarization analysis [91].

It is possible to enhance the ratio of coherent to incoherent
scattering by using deuterated ice D2O [51]. However, some
caution is called for. One of the key findings of the experiments
of Bove et al. [18] was that partial deuteration suppressed
proton dynamics. This conclusion is supported by subsequent
ab initio simulations, which find that partial deuteration
inhibits collective quantum tunneling on “ordered” plaquettes
[78].

It follows from the structure of the lattice-gauge theory
HU(1) [Eq. 66] that the quantum liquid is stable against all
small perturbations which do not violate the ice rules [35].
Consequently, the loss of quantum tunneling on a very small
proportion of plaquettes, through the natural abundance of
deuterium in water, should not injure the quantum liquid state.
Nonetheless, the loss of tunneling on a macroscopic proportion
of plaquettes is a different proposition, and could easily lead
the protons to freeze. It is plausible that the dynamics is
restored in the case of full (or very large) deuteration. But
even so, the change from protons to deuterons will alter the
relevant energy scale, presumably forcing quantum effects to
lower temperatures, and changing the balance with any other
interactions which favor proton order.

A possible alternative to neutron scattering is x-ray diffrac-
tion. In this it has been shown that at high temperatures the
diffuse scattering is dominated by thermally excited phonons
[81], making it difficult to observe the diffuse scattering
which comes from the proton disorder. However, the quantum
effects described in this paper should manifest themselves
at temperatures far below the phonon Debye temperature.
At these temperatures, the contribution of thermally excited
phonons should be substantially reduced and one may hope to
observe the correlations associated with the onset of a quantum
proton liquid regime.

It is also interesting to speculate that the optical properties
of ice Ih, which so closely resemble those of the emergent

photons in the lattice gauge theory, might be sensitive to a
proton liquid at low temperatures.

C. Thermodynamics

One of the most famous experimental results in the study
of water ice is the demonstration by Giauque and Stout
[4] that it retains a residual entropy down to T = 15 K,
and that the size of the residual entropy is very close to
Pauling’s estimate of the entropy arising from disordered
proton configurations obeying the Bernal-Fowler ice rules
[2]. Subsequent experiments [92,93] have measured down to
temperatures as low as T = 0.5 K and find only a very small
change in the entropy below 15 K and no new features in the
heat capacity.

The quantum proton liquid discussed in this paper is
a coherent superposition of an exponentially large number
of proton configurations obeying the ice rules. At T = 0,
it provides a unique quantum ground state, with vanishing
entropy, in accordance with the third law of thermodynamics
[39]. It follows the residual entropy associated with ice must
be lost in cooling from the high-temperature, classical, regime
to the low-temperature quantum regime. It is therefore natural
to ask how this entropy would be lost, and whether this is
consistent with published results for the heat capacity of ice Ih.

In principle, entropy could be lost through either a sharp
phase transition or a smooth crossover. Establishing which of
these two possibilities occurs would require finite-temperature
quantum Monte Carlo simulations of Hhexagonal

tunneling [Eq. (4)],
which lie beyond the scope of this paper. Nonetheless, we can
gain some insight by analogy with quantum spin ice, where
related simulations have already been carried out.

The nature of a thermal crossover between a classical and
a quantum spin ice was explored in Ref. [37]. The crossover
was found to be controlled by a single length scale λT, the
thermal de Broglie wavelength set by the thermal excitation
of (emergent) photons. At small, but finite temperatures, the
correlations return to their classical form at length scales r �
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λT where

λT ∼ 1

T
. (88)

The corollary of this result for scattering experiments is that the
pinch-point singularities, suppressed by quantum fluctuations,
are restored with a weight linear in T [37].

The thermal excitation of photons also has consequences
for the thermodynamics of a quantum ice. Since the photons
of the lattice-gauge theory are linearly dispersing, they give a
contribution

C ∼ T 3 (89)

to the heat capacity at low temperature [35,37,89]. In the
absence of a phase transition, this T 3 behavior would be
expected to merge into a Schottky-type peak in the heat
capacity, at a temperature of order the quantum tunneling
matrix element g.

The thermal-crossover scenario for quantum spin ice, de-
veloped in Ref. [37], finds strong support in finite-temperature
quantum Monte Carlo simulations [36,38]. In particular, a
recent numerical study by Kato and Onoda [38] presents a
detailed analysis of the thermodynamics of a quantum spin-ice
model as the temperature is lowered from a “classical ice” into
a quantum spin-liquid state with emergent photon excitations.
They found that the ice entropy is lost in a smooth crossover
occuring at a temperature T � g, where g is the leading
tunneling matrix element between ice states. This crossover
is observable in the heat capacity as a low-temperature peak.
At temperatures lower than the peak, the heat capacity behaves
as C ∼ T 3, as expected for linearly dispersing photons.

Assuming that similar considerations apply, quantum ef-
fects should begin to influence the thermodynamics of water
ice at a temperature a little smaller than the tunneling matrix
elements g1,2. Below this temperature, we would anticipate a
peak in the heat capacity signaling the loss of the majority
of the Pauling ice entropy. Below this peak there would be a
substantial T 3 contribution to the specific heat from thermal
excitation of photons, in addition to usual the T 3 contribution
coming from acoustic phonons.

To date, to the best of our knowledge, measurements of ice
Ih have not revealed any anomaly in the heat capacity which
could be interpreted as the onset of quantum correlations of
protons, down to T = 500 mK [93]. However, for a number
of reasons, it is hard to draw any definitive conclusion from
these experiments.

First, considerable ambiguity remains about the tempera-
ture at which quantum effects should be expected to occur
in ice Ih. The single published ab initio estimate of quantum
tunneling g ∼ 0.1 meV ∼ 1 K [19] is very similar to the lowest
temperatures achieved in experiment [93]. Moreover, in the ab-
sence of finite-temperature quantum Monte Carlo simulations,
it is not known at what fraction of g1 and g2 a heat-capacity
anomaly should be expected to appear. It may therefore be
that quantum tunneling of protons does lead to quantum-liquid
state in ice Ih, but that the associated loss of entropy occurs at
a temperature lower than that currently measured.

The second problem associated with the interpretation
of thermodynamic measurements at low temperatures is the
extreme difficulty of performing experiments, in equilibrium,

on a system which retains an extensive entropy. Here, parallel
studies of spin ice provide a stark warning: recent experiments
on the spin ice Dy2Ti2O7 by Pomaranski et al. revealed thermal
equilibration times in excess of a week at temperatures of
order 300 mK [94]. Once their sample had equilibrated,
Pomaranski et al. found an upturn in the heat capacity at low
temperatures, in contrast with earlier experiments, where the
Pauling ice entropy was reported to persist down to 200 mK
[8,9]. If similar problems of equilibration occur, it is possible
to envisage that a specific-heat peak associated with the loss
of Pauling’s ice entropy could yet be observed in ice Ih at
temperatures of order 1 K.

While thermodynamic measurements at very low temper-
atures will always be challenging, it is important to note
that the consequences of quantum tunneling in water ice
should be observable at temperatures considerably greater
than that associated with the loss of the Pauling ice entropy.
This is particularly true of dynamical properties, measured at
wavelength shorter than the thermal de Broglie wavelength
λT. As a result, quantum Monte Carlo simulation of quantum
spin ices show clear signs of quantum effects in dynamical
structure factors at relatively high temperatures [36,38,48]. It
therefore remains reasonable to discuss the inelastic neutron
scattering of Bove et al. [18], carried out at 5 K, in terms
of a lattice-gauge theory with characteristic energy scale√
UK ∼ 1 K (cf. Sec. V B).

VI. CONCLUSIONS

Common, hexagonal, water ice is a wholly remarkable
substance, a proton-bonded network of water molecules in
which oxygen atoms form a regular crystal, but protons need
never order. In this paper, we have explored the nature of
proton disorder in hexagonal (Ih) water ice, considering both
a classical model based on the Bernal-Fowler “ice rules”
[1,2], and a quantum model which respects the ice rules, but
also incorporates collective quantum tunneling of protons on
hexagonal plaquettes (cf. Fig. 2). Quantum tunneling of this
type is known to have profound consequences in models of
quantum spin ice [35–40], and there is a growing body of
evidence that it also plays a role in water ice, including ab
initio calculations [19,20], inelastic neutron scattering [18],
and parallel studies of other proton-bonded systems [16,72].

In the case of classical ice Ih, we have developed a
comprehensive theory of diffuse scattering from protons
(Sec. III). We find that the ice rules have two distinct
signatures in scattering: singular pinch points, originating in
a zero-divergence condition on the uniform polarization P+,
and broad, asymmetric, zone-center features, coming from the
staggered polarization P− (Fig. 6). Both of these features have
previously been observed in experiment [51].

In the case of the quantum model, we have obtained a
description of a low-temperature quantum liquid, in which
protons resonate between an exponentially large number of
configurations satisfying the ice rules, in terms of a quantum
U(1) lattice-gauge theory (Sec. IV). The long-wavelength
excitations of this quantum liquid take the form of gapless,
emergent photons, originating in the uniform polarization
P+, and gapped, optical modes originating in the staggered
polarization P−.
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We have used this lattice-gauge theory to make concrete
predictions for inelastic scattering experiments on a ice Ih
(Fig. 7). We find that both the emergent photons and the
optical modes can be clearly resolved at finite energy. Much
like real light in water ice [95,96], the emergent photons are
birefringent, exhibiting a dispersion which depends on both
their polarization and their direction of propagation. We have
also explored how quantum tunneling of protons modifies
diffuse scattering at low temperatures (Fig. 8). We find that the
pinch points, characteristic of the ice rules, are progressively
eliminated as the system is cooled toward T = 0.

The assertion, in Ref. [45], that the lattice-gauge theory
describing a two-dimensional quantum water ice should be
confining at T = 0, is consistent with numerical results for
two-dimensional quantum ice [15,46–48]. However, a number
of three-dimensional icelike models are known to support de-
confined, quantum-liquid ground states [39,43]. In the absence
of detailed simulations, it is not clear for which parameters the
ground state ofHhexagonal

tunneling [Eq. (4)] should be ordered. However,
the incoherent inelastic neutron scattering experiments of Bove
et al. [18] provide prima facie evidence of collective proton
dynamics at a temperature (5 K) comparable with ab initio esti-
mates of quantum tunneling in ice Ih [19], and is in good, qual-
itative, agreement with the predictions of our theory (Fig. 9).

The observation of a birefringent, emergent, photon in
coherent inelastic scattering from protons at low temperatures
would provide very strong evidence for the existence of
quantum fluid of protons in ice Ih. At present, however it is not
possible to compare these predictions directly with experiment
since coherent inelastic scattering data are unavailable for
the temperatures where quantum tunneling is expected to
be relevant. Experimental evidence for a quantum fluid of
protons from thermodynamic measurements is also lacking
(cf. Sec. V). We hope that further experiment will provide a
definitive answer to these questions.

Experiments probing the excitation spectrum of other water
ices, where protons order at low temperatures, could also be of
interest since experience with other ice models suggests that
a quantum liquid may still be observable at finite temperature
[36,38,48]. And in the absence of evidence to the contrary, a
quantum-liquid ground state in ice Ih remains an intriguing
possibility.

In conclusion, more than 80 years after the pioneering work
of Bernal and Fowler, the behavior of protons in common,
hexagonal water ice at low temperatures remains a problem
of great fundamental interest. And, on the basis of recent
experiments [18], a quantum liquid of protons, of the type
explored in this paper, remains a tantalizing possibility.

Note added. Recently, two papers of direct relevance have
appeared. The first, by Isakov et al. [97], also examines the
proton correlations in a classical model of ice Ih. The second,
by Yen and Gao [98], reports evidence for quantum coherence
in water ice, from measurements of its dieletric constant.
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APPENDIX A: DETAILS OF THE LATTICE AND
COORDINATE SYSTEM

In this Appendix, we give details of the lattice and
coordinate system which we have used in our calculations.
We will write all lattice length scales in terms of the oxygen-
oxygen bond distance aO, which in ice Ih is approximately
[5]

aO ≈ 2.75 Å. (A1)

We use a coordinate system in which the hexagonal
symmetry axis is the z axis and the repeat vectors of the
hexagonal unit cell

G1 = aO

(
2
√

2√
3

,0,0

)
, (A2)

G2 = aO

(√
2√
3
,
√

2,0
)
, (A3)

G3 = aO

(
0,0,

8

3

)
. (A4)

The primitive unit cell contains four oxygen atoms and eight
protons.

One can also define an orthorhombic unit cell, containing
eight oxygen atoms with orthogonal repeat vectors

GX = G1, (A5)
GY = 2G2 − G1, (A6)

GZ = G3. (A7)

This is the unit cell used by Nield and Whitworth in Ref. [52].
In the scattering patterns shown in Figs. 5, 6, 13, and 8, the

reciprocal lattice units used for the momentum scale are with
reference to the orthorhombic unit cell, as in Ref. [52]. Thus,
h, k, and l (cf. Figs. 5, 6, 13, and 8) relate to the momentum
transfer q via

q =
(

2πh

|GX| ,
2πk

|GY | ,
2πl

|GZ|
)

, (A8)

where GXYZ are defined in Eqs. (A5)–(A7).
The bond vectors dα

i connecting an oxygen to its four
neighbors [cf. Eq. (9)] are given by

dA
0 = dC

0 = aO(0,0,1), (A9)

dA
1 = aO

(√
2

3
,

√
2

3
,−1

3

)
, (A10)

dA
2 = aO

(
−
√

2

3
,

√
2

3
,−1

3

)
, (A11)

dA
3 = aO

(
0,

−2
√

2

3
,−1

3

)
, (A12)
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dC
1 = aO

(
−
√

2

3
, −

√
2

3
,−1

3

)
, (A13)

dC
2 = aO

(√
2

3
, −

√
2

3
,−1

3

)
, (A14)

dC
3 = aO

(
0,

2
√

2

3
,−1

3

)
, (A15)

dB
i = −dC

i ∀ i, (A16)

dD
i = −dA

i ∀ i. (A17)

The displacement of protons from the bond midpoint on the
eight sublattices of bonds are given by ±ai where

a0 = φdA
0 , a1 = φdA

1 , a2 = φdA
2 , a3 = φdA

3 ,

a4 = φdC
0 , a5 = φdC

1 , a6 = φdC
2 , a7 = φdC

3 . (A18)

For the purpose of our scattering calculations we take the size
of the proton displacement from the bond midpoint relative to
the bond length to be

φ = 0.15 (A19)

assuming an O-H covalent bond length [81]

aOH = 0.95 Å. (A20)

For the calculation of the dispersion of the lattice-gauge
theory, presented in Sec. IV and Appendix E, it is necessary
to define a labeling convention for the eight sets of oxygen-
oxygen bonds not related by translational symmetries and for
the eight sets of six-link plaquettes. Our convention is defined
in Fig. 10.

Of particular are importance are the set of vectors which
link the bond midpoints around the edge of a plaquette to the
center of the plaquette. We denote these vectors cnm where two
bonds of sublattice m belong to a plaquette of sublattice n and
are located at pn ± cnm with the plaquette center being at pn.
Where only one bond of sublattice m belongs to a plaquette of
sublattice n we denote it’s position relative to the center of the
plaquette by Cnm. These vectors are

c01 = −c10 = c45 = −c54 = aO

(−1√
6
,

1√
2
,0

)
,

c02 = −c20 = c46 = −c64 = aO

(−1√
6
,− 1√

2
,0

)
,

c03 = −c30 = c47 = −c74 = aO

(√
2

3
,0,0

)
,

C12 = C21 = aO

(
0,

√
2

3
,
2

3

)
,

C13 = C31 = aO

(
1√
6
,− 1

3
√

2
,
2

3

)
,

C23 = C32 = aO

(
− 1√

6
,− 1

3
√

2
,
2

3

)
,

C56 = C65 = aO

(
0,−

√
2

3
,
2

3

)
,

C57 = C75 = aO

(
− 1√

6
,

1

3
√

2
,
2

3

)
,

C67 = C76 = aO

(
1√
6
,

1

3
√

2
,
2

3

)
,

C16 = C25 = aO

(
0,

√
2

3
,−2

3

)
,

C17 = C35 = aO

(
1√
6
,− 1

3
√

2
,−2

3

)
,

C27 = C36 = aO

(
− 1√

6
,− 1

3
√

2
,−2

3

)
,

C53 = C71 = aO

(
− 1√

6
,

1

3
√

2
,−2

3

)
,

C63 = C72 = aO

(
1√
6
,

1

3
√

2
,−2

3

)
,

C61 = C52 = aO

(
0,−

√
2

3
,−2

3

)
.

APPENDIX B: DERIVATION OF CONSTRAINTS WITHIN
IN CONTINUUM FIELD THEORY

In this Appendix, we describe in detail the coarse-graining
procedure used in Sec. III A to obtain the constraints (17) and
(18).

The argument begins by setting mr = 0 for all A and C

vertices [cf. Fig. 2(b)]. If we then set the value of the total
flux Pr around every A and C vertex, we have specified
the H-bond configuration of the entire lattice. The necessity
that this configuration must also obey mr = 0 at the B

and D vertices induces constraints on how Pr varies in
space.

To derive those constraints in the long-wavelength limit,
we introduce two coarse-grained fields P̄A(r), P̄C(r) defined at
every point in space (not just on the lattice). We define P̄A(r) in
such way that when it is evaluated at the position of an oxygen
vertex of the A sublattice, it returns the precise value of the
total flux around that vertex

P̄A(r = rA) = PrA
. (B1)

Similarly,

P̄C(r = rC) = PrC
. (B2)

To obtain our constraints on P̄A(r), P̄C(r) we write the scalar
field mr at the B and D vertices in terms of the degrees of
freedom at the four surrounding vertices.

A vertex of the B sublattice (cf. Fig. 4), located at rB ,
neighbors one A vertex located at

r(0)
A = rB − dA

0 (B3)
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FIG. 10. Labeling convention for the eight sets of oxygen-oxygen bonds and eight sets of six-link plaquettes unrelated by translational
symmetry. This is the convention employed in diagonalizing the lattice-gauge theory described in Sec. IV and Appendix E. (a) Color coded
such that bonds related by translational symmetry are the same color. The bonds labeled 0 and 4 are mirror-symmetric bonds aligned along
the z axis and the remaining bonds are center symmetric (cf. Fig. 3). (b) Shows plaquettes of type I with matrix element g1. (c)–(e) Shows
plaquettes of type II with matrix element g2.

and three C vertices located at

r(i)
C = rB − dC

i , i = 1,2,3 (B4)

[cf. Eqs. (A9)–(A17)].
Using the vanishing of mr at the A and C vertices

mrB = 3

4

{
3∑

i=1

1

aO
dC

i · PrB−dC
i

+ P z

rB−dA
0

}
(B5)

and similarly

mrD = 3

4

{
3∑

i=1

1

aO
dA

i · PrD−dA
i

+ P z

rD−dC
0

}
. (B6)

Assuming smooth variation of P̄A(r), P̄C(r) we can use a
Taylor expansion to write

P α
rA,C+δr ≈ P̄ α

A,C(r) + δr · ∇P̄ α
A,C(r). (B7)

Enforcing mrB = mrD = 0 throughout the lattice, we obtain
the constraints on our continuum field theory, Eqs. (13) and
(14).

APPENDIX C: PROJECTION OPERATOR CALCULATION
OF STRUCTURE FACTOR FOR CLASSICAL WATER ICE

Here, we show how to calculate the structure factor for the
Ising bond variables σrr′ [Eq. (29)] via a generalization of the
lattice calculation in Ref. [57]. In this approximation, the Ising
nature of the variables σrr′ is relaxed, such that they can take on
any real value and their normalization is enforced on average〈

σ 2
rr′
〉 = 1. (C1)

The calculation proceeds by constructing a projection operator
which acts on the Fourier transform of an arbitrary proton
configuration, to remove all states which do not satisfy the ice
rules.
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We begin by defining the Fourier transform over the bond
variables as in Sec. III B [Eq. (31)], i.e.,

σν(q) =
√

4

N

∑
rr′∈ν

exp(−iq · Rrr′ )σrr′ ,

Rrr′ = r + r′

2
,

where ν indexes one of the eight sublattices of bonds which
are not related by a translational symmetry of the lattice, and
N counts the number of oxygen atoms. The sign of σrr′ is fixed
by the convention [Eq. (31)]

r ∈ {A,C}, r′ ∈ {B,D},
where α = A,B,C,D indexes the four oxygen sublattices [cf.
Fig. 2(b)].

From these Fourier transforms we define an eight-
component vector

σ̃ (q) = [σ1(q),σ2(q),σ3(q),σ4(q),σ5(q),σ6(q),σ7(q),σ8(q)].

(C2)

We also introduce a net Ising polarization for each oxygen
sublattice α = A,B,C,D,

mα(q) =
√

4

N

∑
r∈α

exp(−iq · r)m(r). (C3)

It follows from Eq. (9) that

mα(q) = 0 ∀ α,q (C4)

in any state obeying the ice rules.
The constraint (C4) can be written as a set of orthogonality

conditions on σ̃ (q):

[τα(q),σ̃ (q)] = 0, α = A,B,C,D (C5)

where the inner product

(A,B) =
∑

i

A∗
i Bi (C6)

and the eight-component vectors τα(q) are defined by

τA = (eiq·dA
0 /2,eiq·dA

1 /2,eiq·dA
2 /2,eiq·dA

3 /2,0,0,0,0
)
, (C7)

τB = (eiq·dB
0 /2,0,0,0,0,eiq·dB

1 /2,eiq·dB
2 /2,eiq·dB

3 /2
)
, (C8)

τC = (0,0,0,0,eiq·dC
0 /2,eiq·dC

1 /2,eiq·dC
2 /2,eiq·dC

3 /2
)
, (C9)

τD = (0,eiq·dD
1 /2,eiq·dD

2 /2,eiq·dD
3 /2,eiq·dD

0 /2,0,00) (C10)

with the vector dα
i defined in Eqs. (A9)–(A17).

At long wavelength (i.e., in the vicinity of a Brillouin zone
center), the orthogonality conditions (C7)–(C10) must reduce
to the constraints on the classical fields P+ and P−, discussed
in Sec. III A and Appendix B. The connection between the two
approaches can be made explicit by rewriting the constraints
on bond variables, Eqs. (C7)–(C10), in terms of the lattice
variable mr and Pr. To this end, we introduce the Fourier
transform of the polarization Pr on sublattice α:

Pα(q) =
√

4

N

∑
r∈α

exp(−iq · r)Pr. (C11)

For the moment, we restrict our discussion to wave vectors
q which are close to a reciprocal lattice vector Q and write

q = Q + q̃. (C12)

By analogy with Eqs. (15) and (16) of the main text, we
write

m±(q̃) = 1√
2

[exp(iQ · rA) mA(q)

± exp(iQ · rC) mC(Q + q̃)], (C13)

P±(q̃) = 1√
2

[exp(iQ · rA) PA(Q + q̃)

± exp(iQ · rC) PC(Q + q̃)]. (C14)

The vectors rA and rC are the positions of the oxygen sites
labeled A and C within a primitive unit cell. Note that we
have defined the fields in Eqs. (C13) and (C14) in such a way
that they are independent of the reciprocal lattice vector Q and
depend only on the distance to the zone center q̃. We may
therefore use Eqs. (21)–(23), with the replacement

q → q̃ (C15)

to describe the correlations at small q̃ in the vicinity of
all reciprocal lattice vectors Q, i.e., near all Brillouin-zone
centers.

To demonstrate that the constraints derived in the con-
tinuum theory [Eqs. (17) and (18)] are equivalent to the
constraints in the lattice theory [Eq. (C5) ] in the limit q̃ → 0,
we consider the following linear combinations of the vectors
τ (q) = τ (Q + q̃):

τAC+(Q,q̃) = 1√
2

[exp(iQ · rA)τA(Q + q̃)

+ exp(iQ · rC)τC(Q + q̃)], (C16)

τAC−(Q,q̃) = 1√
2

[exp(iQ · rA)τA(Q + q̃)

− exp(iQ · rC)τC(Q + q̃)], (C17)

τBD+(Q,q̃) = 1√
2

[exp(iQ · rB)τB(Q + q̃)

+ exp(iQ · rD)τD(Q + q̃)], (C18)

τBD−(Q,q̃) = 1√
2

[exp(iQ · rB)τB(Q + q̃)

− exp(iQ · rD)τD(Q + q̃)], (C19)

where rA,rB,rC , and rD are the positions of each oxygen vertex
in the unit cell.

We can then express the constraints on σ̃ (q) [Eq. (C5)] as

[τAC+(Q,q̃),σ̃ (Q + q̃)] = 0, (C20)

[τAC−(Q,q̃),σ̃ (Q + q̃)] = 0, (C21)

[τBD+(Q,q̃),σ̃ (Q + q̃)] = 0, (C22)

[τBD−(Q,q̃),σ̃ (Q + q̃)] = 0. (C23)

Since

[τAC+(Q,q̃),σ̃ (Q + q̃)] = m+(q̃), (C24)

[τAC−(Q,q̃),σ̃ (Q + q̃)] = m−(q̃), (C25)
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the constraints (C20) and (C21) are satisfied if

m+(q̃) = m−(q̃) = 0 ∀ q. (C26)

The constraints on τ (Q,q̃) [Eqs. (C22) and (C23)] give
rise to constraints on the q̃ dependence of P+(q̃) and P−(q̃).
Reexpressing Eq. (C22) in terms of P+(q̃) [Eq. (15)] and P−(q̃)
[Eq. (16)], and expanding to linear order in q we find

q̃ · P+(q̃) + O
(
a2

O

) = 0. (C27)

This precisely the Fourier transform of Eq. (17), i.e., the
required condition on P+. Similarly, Eq. (C23) becomes

P z
−(q̃) + iaO

(
2
3 q · P−(q̃) − qzP

z
−(q̃)

)+ O
(
a2

O

) = 0,

(C28)

which is the Fourier transform of Eq. (18).
Having established that the lattice-based theory is equiva-

lent to the continuum field theory at long wavelength, we now
turn to the problem of calculating the structure factors which
describe proton-proton correlations for arbitrary q. Within the
lattice-based theory, this reduces to constructing a matrix P
which projects states into the subspace of proton configurations
orthogonal to the set of vectors τα(q). Explicit construction of
P is messy, and the final expression for the structure factor
must be evaluated numerically.

We proceed by using Gram-Schmidt orthogonalization [99]
to construct from {τα(q)} an orthogonal basis set {τα(q)}′:

τ ′
A = τA, (C29)

τ ′
B = τB − (τB,τ ′

A)

(τ ′
A,τ ′

A)
τ ′
A, (C30)

τ ′
C = τC − (τC,τ ′

A)

(τ ′
A,τ ′

A)
τ ′
A − (τC,τ ′

B)

(τ ′
B,τ ′

B)
τ ′
B, (C31)

τ ′
D = τD − (τD,τ ′

A)

(τ ′
A,τ ′

A)
τ ′
A − (τD,τ ′

B)

(τ ′
B,τ ′

B)
τ ′
B − (τD,τ ′

C)

(τ ′
C,τ ′

C)
τ ′
C. (C32)

The projection matrix P(q) is then given by

Pij (q) = δij −
∑

α

τ ′
αiτ

′∗
αj

(τ ′
α,τ ′

α)
. (C33)

The structure factor is obtained by acting on the Fourier
transform of some general (non-ice rule obeying) state σ̃ ′(q):

〈σi(−q)σj (q)〉 =
∑
mn

Pin(−q)Pjm(q)〈σ ′
n(−q)σ ′

m(q)〉

=
∑
mn

N0δmnPin(−q)Pjm(q)

= N0Pij (q), (C34)

where N0 is a normalization constant and in the last step we
have used the identities

P(−q) = P(q)∗, (C35)

P(q)∗ = P(q)T , (C36)

P(q)2 = P(q). (C37)

The constant N0 is fixed by Eq. (C1). This method was used
to calculate the scattering patterns in Figs. 5 and 6.

APPENDIX D: RELATING STRUCTURE FACTORS TO
CORRELATIONS OF P+(q) AND P−(q)

In this Appendix, we derive the relationship between
the structure factors SIsing(q) and Sdiffuse

proton (q), discussed in
Secs. III B and III C of the main text, and the correlation
functions of the fields P±, introduced in Sec. III A. In so doing
we establish the necessary conditions for a zone center to
exhibit singular, pinch-point scattering.

The structure factors SIsing(q) [Eq. (29)] and Sdiffuse
proton (q)

[Eq. (45)] can both be expressed in terms of the correlations
of the Ising variable σν(q) [Eq. (30)], as

Sχ (q) =
∑
νν ′

〈σν(q)σν ′(−q)〉 ηχ
ν (q) η

χ

ν ′(−q), (D1)

where

χ = Ising, proton, (D2)

the sum on ν runs over all bonds within the unit cell, and the
coefficients ηχ

ν (q) depend on which structure factor is being
calculated. In the case of SIsing(q)

ηIsing
ν (q) = 1 ∀ ν,q, (D3)

while for Sdiffuse
proton (q)

ηproton
ν (q) = i sin(q · aν), (D4)

where the vectors aν describe the displacement of the protons
from their bond midpoints, as defined in Eq. (A18).

The expression for Sχ (q) [Eq. (D1)] can be factorized to
give

Sχ (q) =
〈∣∣∣∣∣
∑

ν

ηχ
ν (q)σν(q)

∣∣∣∣∣
2〉

. (D5)

We are interested in understanding the behavior of this
structure factor near to a given reciprocal lattice vector Q,
in terms of the continuum field theory developed in Sec. III A.
To this end, we write

q = Q + q̃ (D6)

and express Sχ (q) in terms of the fields m±(q̃) [Eq. (C13)] and
P±(q̃) [Eq. (C14)], to obtain∑

ν

ηχ
ν (Q + q̃) σν(Q + q̃)

= μ
χ
+(Q,q̃) m+(q̃) + μ

χ
−(Q,q̃) m−(q̃)

+ λ
χ
+(Q,q̃) · P+(q̃) + λ

χ
−(Q,q̃) · P−(q̃), (D7)

where the vectors λ
Ising
± (q) are defined in Eqs. (D13) and

(D14), and the scalar functions μ
χ
±(Q,q̃) play no part in our

subsequent discussion.
In any state obeying the ice rules

m+(q̃) = m−(q̃) = 0, (D8)

so terms in these fields can safely be dropped∑
ν

ηχ
ν (Q + q̃)σν(Q + q̃)

= λ
χ
+(Q,q̃) · P+(q̃) + λ

χ
−(Q,q̃) · P−(q̃). (D9)
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It follows that, for |q̃| 
 1, the structure factor Sχ (q)
[Eq. (D5)] can be written as

Sχ (Q + q̃) ≈
∑
υ=±

Fχ
υ (Q)

〈∣∣λ̂χ

Q,υ · Pυ(q̃)
∣∣2〉, (D10)

where λ̂
χ

Q,υ is a unit vector in the direction of

λ
χ

Q,υ = λχ
υ (Q,q̃ = 0) (D11)

[cf. Eqs. (D13) and (D14)], and the form factor

Fχ
υ (Q) = ∣∣λχ

Q,υ

∣∣2. (D12)

The final result for the structure factor (D10) is strikingly
simple. We learn that, evaluated near to a reciprocal lattice

vector Q, the structure factor Sχ (q) measures correlations
of both P+(q̃) and P−(q̃), where each is projected onto the
vectors λ̂

χ

Q,+ and λ̂
χ

Q,−, respectively. These correlations are
mixed with a weight controlled by the form factors F

χ
+ (Q) and

F
χ
− (Q). The form factors are, in turn, fully determined by the

vectors λ
χ

Q,+ and λ
χ

Q,−. These vectors therefore control both
the “selection rules” which determine which of the fields P+
and P− is manifest in the scattering around a given reciprocal
lattice vector, and the way in which these fields couple to a
given experimental probe.

All that remains is to substitute the appropriate λ
χ

Q,υ , in
the expression for Sχ (q) [Eq. (D10)], using Eq. (D11). In the
specific case of the Ising structure factor SIsing(q) [Eq. (29)],
we have

λ
Ising
± (Q,q̃) = exp(−iQ · rA)

3∑
i=0

3

4aO
dA

i exp
[−i(Q + q̃) · d2

i /2
]± exp(−iQ · rC)

3∑
i=0

3

4aO
dC

i exp
[−i(Q + q̃) · dC

i /2
]
,

(D13)

where the vectors dA
i ,dC

i are given in Eqs. (A9)–(A15).
Meanwhile, for the proton structure factor Sdiffuse

proton (q) [Eq. (45)], we have

λ
proton
± (Q,q̃) = exp(−iQ · rA)

3∑
i=0

3

4aO
dA

i exp
[−i(Q + q̃) · d2

i /2
]
i sin

[
φ
(
Q + q̃ · dA

i

)]

± exp(−iQ · rC)
3∑

i=0

3

4aO
dC

i exp
[−i(Q + q̃) · dC

i /2
]
i sin

[
φ
(
Q + q̃ · dC

i

)]
, (D14)

where the parameter

φ = 0.15 (D15)

expresses the relative displacement of the protons from the
midpoint of the bond, as defined in Eq. (A19).

APPENDIX E: CALCULATION OF THE DISPERSION OF
EMERGENT PHOTONS ON THE ICE Ih LATTICE

The Hamiltonian of the U(1) gauge theory on the pyrochlore
lattice is

HU(1) = U
2

∑
〈rr′〉∈CS

E2
rr′ + U ′

2

∑
〈rr′〉∈MS

E2
rr′

+ K
2

∑
�∈I

[∇� × A]2 + K′

2

∑
�∈II

[∇� × A]2, (E1)

where the sum
∑

〈rr′〉∈CS runs over center-symmetric oxygen-
oxygen bonds,

∑
〈rr′〉∈MS runs over mirror-symmetric oxygen-

oxygen bonds (cf. Fig. 3),
∑

rp∈I runs over plaquettes normal
to the optical axis, and

∑
rp∈II runs over plaquettes parallel

to the optical axis [cf. Eq. (4)]. We may condense this

as

HIh = U
2

∑
r

∑
m

αmE2
rm + K

2

∑
r

∑
p

βp[(∇� × A)r,p]2,

(E2)

where
∑

r is a sum over primitive unit cells and the sums over
m and p are over bond and plaquette midpoints in a single unit
cell, respectively. For the eight component objects α and β we
have

α =
(

1,1,1,
U ′

U ,1,1,1,
U ′

U

)
, (E3)

β =
(K′

K ,
K′

K ,
K′

K ,1,
K′

K ,
K′

K ,
K′

K ,1

)
. (E4)

We will use the notation

E(r,m) = Er,r+dm
, (E5)

A(r,m) = Ar,r+dm
, (E6)

where dm is a bond vector in the direction of one of the eight
inequivalent bonds in the unit cell.
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We need now to write a decomposition of these fields in terms of photon operators. This is

A(r,m) =
√

4

N

∑
k

8∑
λ=1

√
αmU
ωλ(k)

(exp[−ik · (r + dm/2)]ηmλ(k)aλ(k) + exp[ik · (r + dm/2)]η∗
λm(k)a†

λ(k)), (E7)

E(r,m) = i

√
4

N

∑
k

8∑
λ=1

√
ωλ(k)

αmU
(exp[−ik · (r + dm/2)]ηmλ(k)aλ(k) − exp[ik · (r + dm/2)]η∗

λm(k)a†
λ(k)). (E8)

It is easy to check that that Eqs. (E7) and (E8) fulfill the commutation relationship

[E(r,m),A(r,m)] = i. (E9)

As in Ref. [37], we may write ∇� × Arm in terms of our Fourier decomposition as a matrix Z(k) acting on the vectors η
λ
(k).

We have

√
βp

(∇� × A
)

(r,p) =
√

4

N

∑
k

4∑
λ=1

√
U

ωλ(k)

{
exp[−ik·(rp)]aλ(k)

∑
m

√
βpZpm(k)

√
αmηmλ(k)

+ exp[ik·(rp)]a†
λ(k)

∑
m

η∗
λm

√
βpZpm(k)∗

√
αm

}
. (E10)

The matrix Z(k) is

Z(k)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2i sin(k·c01) 2i sin(k·c02) 2i sin(k·c03) 0 0 0 0

2i sin(k·c10) 0 e−ik·C12 −e−ik·C13 0 0 e−ik·C16 −e−ik·C17

2i sin(k·c20) −e−ik·C21 0 e−ik·C23 0 −e−ik·C25 0 e−ik·C27

2i sin(k·c30) e−ik·C31 −e−ik·C32 0 0 e−ik·C35 −e−ik·C36 0

0 0 0 0 0 2i sin(k·c45) 2i sin(k·c46) 2i sin(k·c47)

0 0 −e−ik·C52 e−ik·C53 2i sin(k·c54) 0 −e−ik·C56 e−ik·C57

0 e−ik·C61 0 −e−ik·C63 2i sin(k·c64) e−ik·C65 0 −e−ik·C67

0 −e−ik·C71 e−ik·C72 0 2i sin(k·c74) −e−ik·C75 e−ik·C76 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the vectors cn, Cnm are vectors joining the central points of plaquettes to the bond midpoints around the outside. These
vectors are defined in Appendix A along with the numbering convention for sites and plaquettes.

Defining

Ymp(k) = √
αmZmp(k)

√
βp, (E11)

we may write

√
βp(∇� × A)(r,p) =

√
4

N

∑
k

4∑
λ=1

√
U

ωλ(k)

{
exp[−ik · (rp)]aλ(k) ×

∑
m

Ypm(k)ηmλ(k) + exp[ik · (rp)]a†
λ(k)

×
∑
m

η∗
λmY †

mp(k)

}
. (E12)

The matrix Y (k) is not guaranteed to be Hermitian, so we cannot necessarily form an orthonormal set of vectors η
λ
(k) from its

eigenvectors. However, the matrix Y †(k) · Y (k) is Hermitian and has positive-semidefinite eigenvalues, so we may write

Y †(k) · Y (k)η
λ
(k) = ζλ(k)2η

λ
(k). (E13)

Squaring and summing over r and p we have

K
2

∑
r

∑
p

βp[(∇� × A)r,p]2 = UK
4

∑
k

∑
λ

ζλ(k)2

ωλ(k)
{aλ(k)aλ(−k) + a

†
λ(k)a†

λ(−k) + a
†
λ(k)aλ(k) + aλ(k)a†

λ(k)}. (E14)
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FIG. 11. Identification of the excitations of the lattice-gauge theory HU(1) [Eq. (E1)], with quantized fluctuations of the fields P+ and P−.
(a) Dynamical structure factor of the uniform polarization P+ [Eq. (E25)], calculated within the lattice-gauge theory. (b) Equivalent results
for the dynamical structure factor of the staggered polarization P−. For q → 0, the correlations of P+ are directly associated with the gapless,
birefringent photons of the lattice-gauge theory, while the correlations of P− are associated with its gapped optical modes. This identification
breaks down at shorter wavelengths, where the correlations of P+ and P− have contributions from all modes of the lattice-gauge theory.
Calculations were carried out for the symmetric choice of parameters U = U ′ and K = K′.

Similarly,

U
2

∑
(e,m)

αm(Erm)2

= 1

4

∑
k

4∑
λ=1

ωλ(k){−aλ(k)aλ(−k) − a
†
λ(k)a†

λ(−k)

+ a
†
λ(k)aλ(k) + aλ(k)a†

λ(k)}. (E15)

Inserting this into the Hamiltonian [Eq. (E1)] results in

HIh =
∑

k

8∑
λ=1

ωλ(k)

(
a
†
λ(k)aλ(k) + 1

2

)
, (E16)

where the dispersion ωλ(k) is fixed by requiring the off-
diagonal terms to vanish

ωλ(k) =
√
UK|ζλ(k)|. (E17)

The functions ζλ(k) are found by numerical diagonalization of
Y †(k) · Y (k). Four of the modes λ are unphysical, zero-energy

modes (cf. the two unphysical zero-energy modes which occur
in the pyrochlore case [37]). The remaining four modes are
now nondegenerate, which is again in contrast to the cubic
symmetry case. Two of these modes are gapless and linearly
dispersing, and therefore recognizable as photons, while the
other two modes are gapped and are associated with quantized
fluctuations of the classical field P− (see Sec. III). The
identification of the gapless modes with fluctuations of P+
and the gapped modes with fluctuations of P− is illustrated in
Fig. 11.

The time evolution of the electromagnetic fields is given by
the time evolution of the photon operators aλ(q),a†

λ(q), which,
since the photons are eigenstates of HU(1), is simply

a
†
λ(q)(t) = eiωλ(q)t a†

q(0), aλ(q)(t) = e−iωλ(q)t aq(0). (E18)

Therefore,

Em(q,t) = i√
2

∑
λ

√
ωλ(q)

αmU
(ηnλ(q)aλ(q)e−iωλ(q)t

+ η∗
λn(q)eiωλ(q)t a

†
λ(q)) (E19)

and the dynamical structure factor for the electric fields is

Smn
E (q,ω) ≡

∫
dt e−iωt 〈Em(−q,0)En(−q,t)〉

= 1

2

∑
λ

{δ[ω − ωλ(q)][1 + nB(ω)]

+δ[ω + ωλ(q)]nB(−ω)}ωλ[(q)]

αmαnU
ηmλη

∗
λn.

(E20)

Since the electric field is in one-to-one correspondence
with the proton configuration, the dynamical structure factor
Smn

E (q,ω) also determines the scattering of neutrons or x rays
from protons in water ice. The relevant structure factor for the
coherent scattering of neutrons is given by [100]

Scoh(q,ω) = 1

2π

∑
j

∑
j ′

∫ ∞

−∞
dt e−iωt

×〈exp[−iq · Rj (0)] exp[iq · Rj ′ (t)]〉. (E21)

Within our treatment, the position of the proton on bond j of
the lattice Rj (t) is given by

Rj (t) = r0
j + aj σj (t), (E22)

where r0
j is the bond midpoint, aj describes the displacement

of the two proton sites on the bond from the bond midpoint,
and σj (t) = ±1 is the Ising variable describing the bond
polarizations.
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Using Eqs. (E21) and (E22) and the relationship between
the Ising variables σj (t) and the electric fields Ej (t)

σj (t) = 2Ej (t), (E23)

we find that the diffuse contribution to Scoh(q,ω) is given by

SH+
coh(q,ω) = 4

∑
m,n

sin(q · am) sin(q · an)Smn
E (q,ω), (E24)

where m,n index the eight sublattices of bonds and the
displacement of a proton from the bond midpoint of bond
m is ±am.

We have also calculated the structure factor of the fields
P+(r) and P−(r) within the lattice-gauge theory HU(1)

[Eq. (E1)]. To do this, by analogy with Eq. (C14), we introduce
the Fourier transform of the fields P±(q) for wave vector
q = Q + q̃, in a Brillouin zone centered on reciprocal lattice
vector Q:

P±(q̃,ω) =
√

4

N

∫ ∞

−∞
exp(−iωt)

×
[

exp(iQ · rA)
∑
r∈A

exp(−iq · r)P±(rA,t)

+ exp(iQ · rC)
∑
r∈C

exp(−iq · r)P±(rC,t)

]
,

(E25)

where we have chosen a definition such that P±(q̃,ω) is the
same in all Brillouin zones. The vectors rA,rC are the positions
of the A and C oxygen vertices within a primitive unit cell.
Restricting the sum to the A and C sublattices of oxygen ions
means that each bond only contributes to the sum once. In
Fig. 11, we plot 〈P+(−q,−ω) · P+(q,ω)〉 and 〈P−(−q,−ω) ·
P−(q,ω)〉.

The results of this analysis are shown in Fig. 11. At long
wavelengths, the correlations of P+ are directly associated
with the gapless emergent photons, while the fluctuations
of P− are associated with the gapped optical modes. This
confirms the conclusions of the symmetry-based analysis given
in Sec. IV B.

APPENDIX F: COMPARISON WITH NUMERICS

1. Classical Monte Carlo simulation

In this Appendix, we compare our calculations of the
correlation functions in the classical ice problem with the
results of Monte Carlo simulations for a cluster of 1024
oxygen-oxygen bonds.

To obtain numerical results for the correlations in the
absence of quantum tunneling it is necessary to take an
equally weighted average over ice-rule configurations. This
is accomplished numerically by starting from a configuration
with zero total electric polarization and then acting randomly
with the hexagonal ring exchange operators [cf. Eq. (4)] to
generate new configurations. Since these operations preserve
total electric polarization, the average obtained in this way
only includes states of vanishing total polarization. However,
this set of states is representative of the manifold as a whole,
as in the case of spin ices.

In Fig. 12, we compare results for the Ising structure factor
SIsing(q) [Eq. (29)] between these Monte Carlo calculations
[(a)–(c)] and the projection method outlined in Appendix C
[(d)–(f)]. Noticeable differences are visible for q located ex-
actly at Brillouin zone centers. This is caused by the restriction
to states of vanishing total polarization in the simulations.
However, for any q not exactly at a Brillouin zone center,
there is very good agreement between the theory calculation
and Monte Carlo, strongly validating our understanding of the
classical ice problem.

2. Quantum Monte Carlo simulation

In order to validate our description of quantum ice Ih, we
have compared the predictions of the lattice-gauge theory
HU(1) [Eq. (66)] for equal-time correlation functions, with
the results of variational quantum Monte Carlo (VMC)
simulations of the microscopic model Hhexagonal

tunneling [Eq. (4)].
VMC simulations were carried out for an orthorhombic

cluster of 1024 oxygen-oxygen bonds with a one-parameter
variational wave function of the form∣∣ψvar

α

〉 = exp[αNf ]|ψ0〉, (F1)

where the operator Nf measures the number “flippable”
plaquettes (of both type I and II), α is a variational pa-
rameter, and |ψ0〉 is an equal weight superposition of all
ice configurations within a given flux sector of the Hilbert
space. This variational wave funtion correctly describes the
physics of quantum liquids based on a lattice U(1) gauge
theory [37,39,43,44], but is heavily biased toward liquid, rather
than ordered ground states [44]. Since our intention here is to
investigate the properties of a proton liquid in water ice, rather
than to investigate possible ordered ground states, the wave
function (F1) is sufficient for our purposes.

In Fig. 13, we show the equal-time “Ising” structure factor

Szz(q,t = 0) = 〈Sz(−q,t = 0)Sz(q,t = 0)〉 (F2)

in the (h,k,0) plane of reciprocal space. Results were cal-
culated from the lattice-gauge theory HU(1) [Eq. (66)], for
parameters

U = U ′ = K = K′ = 1 (F3)

and from the microscopic model Hhexagonal
tunneling [Eq. (4)], for

parameters

g1 = g2 = 1 (F4)

using VMC, as described in Refs. [37,44]. A field renormaliza-
tion of Sz, allowed in principle within the lattice-gauge theory
[36,37], has also been set equal to one.

The agreement between the results of the two methods is
excellent, confirming that the lattice-gauge theory correctly
describes the liquid phase of the microscopic model.

APPENDIX G: CALCULATION OF THE INCOHERENT
SCATTERING CROSS SECTION

The structure factor for inelastic, incoherent, neutron
scattering from a set of nuclei at located at positions Rj is
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FIG. 12. Ising structure factor SIsing(q) [Eq. (29)] for a classical model of ice Ih, calculated from classical Monte Carlo simulation [(a)–(c)]
and from lattice theory [(d)–(f)]. The theory calculation is performed using the method outlined in Appendix C, which is based on the method
described for spin ice in Ref. [57]. This method consists in writing the ice-rule constraints as orthogonality conditions in Fourier space. In the
long-wavelength limit, these conditions reduce to those obtained from the continuum field theory presented in Sec. III A [Eqs. (17) and (18)].
Near the zone centers, the correlations are well described by a combination of pinch-point singularities, reflecting the algebraic correlations of
P+(q) and smooth features reflecting the short-ranged correlations of P−(q).

FIG. 13. Comparison between the predictions of the lattice-gauge theory HU(1) [Eq. (66)], and variational Monte Carlo simulation of
Hhexagonal

tunneling [Eq. (4)] for the “Ising” structure factor SIsing(q,t = 0) [Eq. (F2)], for the parameter sets given in Eqs. (F3) and (F4). There is excellent
agreement between the two methods, validating our description of the proton liquid in water ice Ih in terms of a quantum U(1) lattice-gauge
theory.
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[100]

Sinc(q,ω) = 1

2π

∑
j

∫ ∞

−∞
dt e−iωt

×〈exp[−iq · Rj (0)] exp[iq · Rj (t)]〉. (G1)

We approximate the position of the proton on bond j of the
lattice Rj (t) to be given by

Rj (t) = r0
j + aj σj (t), (G2)

where r0
j is the bond midpoint, aj describes the displacement

of the two proton sites on the bond from the bond midpoint,
and σj (t) = ±1 is the Ising variable describing the bond
polarizations.

Since σj (t) = ±1 and r0
j and aj are constants we can write

exp[iq·Rj (t)] = exp
(
iq · r0

j

)
[cos(q·aj )+iσj (t) sin(q·aj )].

(G3)

Since

〈σj (t)〉 = 0 (G4)

on inserting Eq. (G3) into (G1), we obtain two terms,
corresponding to the elastic and inelastic contributions to the
incoherent scattering,

Sinc(q,ω) = Sinc,el(q,ω) + Sinc,inel(q,ω). (G5)

The elastic contribution is simply

Sinc,el(q,ω) = δ(ω)
∑

j

cos2(q · aj ), (G6)

while the inelastic contribution is

Sinc,inel(q,ω) =
∑

j

sin2(q · aj )〈σj (−ω)σj (ω)〉. (G7)

For the purposes of comparison with experiments, we need
to integrate the momentum transfer dependence over angle,
which gives

S
pow
inc,el(Q,ω) = δ(ω)

∑
j

1

2

(
1 + sin(2Q|aj |)

2Q|aj |
)

, (G8)

S
pow
inc,inel(Q,ω) =

∑
j

1

2

(
1 − sin(2Q|aj |)

2Q|aj |
)

〈σj (−ω)σj (ω)〉,

(G9)

where Q = |q|.
The local correlation function 〈σj (−ω)σj (ω)〉 can be

rewritten as a sum over Fourier space, so we have

Sinc,inel(q,ω) =
8∑

i=1

sin2(q · ai)
∑

q′
〈σi(−q′, − ω)σi(q′,ω)〉,

(G10)

S
pow
inc,inel(Q,ω)

=
8∑

i=1

1

2

(
1 − sin(2Q|aj |)

2Q|aj |
)∑

q′
〈σi(−q′, − ω)σi(q′,ω)〉,

(G11)

where the sum over i now runs over the eight sublattices of
bonds.

Within the lattice-gauge-theory description, the correlations
of the Ising variables σ are directly related to the correlations
of the electric field E:

〈σi(−q′, − ω)σi(q′,ω)〉 = 4〈Ei(−q′, − ω)Ei(q′,ω)〉 (G12)

so calculating the correlations of E in the gauge theory enables
us to calculate the incoherent scattering from protons, as shown
in Fig. 9. The effects of finite temperature, which lead to
the thermal excitation of photons, can also be included, as
described in Ref. [37].

Calculations were carried out for the symmetric parameter
set given in

U = U ′, K = K′

[cf. Eq. (68)], with energy scale
√
UK = 0.018 meV

[cf. Eq. (86)]. The one remaining free parameter of the theory,√
U
K

, is used to fix the average normalization of the electric
fields of the gauge theory [cf. Eq. (65)]. At T = 5 K, this gives√

U

K
= 47.8. (G13)

Experimental measurements are carried out with finite-
energy resolution. To make a comparison with experiment,
it is therefore necessary to convolute both the elastic response
(a delta function in energy) and the prediction for incoherent
inelastic scattering with a representation of the experimental
line shape. We adopt the simplest representative line shape, a
Gaussian

Fexp(ω) = 1√
2πδ

exp

(
−1

2

ω2

δ2

)
, (G14)

with energy width

δ = 0.03 meV,

chosen as representative of the elastic line shown in Ref. [18].
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