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We first provide a formula to calculate the probability of occurrence of different configurations (formation
probabilities) in a generic free fermion system. We then study the scaling of these probabilities with respect to the
size in the case of the critical transverse-field XY chain in the σ z bases. In the case of the transverse field Ising
model, we show that all the “crystal” configurations follow the formulas expected from conformal field theory
(CFT). In the case of the critical XX chain, we show that the only configurations that follow the formulas of the
CFT are the ones which respect the filling factor of the system. By repeating all the calculations in the presence of
open and periodic boundary conditions we find further support for our classification of different configurations.
Using the developed technique, we also study Shannon information of a subregion in our system. In this respect
we distinguish particular configurations that are more important in the study of the scaling limit of the Shannon
information of the subsystem. Finally, we study the evolution of formation probabilities, Shannon information,
and Shannon mutual information after a quantum quench in free fermion system. In particular, for the initial state
considered in this paper, we demonstrate that the Shannon information after quantum quench first increases with
the time and then saturates at time t∗ = l

2 , where l is the size of the subsystem.
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I. INTRODUCTION

Studying correlation functions in many-body systems has
been considered one of the main topics in statistical mechanics
and condensed matter physics for many years. Although for a
long time the main quantities of interest were the correlation
functions of local observables, the recent interest in calculating
nonlocal quantities, especially the entanglement entropy, has
made significant changes. One of the main reasons for this
interest (at least in 1 + 1 dimensional critical systems) is
that by calculating some of the nonlocal observables one can
derive the central charge of the system without referring to the
velocity of sound; for the case of entanglement entropy see
Ref. [1]. Another nonlocal quantity which has been studied
for many years with Bethe ansatz techniques and some other
methods is emptiness formation probability [2–6]. In the case
of spin chains, it is the probability of finding a sequence of
up spins in the system (note that almost all of the studies
in this regard concentrate on the σ z bases). These studies
show that this probability, with respect to the sequence size,
decreases like a Gaussian in the case of systems with U (1)
symmetry [3] and exponentially in other cases [4,5]. In the
critical cases, the Gaussian and exponential are accompanied
by a power-law decay with a universal exponent. In a recent
development [6] it was shown that for those critical systems
without U (1) symmetry this universal exponent is dependent
on the central charge of the system. The argument is based on
connecting the configuration of all spins up to some sort of
boundary conformal field theory. One should notice that the
argument works just for those bases that can be connected to
boundary conformal field theory.

In apparently connected studies recently many authors
investigated the Shannon information of quantum systems in
different systems [7–17]. The Shannon information is defined
as follows: Consider the normalized ground state eigenfunc-
tion of a quantum spin chain Hamiltonian |ψG〉 = ∑

I aI |I 〉,

expressed in a particular local bases |I 〉 = |i1,i2, · · · 〉, where
i1,i2, · · · are the eigenvalues of some local operators defined
on the lattice sites. The Shannon entropy is defined as

Sh = −
∑

I

pI ln pI , (1)

where pI = |aI |2 is the probability of finding the system
in the particular configuration given by |I 〉. As it is quite
clear this quantity is bases dependent and to calculate it
one needs in principle to know the probability of occurrence
of all the configurations. The number of all configurations
increases exponentially with the size of the system and
that makes analytical and numerical calculations of this
quantity quite difficult. Note that the emptiness formation
probability is just one of the whole possible configurations.
The Shannon information of the system changes like a volume
law with respect to the size of the system so in principle
one does not expect to extract any universal information by
studying the leading term. The universal quantities should
come from the subleading terms. To study subleading terms,
it is useful to define yet another quantity called Shannon
mutual information. By considering local bases it is always
possible to decompose the configurations as a combination
of the configurations inside and outside of a subregion A as
|I 〉 = |IAIĀ〉. Then one can define the marginal probabilities
as pIA

= ∑
IĀ

pIAIĀ
and pIĀ

= ∑
IA

pIAIĀ
for the subregion A

and its complement Ā. Then the Shannon mutual information
is

I (A,Ā) = Sh(A) + Sh(Ā) − Sh(A ∪ Ā), (2)

where Sh(A) and Sh(Ā) are the Shannon information of
the subregions A and Ā. From now on instead of using
pIAIĀ

we will use just pI . Since in the above quantity the
volume part of the Shannon entropy disappears Shannon
mutual information provides a useful technique to study the
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subleading terms. Note that one can similarly define the above
quantity also for two regions A and B, i.e., I (A,B) that are
not necessarily complementary of each other. The Shannon
mutual information has been studied in many classical [18–21]
and quantum systems [22–26]. Numerical studies on variety
of different periodic quantum critical spin chains show that
for particular bases (so called conformal bases) we have
[23,25,26]

I (A,Ā) = β ln

[
L

π
sin

(
πl

L

)]
, (3)

where L and l are the total size and subsystem size,
respectively, and β is very close to c

4 , with c the central
charge of the system. Note that if one takes an arbitrary
base (nonconformal bases) the coefficient β is nothing to do
with the central charge. It is worth mentioning that based on
Ref. [25] the conformal bases are those bases that can be
connected to some sort of boundary conformal field theory
in the sense of Ref. [6]. For example in the transverse field
Ising model the σx and σ z bases are the conformal bases.
Note that if one considers the Shannon information of the
subsystem we will have Sh(A) = αl + β ln[ L

π
sin( πl

L
)]. Since

to extract the Shannon information one needs to use all the
probabilities the only way to consider all of them in the
numerical calculations is exact diagonalization. This makes
the numerical calculation for large sizes very difficult. The
results of the papers [23,25,26] are all for periodic systems
with L = 30 whenever there are spin one-half system and
smaller sizes for systems with bigger spins. In a recent work
[24] the author was able to consider an infinite system and
study the Shannon information of the subsystem up to the
size l = 40. It was concluded that for the XX chain β is c

4
with c = 1 but for the Ising model although it is very close
to c

4 with c = 1
2 the results are suggesting that probably β is

not exactly connected to the central charge. Notice that all
of the above calculations are done by considering periodic
boundary conditions for the connected regions A and Ā. It is
not clear how the equation (3) might change if one considers
open boundary conditions. Finally it is worth mentioning that
some of the above results have recently been extended to
disconnected regions in Ref. [27].

Motivated by the studies of emptiness formation probability
and Shannon information of the subsystem we study here
some related quantities. First of all, as it is natural one might
be interested in studying the scaling limit of some other
configurations with respect to the size of the subsystem. For
example, consider an antiferromagnetic configuration in the
Ising model or any other configuration with pattern. It is very
important to know that these configurations are also flowing to
some sort of boundary conformal field theory or not. This study
will clearly also help to understand the nature of the Shannon
mutual information. In addition, these kinds of studies also are
very useful in the calculations of post-measurement entangle-
ment entropy and localizable entanglement entropy [28,29].
Having the above motivations in mind, we study formation
probabilities, Shannon information, and their evolution after a
quantum quench in the quantum XY chain in the σ z bases.

The outline of the paper is as follows: In the next section
we will first define our system of interest, i.e., XY chain and
then we will provide a method to calculate the probability of

any configuration in the free fermionic systems. In Sec. III we
will list all the known analytical results regarding emptiness
formation probability for infinite systems and also finite
systems with periodic and open boundary conditions. Explicit
distinguishment is made between the critical Ising model and
XX chain with U (1) symmetry. In Sec. IV, we will define
many different configurations with specially defined pattern
and calculate their corresponding probabilities numerically.
Here again, we discuss Ising and XX universalities separately
for infinite systems and for the systems with boundary. We
also discuss configurations that do not have any pattern. In
Sec. V, we study the Shannon information in the transverse
field critical Ising model and also critical XX chain. We will
classify the configurations based on their magnetization and
show that in principle just a small part of the configurations
can have a finite contribution to Shannon information in
the scaling limit. Section VI is devoted to the evolution
of formation probabilities and Shannon information after a
quantum quench. We prepare the system in a particular state
and then we let it evolve with another Hamiltonian and study
the time evolution of the formation probabilities and especially
Shannon information. Finally, the last section is about our
conclusions and possible future works.

II. FORMATION PROBABILITIES FROM REDUCED
DENSITY MATRIX

In this section, we first define the system of interest and after
that using the reduced density matrix of this system we will find
a very efficient method to calculate formation probabilities for
systems that can be mapped to free fermions. The Hamiltonian
of the XY chain is as follows:

H = −
L∑

j=1

[(
1 + a

2

)
σx

j σ x
j+1 +

(
1 − a

2

)
σ

y

j σ
y

j+1 + hσ z
j

]
. (4)

After using Jordan-Wigner transformation, i.e., cj =∏
m<j

σ z
m

σx
j −iσ

y

j

2 and N = ∏L

m=1
σ z

m = ±1 with c
†
L+1 = 0 and

c
†
L+1 = N c

†
1 for open and periodic boundary conditions,

respectively, the Hamiltonian will have the following form:

H =
L∑

j=1

[(c†j cj+1 + ac
†
j c

†
j+1 + H.c.) − h(2c

†
j cj − 1)]

+ N (c†Lc1 + ac
†
Lc

†
1 + H.c.). (5)

The above Hamiltonian has a very rich phase space with
different critical regions [30]. In Fig. 1 we show different
critical regions of the system. To calculate probability of
formations for different patterns we first write the reduced
density matrix of a block of spins D by using block Green
matrices. Following [31,32] we first define the operators

ai = c
†
i + ci, bi = c

†
i − ci . (6)

The block Green matrix is defined as

Gij = tr [ρDbiaj ]. (7)

The elements of the Green matrix can be calculated following
Ref. [33], and we will mention their explicit form for open and
periodic boundary conditions later.
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FIG. 1. Different critical regions in the quantum XY chain. The
critical XX chain has central charge c = 1 and critical XY chain has
c = 1

2 .

To calculate the reduced density matrix after partial mea-
surement we need to first define fermionic coherent states.
They can be defined as follows:

|ξ〉 = |ξ1,ξ2,...,ξN 〉 = e− ∑N
i=1 ξic

†
i |0〉, (8)

where ξi’s are Grassmann numbers following the properties:
ξnξm + ξmξn = 0 and ξ 2

n = ξ 2
m = 0. Then it is easy to show

that

ci |ξ〉 = −ξi |ξ〉. (9)

Using the coherent states (8) the reduced density matrix has
the following form [32]

ρD(ξ ,ξ ′) = 〈ξ |ρD|ξ ′〉
= det 1

2 (1 − G)e
1
2 (ξ∗−ξ ′)T F (ξ∗+ξ ′), (10)

where F = (G + 1)(1 − G)−1. One can use the above formula
to extract the formation probability for arbitrary configuration
in the σz bases as follows: First of all to extract the probability
of particular configuration we need to look to the diagonal
elements of ρD(ξ ,ξ ′). When the spin in the σ z direction is up
in the fermionic representation it can be understood as the lack
of a fermion in that site which in the language of coherent states
means that the corresponding ξ is zero in the equation (10).
After putting some of the ξ ’s equal to zero one will have a
new reduced density matrix in the coherent state basis with
this constraint that some of the spins are fixed to be up. In
other words in the equation (10) instead of F we will have
F̃ which is a submatrix of the matrix F . The elements of the
new reduced density matrix will be ρ̃D(η,η′), where we put

the ξ ’s corresponding to the sites filled with fermions equal
to η. To extract the probability of formation one just needs to
integrate over all the η’s that correspond to the down spins. In
other words after using formulas of the Grassmann Gaussian
integrals the formation probability will have the following
formula:

P (Cn) = det
[

1
2 (1 − G)

]
M

Cn

F , (11)

where M
Cn

F is the minor of the matrix F corresponding to the
configuration Cn. Notice that we just need principal minors
of the matrix F . Since the sum of all the principal minors
of the matrix F is equal to det(1 + F ) the normalization is
ensured. We have

(
l

k

)
number of rank-k minors for matrix

F with size l. Summing over the number of all principal
minors, one can obtain 2l which is the number of all possible
configurations. Configurations with the same minor rank have
the same number of up spins and by increasing k, we actually
increase the number of down spins in the corresponding
configuration. For example k = 0(l) is the case with all spins
up (down) and sometimes it is called emptiness formation.
The above formula gives a very efficient way to calculate the
formation probabilities in numerical approach. Since, as we
will show, all of these probabilities are exponentially small
with respect to the size of the subsystem, it is much easier
to work with the logarithm of them and define logarithmic
formation probabilities


(Cn) = − ln P (Cn). (12)

All of the calculations done in this paper are based on
the formula (11) and are performed using Mathematica. In
the next sections, we will study the formation probabilities
for different configurations with the crystal order (pattern
formation probabilities) with respect to the size of the
subsystem for some particular critical regions of the system.

III. EMPTINESS FORMATION PROBABILITY:
KNOWN RESULTS

Before presenting our results, we first review here the well-
known facts regarding emptiness formation probability (k = 0
and l). For reasons that will be clear in the next section, we will
call these two configurations x = 0 and 1, respectively. Using
Fisher-Hartwig theorem the emptiness formation probability
was already exhaustively studied in Ref. [5]. The results were
generalized to arbitrary conformal critical systems in Ref. [6].
Due to the U (1) symmetry there is an important difference
between the XX critical line and the Ising critical point. For this
reason, we report the results regarding these two possibilities
separately.

A. Critical Ising point

We list here the results regarding the logarithmic emptiness
formation probability at the critical Ising point (a = h = 1).

a. Configuration Cx=0, i.e., (|↑ , ↑ , . . . ↑〉). This config-
uration corresponds to k = 0 and has the highest probability,
and using equation (11) one can easily show that

P (x = 0) = det
[

1
2 (1 − G)

]
. (13)
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The above formula is valid independent of the boundary
conditions and the size of the system. For the infinite system
at the critical Ising point the G matrix has the following form:

Gij = − 1

π (i − j + 1/2)
. (14)

Since the above matrix is a Toeplitz matrix using Fisher-
Hartwig conjecture, in Ref. [5] it was shown that the log-
arithmic probability for this configuration changes with the
subsystem size as follows:


(x = 0) = αl + β ln l + γ
ln l

l
+ O(1), (15)

where β = 1
16 = 0.0625, and α and γ are some nonuniversal

numbers. At the critical point of the Ising model these numbers
are known α = ln 2 − 2C/π = 0.11002, with C the Catalan
constant and γ = − 1

32π
= −0.00994. The ln l

l
term is the result

of the paper [6]. Using conformal field theory techniques, in
Ref. [6] it was argued that for generic critical systems the
coefficient of the logarithm should be β = c

8 , where c is the
central charge of the critical system. For the Ising universality
class c = 1

2 .
When the size of the total system is finite L depending on

the form of the boundary conditions, periodic or open; G has
the following two forms

GP
ij = − 1

L sin
(

π(i−j+1/2)
L

) , (16)

GO
ij = − 1

2L + 1

(
1

sin
(

π(i−j+1/2)
2L+1

) + 1

sin
(

π(i+j+1/2)
2L+1

)
)

. (17)

Notice that for L → ∞ the first equation reduces to (14) and
the second equation will give the result for a semi-infinite
chain. The results for emptiness formation probabilities for
the above two cases are [6]


P (x = 0) = αl + β ln

[
L

π
sin

πl

L

]
+ γπ cot

(
πl

L

)
ln l

L
+O(1),

(18)


O(x = 0) = αl + βo ln

[
4L

π

tan2 πl
2L

sin πl
L

]

+ γ oπ
2 − cos

(
πl
l

)
sin πl

l

ln l

L
+ O(1), (19)

where β = c
8 and βo = − c

16 . It is also conjectured that
γ = − c

8πa
and γ o = c

32πa
. The above two equations are

derived using boundary conformal field theory techniques
and in principle they are valid in the Ising case because
x = 0 configuration is related to the free conformal boundary
condition in the conformal Ising model.

b. Configuration Cx=1, i.e., |↓ , ↓ , . . . ↓〉. This case,
which is also studied in Refs. [5] and [6], corresponds to k = l

and has the lowest probability. One can easily show that

P (x = 1) = det
[

1
2 (1 − G)

]
det F = det

[
1
2 (1 + G)

]
. (20)

For the infinite system it follows similar formula as (15) with
also an extra ν (−1)l√

l
term, in other words,


(x = 1) = αl + β ln l + ν
(−1)l√

l
+ γ

ln l

l
+ O(1), (21)

where β = c
8 . At the critical Ising point α = ln 2 + 2C/π =

1.27626 and ν = −0.21505 and γ is unknown. The oscillating
ν term is mathematically explained by using generalized
Fisher-Hartwig conjecture in Ref. [5]. To the best of our
knowledge its presence at the critical point has not been
understood by physical arguments [34]. Our numerical results
in the next section will show that the term is present whenever
the parity of the number of down spins changes with the
subsystem size. The term is very important to be considered
in numerical calculations to get reliable results for β, which is
the universal and the most interesting term.

When the size of the system is finite depending on the type
of the boundary conditions, boundary changing operators can
play an important role. The following formulas are presented
in Ref. [6]:


P (x = 1) = αl + β ln

[
L

π
sin

πl

L

]
+ . . . , (22)


O(x = 1) = αl + βo
1 ln

[
L

π
sin

πl

L

]

+βo
2 ln

[
L

π
tan

πl

2L

]
+ . . . , (23)

where β = c
8 , βo

1 = c
16 and βo

2 = 4h − c
8 with h = 1

16 being
the conformal weight of the boundary changing operator. The
dots are the subleading terms.

B. XX critical line

The critical XX chain a = 0 has U (1) symmetry which as
it is already discussed extensively in the literature is the main
reason for having Gaussian decaying emptiness formation
probability [3,6]. Since in this model 〈c†i c†j 〉 = 〈cicj 〉 = 0 the
equation (10) has simpler form

ρD(ξ ,ξ ′) = det(1 − C)eξ∗F ξ ′
(24)

where Cij = 〈c†i cj 〉 and F = C(1 − C)−1. Finally we have

P (Cn) = det[1 − C]MCn

F . (25)

The form of the C matrices in the periodic and open cases are
[35]:

CP
ij = nf

π
δij + (1 − δij )

sin(nf (i − j ))

L sin
(

π(i−j )
L

) , (26)

CO
ij =

(
1

2
−

(
L

2(L + 1)
− n′

f

π

))
δij + (1 − δij )

1

2(L + 1)

×
(

sin(n′
f (i − j ))

sin
(

π(i−j )
2L+2

) − sin(n′
f (i + j ))

sin
(

π(i+j )
2L+2

)
)

, (27)
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where nf = π
L

(2� L
2π

arccos(−h) − 1) is the Fermi mo-

mentum and n′
f = π

2(L+1) (1 + 2� (L+1)
π

arccos(−h))�) with
�x(�x�) as the closest integer larger (smaller) than x.

The all spins up and down configurations do not lead to
conformal boundary conditions and so none of the equations
that we mentioned in the last subsection are valid. However,
using Widom conjecture it is already known that, see, for
example, Ref. [4], the probabilities for both Cx=0 and Cx=1

show Gaussian behavior. For systems with U (1) symmetry
one expects the following behavior for logarithmic emptiness
formation probability [3]:


(x = 0) = α2l
2 + αl + β ln l + O(1), (28)

where β = 1
4 for the critical XX chain.

IV. LOGARITHMIC PATTERN
FORMATION PROBABILITIES

In this section, we study the logarithmic pattern formation
probability defined as 
(C) = − ln P (C) with respect to the
size of the subsystem. The easiest configurations to study
are those that have some kind of crystal structure. Although
everything is already known and checked numerically for
the emptiness formation probabilities, we will also report
the results concerning these cases as benchmarks. Here we
introduce the configurations that we studied numerically. None
of these configurations have been considered before in the
literature.

We study here the configurations with k = l
2 , l

3 , l
4 ,..., l

10
with crystal pattern and we call them configurations x =
1
2 , 1

3 , 1
4 , . . . , 1

10 and for some ranks we will study the two most
basic cases. For example we will study

Configurations with k = l
2 :

a. (|↓,↑,↓,↑, . . .〉) (|↓,↓,↑,↑,↓,↓,↑,↑, . . .〉)
Configurations with k = l

3 :
b. (|↑,↑,↓,↑,↑,↓,↑,↑, . . .〉) (|↑,↑,↑,↑,↓,↓,↑,↑,↑,↑,

↓,↓, . . .〉)
All the configurations with the same k belong to the

cases with an equal rank of the minor in equation (11).
Note that in all of the upcoming numerical calculations in
every step we increase the size of the subsystem with a
number which is dividable to the length of the base of the
corresponding configuration. For some particular k’s the a and
b configurations differ by the parity effect. For example, in
k = l

2a depending on l = 4i or l = 4i − 2 with i = 1,2, . . .

the subsystem has an even or odd number of down spins. This
means that the parity of the number of down spins changes with
the subsystem size for this configuration. However, for k = l

2b

this is not the case because in order to have “perfect crystal”
in the subsystem we need to consider a subsystem with l = 4i

with i = 1,2, . . . which has always an even number of down
spins inside. Because of this difference in parity effect for
k = l

2a and k = l
2b, we expect different subleading behavior

for these two cases. Finally notice that one can simply define
configurations like k = l

2c and k = l
3c by simply taking bigger

bases for the crystals. For example, k = l
2c can be understood

as a configuration with the base: three down spins and then
three up spins.

TABLE I. Fitting parameters for the logarithmic formation
probabilities of different crystal configurations of the critical Ising
chain discussed in the text. All the data were extracted by fitting the
data in the range l ∈ (2000,2500) to αl + β ln l + γ ln l

l
+ δ 1

l
+ η for

those cases that do not show parity effect and to αl + β ln l + γ ln l

l
+

ν (−1)m√
l

+ δ 1
l
+ η (with suitable m) for those cases that show parity

effect [36].

Configuration α β

x = 0 0.110025 0.062498
x = 1 1.276267 0.062465
x = 1

2 (a) 0.984708 0.062462

x = 1
2 (b) 0.755726 0.062496

x = 1
3 (a) 0.818715 0.062468

x = 1
3 (b) 0.542109 0.062491

x = 1
4 (a) 0.710620 0.062481

x = 1
4 (b) 0.434286 0.062524

x = 1
5 (a) 0.634016 0.062495

x = 1
6 (a) 0.576551 0.062509

x = 1
7 (a) 0.531651 0.062523

x = 1
8 (a) 0.495482 0.062537

x = 1
9 (a) 0.465643 0.062549

x = 1
10 (a) 0.440555 0.062562

A. Transverse-field Ising chain

Using Eqs. (11) and (14) we first studied the crystal
configurations introduced in the previous subsection for the
case of infinite chain. To calculate the formation probability
for every configuration, we first use the matrix G introduced
in (14) to find the matrix F . Then for every configuration
we use an appropriate minor to calculate the corresponding
probability in (11). For example, in the case of k = l

2a this
can be done by just finding a minor of F which can be derived
by calculating the determinant of a submatrix F̃ obtained from
F by removing every other row and column. The results for α

and β (the most interesting quantities in this study) are shown
in Table I. Based on the numerical results one can derive the
following conclusions regarding crystal configurations:

(1) All the crystal configurations follow either the equa-
tion (15) or (21) with β = 1

16 .
(2) Whenever the parity of the number of down spins

in a configuration changes with respect to the size of the
subsystem we have the oscillating term 1√

l
. For example, in

the case of k = l
2a we have the subleading term (−1)

l
2√

l
but 1√

l

correction is absent in k = l
2b. It appears again for k = l

3a

in the form of (−1)
l
3√

l
. Generalization to other configurations is

straightforward.
(3) Although in some cases α for bigger x is smaller than

α with smaller x, in average α increases with x.
We then studied the same configurations for the periodic

boundary condition. In Fig. 2 it is shown that all of the
configurations follow the formula (18). The case of the open
boundary condition is more tricky, and depending on the
configuration we have two possibilities: When the parity of
the number of down spins is independent of the size of the
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FIG. 2. 
(l,L) − αl for periodic system with total length L =
2000 with respect to l for different configurations. The dashed lines
are the results expected from CFT, i.e., 1
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subsystem (for example in the configurations x = 1
2b and 1

3b),
we have the formula (19), but when we have the possibility of
having odd or even number of down spins in a configurations
(for example x = 1

2a, 1
3a), we have the formula (23). The

results are shown in Fig. 3. This behavior could be anticipated
based on the difference between configurations k = 0 and
k = l that we discussed before. It looks like the boundary
changing operator plays a role whenever there is the parity
effect in the configuration. Looking to the problem in the
language of the Euclidean two-dimensional classical system,
one can argue that in the case of open boundary condition
we have a strip with a slit on it [6]. However, the boundary
conditions on the boundary of strip can be different from the
boundary condition on the slit, consequently, one needs to
consider boundary changing operator on the point where the
boundary condition changes. However, in general it is not clear
which configurations lead to different boundary conditions on
the slit and on the boundary of the strip. Our numerical results
indeed give a hint that depending on the behavior of the parity
of the number of down spins in a configuration the conformal
boundary condition on the slit can be different. In the next two
subsections, we will first comment on the validity of the above
results in other cases such as noncrystal configurations. Then
we will also indicate the possible universal behavior of our
results.

1. Logarithmic formation probability of noncrystal configurations

The number of crystal configurations is much smaller
than the number of the whole configurations. In fact, the
number of crystal configurations grows polynomially with
the subsystem size, but the number of whole configurations
grows exponentially. However, numerically it is very simple
to check the formula for many configurations that have a small
deviation from the crystal states. For example, one can consider
the case k = 1 with all spins up except one and calculate the
logarithmic formation probability using the equation (11). It
is clear that one does not expect the result to be any different
from the equation (15) and indeed numerical results confirm
this expectation. The important conclusion of this numerical
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FIG. 3. 
(l,L) − αl for open system with total length L = 2000
with respect to l for different configurations. (a) configurations
without boundary changing operators and (b) configurations with
boundary changing operators. The dashed lines are the results
expected from CFT.

exercise is that there are many configurations “close” to crystal
configurations that indeed follow either the equation (15) or
equation (21) with all having the same β’s but different α’s.
The above results strongly suggest that all of the crystal and
noncrystal configurations discussed in this section are flowing
to some sort of conformal boundary conditions in the scaling
limit.

2. Universality

To check that the above results are the properties of the
Ising universality class we also studied the critical XY chain
which has also central charge c = 1

2 . The Green matrix, in this
case, is given by

Gij =
∫ π

0

dφ

π

(cos φ − 1) cos[(i − j )φ] − a sin φ sin[(i−j )φ]√
(1 − cos φ)2 + a2 sin2 φ

.

Our numerical results depicted in Fig. 4 show that the
coefficient of the logarithmic term is a universal quantity which
means that it has a fixed value on the critical XY line. The
coefficient of the linear term changes by varying a which
indicates its nonuniversal nature.
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FIG. 4. The coefficient of the logarithmic term in (15) for two
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dashed line is the CFT result. The size of the largest subsystem
was l = 500 and all the results were extracted by fitting the data to
αl + β ln l + γ ln l

l
+ ν (−1)m√

l
+ δ 1

l
+ η with suitable m in the range

l ∈ (100,500). Estimated errors in the numerics are in the order of
the size of the markers.

B. XX chain

We repeated the calculations of the last section for the
critical XX chain also. The central charge of the system is
c = 1. The results of logarithmic formation probabilities for
different magnetic field h are shown in Tables II and III. Based
on the numerical calculations we conclude the following:

(1) The configurations with x = nf

π
follow the equa-

tion (15) with β = 1
8 . This means that in the scaling limit

most probably all of these configurations flow to some sort of
boundary conformal conditions. Note that as far as there is no
boundary changing operator in the system the equation (15) is
valid for any CFT independent of its structure.

(2) All the other configurations follow the equation (28)
with β which is different for different configurations.

As we mentioned earlier the XX chain has a U (1) symmetry
which means that the number of particles is conserved.
The only configurations that respect this symmetry in the
subsystem level are the configurations with x = nf

π
. Any

injection of the particles into the subsystem changes drastically
the formation probability. In the case of x = 0 this phenomena
is already explained in Ref. [6] based on arctic phenomena in
the dimer model. It is quite natural to expect that a similar

TABLE II. Fitting parameters for the logarithmic formation
probability of antiferromagnetic configurations with different filling
factors. All the results were extracted by fitting the data in the range
l ∈ (100,300) to αl + β ln l + γ ln l

l
+ δ 1

l
+ η.

nf Configuration α β

x = 1/2(a) 0.3465735 0.124998
π/2 x = 1/2(b) 0.5198604 0.124997

x = 1/2(c) 0.7127780 0.124597
π/3 x = 1/3(a) 0.3662041 0.124987
π/4 x = 1/4(a) 0.3432345 0.125024

TABLE III. Fitting parameters for different configurations with
x < 1

2 in the XX chain with nf = π

2 . All the data were extracted by
fitting the data in the range l ∈ (100,300) to α2l

2 + αl + β ln l + η.

Configuration α2 α β

x = 0,1 0.346573 0.000000 0.250054
x = 1/3(a) 0.035191 0.366228 0.524293
x = 1/3(b) 0.035188 0.597663 1.578683
x = 1/4(a) 0.080911 0.346599 0.829767
x = 1/4(b) 0.080910 0.587114 2.744492
x = 1/5(a) 0.118119 0.321924 1.144949
x = 1/6(a) 0.147178 0.298674 1.465399
x = 1/7(a) 0.170072 0.278052 1.788319
x = 1/8(a) 0.188433 0.260021 2.112155
x = 1/9(a) 0.203427 0.244263 2.436061
x = 1/10(a) 0.230432 0.230432 2.759481

structure is valid for all the configurations with x �= nf

π
.

Note that based on our results the coefficient of the ln is
nf -dependent and strictly speaking is not a universal quantity.

We also studied the finite size effect in this model. The
results of the numerical calculations of periodic boundary
condition for x = 1

2 are shown in the Fig. 5. It is shown that
all of the configurations with x = 1

2 follow the formula (18)
with c = 1.

We also repeated the same calculations for open boundary
conditions. We first performed the calculations for semi-
infinite open chain and fitted the results to (15) and extracted
the β. The coefficient of the logarithm not only depends on the
rank of the configuration but also on the configuration itself. It
also changes with nf . We were not able to find any universal
feature in this case.

The above results suggest that most probably all of the
crystal configurations with x = nf

π
in the periodic boundary

condition flow to a boundary conformal field theory. In the
language of Luttinger liquid, the corresponding boundary
condition should be the Dirichlet boundary condition [6]. The
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FIG. 5. 
(l,L) − αl for periodic system with total length L =
300 with respect to l for different configurations for the critical XX
chain with nf = π

2 . The dashed lines are the results expected from
CFT.
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case of the open boundary condition is intriguing, and we leave
it as an open problem.

V. SHANNON INFORMATION OF A SUBSYSTEM

In this section, we study Shannon information of a sub-
system in the transverse-field Ising model and XX chain. For
both models, the Shannon information is already calculated
in [24] up to the size l = 40, which seems to be the current
limit for classical computers. The reason that we are interested
in revisiting this quantity is to have a more detailed study of
the contribution of different configurations. This will give an
interesting insight regarding the possible scaling limit for this
quantity.

A. Critical Ising

In the last section, we studied many different configurations
in the critical Ising model and we found that all of them follow
PCn

= eαnl

l
c
8

with c = 1
2 . The natural expectation is that if we

plug this formula in the definition of the Shannon information
we get

Sh(l) = αl + c

8
ln l + · · · (29)

where the dots are the subleading terms. The above formula is
consistent with Ref. [23]. However, one should be careful that
although there are a lot of crystal configurations (a polynomial
number of them) and “close” to crystal configurations that are
connected to the central charge it is absolutely not clear what is
going to happen in the scaling limit. For example we repeated
the calculations of Ref. [24] and realized that extraction of
the coefficient of the ln in the above equation is indeed very
difficult, see Appendix. Here we show where one should look
for the most important configurations. After a bit of inspection
and numerical check, one can see that the configuration with
the highest probability is the x = 0. Although the proof of
the above statement doesn’t look straightforward, one can
understand it qualitatively by starting from the ground state of
the Ising model with h → ∞ and approaching to the critical
point h = 1. The ground state of the Ising model with h → ∞
is made of a configuration with all spins up. When we decrease
the transverse magnetic field the other configurations start to
appear in the ground state. Although the amplitude of the
configuration with all spins up decreases by decreasing h

it still remains always bigger than the other configurations.
Another way to look at this phenomena is by looking at
the variation of the expectation value of the Hamiltonian
H̄ = 〈C|H |C〉 for different configurations C. It is easy to see
that H̄ is minimum for the configuration C with all spins up.
This simply means that most probably when one construct
the ground state of the Ising model using the variational
techniques this configuration plays the most important role.
The least important configuration is x = 1 with the lowest
probability. This can also be understood with the same heuristic
argument as above. For every rank k of the minors, as we
discussed, we have ( l

k
) number of configurations which means

that for every x for large l we have ef (x)l with f (x) =
−x ln x − (1 − x) ln(1 − x) number of configurations. It is
obvious that the number of configurations in every rank should
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FIG. 6. Values of f (x), αmin, and αmax with respect to x. The red
curve is the function f (x) = −x log x − (1 − x) ln(1 − x), and the
blue line is the linear function (29). The separated points are the αmax

regarding the configurations discussed in the text.

be high enough to compensate the exponential decrease of
probabilities. We realized that in every rank the configurations
a has the lowest probabilities. One can again understand this
fact using the variational argument. In this case it is much better
to make first the canonical transformation: σx → −σ z and
σ z → σx in the Hamiltonian of the critical Ising model. Then
one can simply argue that H̄ is big if there are a lot of domain
walls, i.e., 〈C|σ z

j σ z
j+1|C〉 = −1 in the system which is the case

for the configurations a. Other important configurations are the
configurations which divide the subsystem to two connected
regions with in one part all the spins are up and in the other part
all the spins are down. These configurations are interesting
because they have the biggest probabilities among all the
configurations corresponding to their minor rank. Note that
in this case we have just one domain wall. It is not difficult
to see that the probability of all of these configurations decay
exponentially with the following coefficient α:

αmin(x) = 4C

π
x + ln 2 − 2C

π
, (30)

where C is the Catalan constant. In the two extreme points,
we recover the previous results. We also checked the validity
of the above formula numerically. Having the biggest and
smallest probabilities for every rank, we can now easily read
the most important ranks. In Fig. 6 we depicted the αmax

and αmin for different configurations. We also depicted the
graph of the number of configurations in every rank. The
figure clearly show that the configurations with x > 1

2 can not
have any significant contribution in the scaling limit because
the number of configurations is not enough to compensate
the exponential decay of the probabilities. A similar story
seems to be valid also for the values of x close to zero. The
reason is that the number of configurations with small x is
such low that can not compensate exponential decay of the
probabilities in this region to have a significant contribution in
the Shannon information. Just the region between the points
that the two lines cut each other will most likely survive
in the scaling limit. The numerical results indeed prove our
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FIG. 7. The contributions of different ranks k in the Shannon
information for two sizes l = 14 and 26.

expectation. In Fig. 7 we depicted the contribution of every
rank Shk(l) in Shannon information for two different sizes.
As it is quite clear the most important contributions come
from 0 < x < 1

2 . The contribution of the configurations with
x > 1

2 is exponentially small. This means that ignoring a lot
of configurations will produce a very small amount of error
in the final result of Shannon information. To quantify this
argument we calculated the amount of error in the evaluation
of the Shannon information if we just keep the configurations
with ranks up to xm. Suppose Sh(l,xm) is the contribution of
the configurations with all ranks equal or smaller than xm.
Then the error of truncation can be calculated by E(xm,l) =
Sh(l,1)−Sh(l,xm)

Sh(l,1) . Interestingly we found that the logarithm of the
error function is a linear function of l, see Fig. 8. In other
words

ln E(xm,l) = −λ(xm)l + δ(xm), (31)

where λ(xm) is equal to zero and infinity for xm = 0 and xm =
1, respectively. λ(xm) for the other values are shown in the
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FIG. 8. The error E(xm,l) in the evaluation of Shannon informa-
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FIG. 9. The contributions of different ranks k in the Shannon
information for two sizes l = 12 and 24 in the XX chain.

inset of the Fig. 8. The above formula shows that one can
calculate Shannon information with a controllable accuracy
by ignoring nonimportant configurations. Although the above
truncation method help to calculate the Shannon information
with good accuracy (especially the coefficient of the linear
term α) it is still not good enough to calculate the coefficient
of the logarithm with controllable precision.

B. XX chain

The Shannon information of the subsystem in the XX chain
is already discussed in Ref. [24], and based on numerical
results it is concluded that the equation (29) is valid with
β = 1

8 which is consistent with the conjecture in Ref. [23].
Here we just comment on the contribution of different ranks
which shows very different behavior from the transverse field
Ising chain case. First of all, as we discussed in the previous
section when the external field is zero the only configurations
that decay exponentially are those that respect the half filling
structure of the total system. The rest of the configurations
scale like a Gaussian, which simply indicates that their
contribution is very small in the Shannon information. This is
simply because the number of these configurations scale just
exponentially. Based on this simple fact one can anticipate that
the only configurations that can survive in the scaling limit are
those with k = l

2 . Numerical results depicted in Fig. 9 indeed
support this idea. Although k = l

2 is only one among l possible
minor ranks the number of configurations with this rank is
highest with respect to the others which can be one of the
reasons that one can obtain a good estimate for the coefficient
of the logarithm in (29) with relatively modest sizes.

VI. EVOLUTION OF SHANNON AND MUTUAL
INFORMATION AFTER GLOBAL QUANTUM QUENCH

Inspired by experimental motivations, the field of quantum
nonequilibrium systems has enjoyed a huge boost in the recent
decade [37]. One of the interesting directions in this field is the
study of information propagation after quantum quench, see,
for example, Refs. [38–43]. Based on semiclassical arguments
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and also using Lieb-Robinson bound it is shown [38,40]
that in one-dimensional integrable system one can understand
the evolution of entanglement entropy of a subsystem based
on quasiparticle picture [38]. The argument is as follows:
After the quench, there is an extensive excess in energy
which appears as quasiparticles that propagate in time. The
quasiparticles emitted from nearby points are entangled and
they are responsible for the linear increase of the entanglement
entropy of a subsystem with respect to the rest. In this section,
we first study the time evolution of formation probabilities and
subsequently Shannon and mutual information after a quantum
quench. One can consider this section as a complement to
the other studies of information propagation after quantum
quench. To keep the discussion as simple as possible, we
will concentrate on the most simple case of XX chain or free
fermions. Following Ref. [44] consider the Hamiltonian

H = −1

2

+∞∑
m=−∞

tm(c†mcm+1 + c
†
m+1cm). (32)

The time evolution of the correlation functions in the half
filling are given as

Cmn(t) = in−m
∑
j l

ij−lJm−j (t)Jn−l(t)Cjl(0), (33)

where J is the Bessel function of the first kind. Here we
consider the dimerized initial conditions with t2m = 1 and
t2m+1 = 0. The dimerized nature of the initial state will
help later to consider different possibilities for the initial
Shannon mutual information. Then at time zero we change the
Hamiltonian to tm = 1 and let it evolve. The time evolution of
the correlation matrix is given by [44]

Cmn(t) = 1

2

(
δm,n + 1

2
(δm+1,n + δm−1,n)

+ e−i π
2 (m+n) i(m − n)

2t
Jm−n(2t)

)
. (34)

To calculate the time evolution of the probability of different
configurations one just needs to use the above formula in (25).
The results for a few configurations are shown in Fig. 10.
Of course since the sum of all the probabilities should be
equal to one some of the probabilities increase with time and
some decrease. All the probabilities change rapidly up to time
t∗ ≈ l

2 and after that saturate. One can also simply calculate the
evolution of the Shannon information with the tools of previous
sections. In Fig. 11 we depicted the evolution of Shannon
information of a subsystem with respect to the time t . The
numerical results show an increase in the Shannon information
up to time t∗ ≈ l

2 and then saturation. This is similar to what
we usually have in the study of the time evolution of von
Neumann entanglement entropy after quantum quench [38].
However, one should be careful that in contrast to the von
Neumann entropy the Shannon information of the subsystem
is not a measure of correlation between the two subsystems.
In addition, the increase in the Shannon information of the
subsystem is not linear as the evolution of the von Neumann
entanglement entropy. Our numerical results indicate that apart
from a small regime at the beginning the Shannon information
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FIG. 10. The evolution of logarithmic formation probability of
different configurations with respect to time t after quantum quench.
The size of the subsystem is taken l = 20.

increases as

Sh(l) = altb − dt t < t∗ (35)

where b ≈ 0.15(2) and a and d are positive l independent
quantities.

To study the time evolution of correlations, it is much better
to study another quantity, Shannon mutual information of two
subsystems. To investigate this quantity we first studied the
time evolution of Shannon mutual information of a couple
of dimers located far from each other. The results depicted
in the Fig. 12 show that the Shannon mutual information
of the dimers are zero up to time t∗ ≈ l

2 and after that
increases rapidly and then again decays slowly. This picture is
consistent with the quasiparticle picture. The two regions are
not correlated up to time that the quasiparticles emitted from
the middle point reach each dimer [45]. However, the similarity
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FIG. 11. The evolution of Shannon information of a subsystem
with different sizes with respect to time t after quantum quench.
The full lines are the equation (35). The saturation points t∗ = l

2 are
marked by vertical arrows.
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FIG. 12. The mutual information between a pair of dimers located
at distance d with respect to time.

between the evolution of the von Neumann entropy and
mutual Shannon information ends here. To elaborate on that
we consider the mutual information of two adjacent regions
with sizes l

2 . Because of the dimerized nature of the initial
state there are two possibilities for choosing the subsystems:
At time zero at the boundary between the two subsystems
there can be a dimer or not. In the first case at time zero
the Shannon mutual information between the two subsystems
is not zero but in the second case it is zero. In the second
case naturally one expects an overall increase in the mutual
information but in the first case a priory it is not clear that the
mutual information should increase or decrease. In Fig. 13 we
have depicted the results of the numerics for the two adjacent
subsystems for different sizes. The numerical results show
that for the uncorrelated initial conditions the Shannon mutual
information first increases rapidly and then it decays and finally
saturates at time t∗ = l

2 . In the correlated case, we have overall
decay in the mutual information and finally the saturation
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FIG. 13. The evolution of mutual information between two
adjacent subsystems in two different cases: When at the boundary
between the two subsystems there is a dimer, case a, and when there
is no dimer, case b. In the first case the mutual information starts from
a nonzero value, but in the second case it starts from zero.

again at time t∗ = l
2 . This behavior is very different from

the quantum mutual information of the same regions which
for the considered initial states first increases linearly and then
saturates at time t∗ = l

2 . The interesting phenomena is that
after a short initial regime that the Shannon mutual information
is initial state dependent the system enters to a regime that
this quantity is completely independent of initial state and it
decreases “almost” linearly and then saturates. This can be also
easily seen from the equation (35), where we can simply drive

I (l,l) = −dt t < t∗. (36)

The saturation regime is independent of the size of the
subsystem, this is simply because in the equilibrium regime
the Shannon mutual information follows the area law [18],
and so it is independent of the volume of the subsystems.

VII. CONCLUSIONS

In this paper, we employed Grassmann numbers to write
the probability of occurrence of different configurations in
free fermion systems with respect to the minors of a particular
matrix. The formula gives a very efficient method to study
the scaling properties of logarithmic formation probabilities
in the critical XY chain. In particular, we showed that the
logarithmic formation probabilities of crystal configurations
are given by the CFT formulas for the critical transverse field
Ising model. This is checked by studying the probabilities in
the infinite and finite (periodic and open boundary conditions)
chain. In the case of the critical XX chain, which has a
U (1) symmetry, just the configurations with x = nf

π
follow

the CFT formulas. The rest of the configurations decay like
a Gaussian and do not show much universal behavior. We
also studied the Shannon information of a subsystem in the
transverse field Ising model and XX chain. In particular, for
the Ising model, we showed that in the scaling limit just the
configurations with a high number of up spins contribute to
the scaling of the Shannon information. In principle, if one
considers all the configurations, with our method one can not
calculate the Shannon information with classical computers
for sizes bigger than l = 40 in a reasonable time. However, if
one admits a controllable error in the calculation of Shannon
information it is possible to hire the results of Sec. V to go to
higher sizes. It would be very nice to extend this aspect of our
calculations further to calculate the universal quantities in the
Shannon information with higher accuracy. For example, one
interesting direction can be finding an explicit formula for the
sum of different powers of principal minors of a matrix. This
kind of formula can be very useful to calculate analytically or
numerically the Rényi entropy of the subsystem.

Finally, we also studied the evolution of formation proba-
bilities after quantum quench in the free fermion system. In
this case, we prepared the system in the dimer configuration
and then we let it evolve with homogeneous Hamiltonian.
The evolution of Shannon information of a subsystem shows a
very similar behavior as the evolution of entanglement entropy
after a quantum quench. Especially our calculations show that
the saturation of the Shannon information of the subsystem
occurs at the same time as the entanglement entropy. This is
probably not surprising because the t = t∗ is also the time that
the reduced density operator saturates.
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It will be very nice to extend our calculations in a few other
directions. One direction can be investigating the evolution of
mutual information after local quantum quenches as is done
extensively in the studies of the entanglement entropy [46–48].
The other interesting direction can be calculating the same
quantities in other bases, especially those bases that do not
have any direct connection to CFT.
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APPENDIX: SHANNON INFORMATION FOR CRITICAL
TRANSVERSE-FIELD ISING MODEL

In this Appendix, we will provide more details regarding
the Shannon information of transverse critical Ising chain
and XX chain. The data regarding Shannon information for
a subsystem with length l up to l = 39 is listed in Table IV.
Having the data, we checked many different functions with
different parameters to study the coefficient of the logarithm.
Needless to say, increasing the possible parameters can make
a difference in the final result. In Ref. [24] the results
fitted to

Sh(l) = αl + β ln l +
5∑

n=1

bn

ln
+ δ (A1)

show that the best value is β = 0.060. This can be also checked
using the data provided in Table IV. It is worth mentioning that
one can also get reasonable results using the data up to l = 40
for some formation probabilities (not all) if we consider extra

TABLE IV. Shannon information calculated for sizes l = 1,2,...,39.

l Shannon l Shannon

1 0.473946633733778 21 9.094267377324401
2 0.925441055292197 22 9.520258511384927
3 1.367970612016317 23 9.946131954351737
4 1.805854593071358 24 10.37189747498959
5 2.240889870728481 25 10.79756367448224
6 2.674003797245196 26 11.22313816533366
7 3.105734740754158 27 11.64862771729621
8 3.536422963908594 28 12.07403837729498
9 3.966297046625437 29 12.49937556879184
10 4.395517906953372 30 12.92464417475445
11 4.824203084194648 31 13.34984860684562
12 5.252441034545332 32 13.77499286454422
13 5.473946633733777 33 14.21026702317442
14 6.107833679024358 34 14.62511508430369
15 6.535085171703405 35 15.05009939651494
16 6.962089515106671 36 15.47503630258492
17 7.388875612253789 37 15.89992835887542
18 7.815467577831834 38 16.32477792018708
19 8.241885740227190 39 16.74960160654153
20 8.668147394540807

terms
∑5

n=1
bn

ln
in the fitting procedure. Although we found

that the equation (A1) is the most stable fit with the least
standard deviation based on our results in the main text we
found it is hard to exclude the term ln l

l
because it is present in

all the configurations studied there. If one includes this term
and does not add the terms

∑5
n=1

bn

ln
the β coefficient will be

0.0617. If one keeps all the terms
∑5

n=1
bn

ln
the result will be

β = 0.060. The final conclusion is that as far as one justifies
the presence of the terms

∑5
n=1

bn

ln
in the Shannon information

formula the best value for β with the current available
data is 0.060.

[1] P. Calabrese and J. Cardy, J. Phys. A 42, 504005 (2009).
[2] V. E. Korepin, A. G. Izergin, F. H. L. Essler, and D. B. Uglov,

Phys. Lett. A 190, 182 (1994); F. H. L. Essler, H. Frahm,
A. G. Izergin, and V. E. Korepin, Comm. Math. Phys. 174, 191
(1995).

[3] N. Kitanine, J.-M. Maillet, N. Slavnov, and V. Terras, J. Phys. A:
Math. Gen. 35, L385 (2002); 35, L753 (2002); A. G. Abanov and
V. E. Korepin, Nucl. Phys. B. 647, 565 (2002); V. E. Korepin, S.
Lukyanov, Y. Nishiyama, and M. Shiroishi, Phys. Lett. A 312,
21 (2003); K. K. Kozlowski, J. Stat. Mech. (2008) P02006); L.
Cantini, J. Phys. A: Math. Theor. 45, 135207 (2012).

[4] M. Shiroishi, M. Takahashi, and Y. Nishiyama, J. Phys. Soc.
Jpn. 70, 3535 (2001).

[5] A. G. Abanov and F. Franchini, Phys. Lett. A, 316, 342 (2003);
J. Phys. A 38, 5069 (2005).
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