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Accurate tight-binding Hamiltonians for two-dimensional and layered materials
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We present a scheme to controllably improve the accuracy of tight-binding Hamiltonian matrices derived
by projecting the solutions of plane-wave ab initio calculations on atomic-orbital basis sets. By systematically
increasing the completeness of the basis set of atomic orbitals, we are able to optimize the quality of the
band-structure interpolation over wide energy ranges including unoccupied states. This methodology is applied
to the case of interlayer and image states, which appear several eV above the Fermi level in materials with large
interstitial regions or surfaces such as graphite and graphene. Due to their spatial localization in the empty regions
inside or outside of the system, these states have been inaccessible to traditional tight-binding models and even
to ab initio calculations with atom-centered basis functions.
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I. INTRODUCTION

The generation of highly accurate tight-binding (TB)
models for arbitrary systems is a long-lasting problem that
has enormous implications in the development of efficient
tools for the study of the electronic structure of molecules
and solids [1,2], and for applications in accelerated materials
development [3]. Tight-binding methods have evolved to
include total-energy calculations [4–6] and self-consistent
approaches [7–9] greatly extending the applicability. With
the introduction of ab initio tight-binding Hamiltonians the
accuracy of many of these methods has seen a substantial
improvement. However, the best representations still rely on
ad hoc basis sets that need to be iteratively optimized [10–12]
and are computationally expensive. In recent papers, we
have introduced an efficient scheme to construct optimal
tight-binding Hamiltonians projecting the Bloch states ob-
tained from plane-wave (PW) density functional theory (DFT)
calculations onto atomic orbitals (AOs) derived directly from
the generation of the atomic pseudopotentials [13–15]. In
this scheme, the energy range in which the TB Hamiltonian
reproduces the original states is limited by the finite number
of pseudo-atomic-orbitals (PAOs) that comprise the minimal
basis set. As such, only a few unoccupied bands are typically
well represented and an accurate description of the conduction
states is impossible beyond a few eV. If more conduction states
are needed, the basis set needs to be systematically extended.

In this work, we propose a procedure that extends the
validity of the TB representation of the band structure to
electronic states far above the Fermi level.

This approach is based on the projector augmented wave
(PAW) formalism and involves several AOs for each angular
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momentum that are directly computed from the all electron
atomic potential.

The paper is organized as follows: in Sec. II.A we introduce
the PAW formalism; since the PAW method requires smoother
AO functions, i.e., the PAOs, the pseudization process is
presented in Sec. II.B; in Sec. II.C we briefly summarize the
projection, filtering and shifting procedure to generate accurate
Hamiltonian matrices as originally discussed in Refs. [13,14];
in Sec. II.D we discuss the convergence properties of the
unoccupied Kohn-Sham states and their dependence on the
basis set representation; finally, in Sec. III we present two
examples where we demonstrate the effectiveness of our
enhanced scheme by reproducing the interlayer states of
graphite and the image states of graphene in a wide energy
range.

II. METHODOLOGY

A. The PAW method

DFT in combination with the plane-wave pseudopoten-
tial (PP) formalism is one of the most common methods
to derive the electronic structure of molecules and solids.
Pseudopotentials are constructed to remove core electrons
from the Hamiltonian and to reduce drastically the number of
plane waves that would be otherwise needed to represent the
divergent Coulomb potential close to the nucleus. In addition,
pseudo-wave-functions are smooth in the region close to the
nuclei because they do not need to be orthogonalized to the
core orbitals. The drawback of the PP method is that all the
details on the wave functions within a specific distance from
the nucleus (the atomic sphere) are lost. This is important
when it comes to calculate, for instance, magnetic resonance
parameters or core emission spectroscopies [16–18]. In that
regard, the PAW method [19] allows reconstructing the full
nodal structure of the wave functions near the ions. The basic
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idea is to “augment” the pseudo-wave-functions with a set
of pseudo-partial-waves |ϕ̃n

α〉, which are localized functions
centered at position Rα for each atom α (n is a composite index
for the quantum numbers n,l,m). This augmentation procedure
is achieved through the application of the T̂ operator to the
pseudo-wave-functions, |ψ̃i〉, in order to obtain the all-electron
wave functions, |ψi〉 = T̂ |ψ̃i〉. The composite index i indicates
the band state and wave vector k of the Bloch wave. Such an
operator is defined as

T̂ = 1̂ +
∑

α

T̂α,

T̂α =
∑

n

(|ϕn
α〉 − |ϕ̃n

α〉)〈p̃n
α| (1)

where |ϕn
α〉 are the all-electron partial waves and |ϕ̃n

α〉 are
the corresponding pseudo-partial-waves. The PAW method is
grounded on the assumption of completeness of the basis of
partial waves in Eq. (1): the wave function can be expanded
in terms of partial waves inside the augmentation sphere. In
practice, in order to enforce a high degree of completeness
one has to include more than one partial wave per angular
momentum (typically two or three), where the first corresponds
to the bound energy state and the others correspond to
unbound states of positive energy. The projectors |p̃n

α〉 are
local functions centered at Rα and vanishing beyond a certain
cutoff radius rc

α; they are determined such that

〈p̃n
α|ϕ̃n′

α 〉 = δn,n′ , for |r − Rα| < rc
α. (2)

The inclusion of multiple partial waves enables the high
transferability and accuracy of the PAW potentials, which are
defined by a given set of partial waves, projectors, and cutoff
radii. Libraries of PAW datasets for almost all elements in
the periodic table are available: PSlibrary [20], GBRV [21],
JTH [22], GPAW [23], VASP [24], ATOMPAW [25], and
GIPAW, used in the calculation of nuclear magnetic resonance
shifts [26].

B. Generation of the PAO basis sets

For given energies εn, the all-electron atomic-orbital func-
tions |φn

α〉 are obtained by solving the Schrödinger equation:

[
− 1

2
∇2 + V AE

α

]
|φn

α〉 = εn|φn
α〉, (3)

where V AE
α is the screened all-electron potential found by

self-consistently solving the Schrödinger equation for an
isolated atom in a given reference electronic configuration. The
corresponding smooth atomic orbitals |φ̃n〉 (dropping the atom
index α for simplicity) are obtained by solving the implicit
equation: |φn〉 = T̂ |φ̃n〉, that is,

φ̃n(r) = φn(r) −
∑
m

[ϕm(r) − ϕ̃m(r)]Cm,n, (4)

where Cm,n = 〈p̃m|φ̃n〉 = ∫ rc

0 p̃mm(r)∗φ̃n(r)r2dr . Notice that
we have included only the radial component of the functions,
i.e., without the angular part, given by the spherical harmonics
Ylm.
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FIG. 1. All-electron and pseudoatomic functions for the {s,s ′}
components of the PAO3 set. The parameters used to compute the
pseudo-atomic-orbitals are defined by the same PAW dataset used in
the DFT calculation.

Equation (4) has the form of a Fredholm equation of
the second kind [27] which can be reduced to a matrix
equation defining C = (I + A)−1B where I , A, and B

are identity, square, and rectangular matrices, respectively,
with elements Ak,h = ∫ rc

0 p̃k(r)∗[ϕh(r) − ϕ̃h(r)]r2dr , Bk,m =∫ rc

0 p̃k(r)∗φm(r)r2dr . The indices k and h run over the set
of projectors and partial waves that define the PAW dataset,
respectively, while the indices n and m run over the full set of
radial wave functions from Eq. (3).

We have applied the procedure discussed above to derive
sets of smooth AOs, i.e., the PAOs φ̃n. In a strict sense,
while the PAOs are the auxiliary functions involved in the
PAW method, the AOs φn are the functions that constitute
the basis set for the tight-binding models. Figure 1 shows
a comparison of the radial parts of the all-electron versus
the pseudo-atomic-orbitals of carbon (the s and s ′ func-
tions of PAO3 given in Table I) using the PAW potential
C.pbe-n-kjpaw_psl.1.0.0.UPF from Ref. [20]. The PAO
functions are smoother than the all-electron functions inside
the cutoff radius of 1.4 aB , while, by construction, both are
identical outside the cutoff radius.

One point of strength of this approach is that we can
construct PAO sets of increasing size and completeness. The
sets can include multiple functions for each {lm} channel
which correspond to different energy parameters εn (see
Table I). The first choices for the values of εn are the
eigenenergies of the bound states (εn < 0) of the isolated atom.
These orbitals form the minimal set PAO1 which is equivalent

TABLE I. Energy parameters (in Ry) that define the functions
used in the construction of the PAO sets {φ̃n(r)} for carbon via Eq. (3).

Set εs εp εd εs′ εp′ εs′′ εp′′

PAO1 −1.01 −0.39
PAO2 −1.01 −0.39 0.05
PAO3 −1.01 −0.39 0.05 0.05 0.05
PAO4 −1.01 −0.39 0.20 0.20 0.20 0.4 0.4
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to the single-zeta basis used in quantum chemistry, e.g., {s,p}
functions for carbon, composed of M = 4 functions.

Hamann [28] showed that positive-energy (scattering)
states can be employed to improve the accuracy of norm con-
serving pseudopotentials. Within our approach, we augment
the minimal PAO1 set with scattering states of energies εn > 0
(these energy parameters can be chosen arbitrarily). The PAO2

set is of single-zeta-polarized quality that includes polarization
functions with higher angular momentum, lmax + 1, i.e.,
{s,p,d}, M = 9. PAO3 is of double-zeta-polarized quality,
i.e., {s,s ′,p,p′,d}, M = 13, and PAO4 triples the number of
minimal basis functions and includes additional polarization
functions, i.e., {s,s ′,s ′′,p,p′,p′′,d}, M = 17; thus, it is of
triple-zeta-polarized quality.

C. Building the TB Hamiltonian matrices

Accurate TB Hamiltonian matrices can be built from
the direct projection of the Kohn-Sham (KS) Bloch states
|ψnk〉 onto a chosen PAO set as discussed extensively in
Refs. [13,14]. This procedure is satisfactory when Bloch states,
that project well on the selected AO basis set, are kept and
states that do not project well are eliminated, i.e., filtering. In
this process the crucial quantities that quantify the accuracy of
the basis are the projectabilities pnk = 〈ψnk|P̂ |ψnk〉 � 0 (P̂ is
the operator that projects onto the space of the PAO basis set,
as defined in Ref. [14]) which indicate the representability
of a Bloch state |ψnk〉 on the chosen PAO set. Maximum
projectability, pnk = 1, indicates that the particular Bloch state
can be perfectly represented in the chosen PAO set; contrarily,
pnk ≈ 0 indicates that the PAO set is insufficient and should be
augmented. Once the Bloch states with good projectabilities
have been identified, the TB Hamiltonian is constructed as

H (k) = AEA† + κ[I − A(A†A)−1A†] (5)

where E is the diagonal matrix of KS eigenenergies and A is
the matrix of coefficients obtained from projecting the Bloch
wave functions onto the PAO set (see Ref. [14].) Since the
filtering procedure introduces a null space, the parameter κ is
used to shift all the unphysical solutions outside a given energy
range of interest.

The real-space TB matrix, H (R), between the central and
the neighboring unit cell at lattice vector R is obtained via
Fourier transform:

H (R) = 1

NV

∑
k

e−ik·RH (k) , (6)

where NV is the number of k points in the reciprocal unit cell.
Using these matrices, one can calculate the interpolated TB
band structure, for any k, using the inverse Fourier transform.

D. TB representation of the unoccupied bands

When a linear combination of AOs (LCAO) is used as basis
sets in DFT based methods, the unoccupied bands tend to
substantially depend upon basis set size. As an illustration of
the above argument, we have computed the band structure
of graphite and graphene using both approaches. All PW-
and LCAO-DFT calculations presented in this work were per-
formed using the software packages QUANTUM ESPRESSO [29]
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FIG. 2. Band structure of graphite using atomic-orbital (at the
single-zeta, double-zeta polarized, and triple-zeta doubly polarized
level) and well-converged plane-wave basis sets.

or OPENMX [30] using the Perdew-Burke-Ernzerhof [31]
exchange and correlation functional. The PW calculations use
the PAW pseudopotential C.pbe-n-kjpaw_psl.1.0.0.UPF
from the PSlibrary [20] and a kinetic-energy cutoff energy
of 40 Ry. The LCAO-DFT calculations use norm conserving
pseudopotentials and the optimized AO basis sets from the
OPENMX pseudopotential database [32], with a cutoff radius
for all carbon basis functions of 7 aB . The basis set used for
the “empty atoms” contains two s, two p, two d, and one f

function, all with a cutoff of 13 aB .
The first three panels in Figs. 2 and 3 show the LCAO-

DFT band structures for graphite and graphene, respectively,
calculated using AO basis sets of increasing quality, taken from
a public database [32]: single zeta (SZ), double zeta with polar-
ization (DZP), and triple zeta with double polarization (TZDP).
Under the same approximation to the exchange-correlation
functional, calculations using a well-converged plane-wave
(PW) basis set (fourth panel) reproduce the unoccupied states
systematically better than the AO basis sets.

Not surprisingly, a minimal basis set such as SZ fails to
reproduce not only the unoccupied but also the occupied
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FIG. 3. Band structure of graphene using atomic-orbital (at the
single-zeta, double-zeta polarized, and triple-zeta doubly polarized
level) and well-converged plane-wave basis sets. The first three panels
use atomic-orbital-like sets: SZ, TZDP, and DZP with empty atoms
from Ref. [32].
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FIG. 4. Projectability pnk, in color scale, of Bloch states ψnk of graphite on the PAO1, PAO2, and PAO3 sets. The fourth panel shows the
interpolated band structure in green obtained from the TB Hamiltonians built on the PAO3, superimposed to the plane-wave band structure.
The color bar is shown in Fig. 6.

bands of graphite and graphene. The SZ calculation completely
misses the lowest conduction band at 	, as seen in the first
panel in Figs. 2 and 3. DZP basis sets are generally considered
satisfactory to reproduce ground-state properties, reaching
close to chemical accuracy [33]. Indeed, we find that all
occupied states are well converged at the DZP level; however,
it offers little improvement to the unoccupied bands. Only
when the much larger TZDP set is used, the unoccupied bands
start to qualitatively match the fully converged PW results.

Despite the deficiencies of standard implementation of
DFT, single-particle KS eigenstates (occupied and unoccu-
pied) are often needed, for instance, as the starting point for
more refined calculation of the excited states (time-dependent
DFT [34], density-functional perturbation theory [35], many-
body perturbation theory GW [36], coupled-cluster the-
ory [37], etc.), thus TB Hamiltonians that are expressed in
small AO basis sets but that can still deliver the accuracy of
the converged PW DFT results, especially for the unoccupied
states, are a valuable tool for the study of novel materials and
further development of theoretical methods.

III. APPLICATIONS

For most crystalline materials, minimal PAO sets (of SZ or
SZP quality) are sufficient for constructing TB Hamiltonians
that are describing accurately the band structure up to
∼2 eV above the Fermi energy [13,14]. However, materials
containing extended interstitial regions tend to exhibit “inter-
layer states” usually located several electron volts above the
Fermi energy. Similarly, the description of “image states” in
metallic surfaces also requires a larger energy range in the
unoccupied bands. Here, we discuss two prototypical cases,
graphite and graphene, to demonstrate the effectiveness of our
augmented PAO basis sets and TB scheme for the treatment of
interlayer and image states, which have been out of reach of
traditional parameterized TB models so far.

A. Graphite

The first step toward quantifying the quality of LCAO
basis sets involves a detailed analysis of the projectabilities.

As mentioned before we construct PAO sets of increasing
“completeness” and derive an appropriate TB model intended
to interpolate the fully converged PW band structure. In
Fig. 4 we discriminate between bands with moderate to
high projectabilities (plotted in red) and bands with lower
projectabilities (plotted in blue). (See the color scale in Fig. 6.)
The first panel shows the projectabilities on the PAO1 set.
There are two discernible groups of bands: the states with
predominant {s,p} character (in red) and the parabolic bands
near 	 (in blue). Expectedly, the high projectabilities bands
qualitatively resemble the LCAO-DFT calculation with SZ
basis in Fig. 2. Conversely, the low projectability bands (in
blue), which can not be well represented on the minimal
{s,p} basis, are absent in Fig. 2 (SZ.) Interestingly, those
bands correspond to the so-called interlayer states of graphite
[38–40], which are strongly dispersed unoccupied states
located in-between the graphitic planes [see Fig. 3(c) in
Ref. [40]].

Interlayer states are characteristic of materials with inter-
stitial hollow regions [41,42], layered structures [43], and/or
reduced dimensionality such as carbon nanotubes [44,45],
C60 [46], etc. Naturally, atom-centered basis functions are
inappropriate to describe states that extend to the interstitial
and/or vacuum regions, whereas PW bases are particularly
well suited for this [47]. This is reflected in the pronounced
discrepancy between unoccupied eigenenergies calculated
using PW and AO basis sets [41,42]. The interlayer states
of graphite are not captured with commonly used AO basis
sets [48,49] such as DZP, as seen in Fig. 2.

Our PAW-based procedure allows a systematic extension
of the PAO sets (see Table I) to distill TB Hamiltonians that
capture the details of the band structure including “interlayer
states.” The performance of each PAO set is assessed by
determining its energy range of good projectability for a
particular material, which in turn leads to a TB model that
is highly accurate within the same energy range.

The performances of the four PAO sets in Table I in terms of
projectabilities are shown in Fig. 5. We choose the threshold of
pnk � 0.95 to determine the target energy range of accuracy.
The performance of the PAO1 set (blue line) sharply declines
above 3.3 eV due to the presence of parabolic bands that do not
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FIG. 5. Projectability of the Bloch states ψnk of graphite onto the
four PAO sets defined in Table I. The plot shows the minimum value
of projectability for each bin of a discretized energy grid. The dotted
line indicates the projectability threshold of 0.95. All k points in the
reciprocal unit cell are included in the calculation.

project well on the small LCAO basis. The TB model using this
set is accurate only up to 3.3 eV. The larger spatial range of the
{s ′,p′} functions added in PAO2 facilitates the representation
of the interlayer states closer to the graphitic planes, yielding a
noticeable increase in the projectabilities with respect to PAO1

over the entire energy range. This is also observed in the second
panel in Fig. 4 where most of the blue bands switched to red; the
interlayer states with wave-vector component perpendicular
to the graphitic planes, those in the 	-A direction, are still of
low projectability. The wave functions of perpendicular Bloch
states are primarily localized at the center of the interstitial
space, the farthest from the planes, and the {s ′,p′} functions
are still insufficient to fully capture them; this is reflected
by the oscillations of the green line in the 3.3–7-eV range
in Fig. 5. When we augment the basis set with d functions
(PAO3) the range of high projectability increases up to 7.2 eV
above the Fermi level. PAO4 (light blue line) further extends
that range up to 10.8 eV. From the above results it is clear that
the upper bound of the energy range of high projectability, and
consequently the range of accuracy of the TB matrices, can be
systematically increased in this way.

The interpolated TB band structure constructed using the
PAO3 set is shown in green in Fig. 4. An excellent agreement
with the PW-DFT bands up to 7.2 eV above the Fermi
level is observed, as expected from the energy range of high
projectabilities deduced from Fig. 5.

B. Graphene

The high-energy electronic bands of graphene are charac-
terized by the presence of image states. Image states give rise to
superconductivity in metal-doped graphite [40,50]. Similarly,
they play a critical role in several phenomena such as the
functionalization of graphene, the adsorption of oxygenated
moieties and hydrogen, the formation of defects [51,52], and
the “finger-print” peaks in the x-ray-absorption spectra found
in the same energy region [53–58]. Image states have also
been shown to mediate electron tunneling in graphene [59].
The importance of TB models that reproduce well “interlayer”
and “image states” cannot be underestimated especially when
designing devices and interpreting experiments.

Image states in graphene follow [60] double Rydberg series
n± and, expectedly, have low projectability on PAO1 (blue lines
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FIG. 6. Projectabilities of the Bloch states of graphene on the
PAO1 and PAO3 sets. The interpolated TB band structure, computed
using the PAO3 basis set, is shown in green on the third panel
superimposed to the PW bands.

in the first panel of Fig. 6). The two lowest unoccupied bands,
parabolic at 	, are the first states of the series, denoted as
1+ and 1−. The third lowest unoccupied band corresponds to
the state 2+. Increasing the projectability of the image-state
bands by augmenting the basis set is difficult for the particular
case of graphene. The projectabilities improve with higher
PAO sets, but fail to reach the threshold of 0.95. As seen
in the second panel, bands 1+ and 1− can reach moderately
high projectability (∼0.8 at 	) with PAO3; in sharp contrast,
however, band 2+ (light blue) still exhibits low projectability.
This behavior is due to the spatial distribution of the image
states. Indeed, the wave functions of 1+ and 1− around 	 have
a component that is localized in the graphene plane forming
σ and π hybridizations, respectively [see also Fig. 3(b) in
Ref. [60]]. This component can be partially accounted for with
the inclusion of {s ′,p′} (and to a lesser extent, d) functions in
PAO3, leading to the observed increase of projectabilities in
the second panel with respect to the first in Fig. 6. The other
component of the wave functions 1+ and 1− is more localized
in the vacuum region [60] and, thus, is not captured by the s ′
and p′ functions. Band 1− loses its dispersion and becomes
flat around K, where a marked reduction in projectability is
also seen (blue segment at ∼10.6 eV in the second panel.)
This happens because around K the wave function of 1− loses
its in-plane π -like component and consequently can no longer
be expanded with the {s ′,p′} functions [see also the charge-
density plot in Fig. 3(a) in Ref. [61]]. On the other hand,
the wave function 2+ is fully localized in the vacuum region
with the position of the maximum electron density away from
the graphene plane [60]. Contrary to 1±, it has no in-plane
component at 	 and, thus, cannot be represented just by adding
basis functions that are centered in the plane; therefore, 2+
exhibits low projectability on the PAO3 set.

This is corroborated by examining the LCAO-DFT bands,
shown in the first three panels in Fig. 3. Even with the large
TZDP basis set (second panel), the band structure completely
misses the parabolic image state bands obtained when using the
PW basis. The image states are reached only after extending
the DZP with empty-atom (EA) basis functions centered at
2.8 Å above and below the graphene sheet. Although the
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DZP-EA set is too expensive for practical calculations, it
is observed that the bands (third panel) reach qualitative
agreement to the PW solution (fourth panel).

As seen in the third panel in Fig. 6, the TB Hamiltonian
generated using the PAO3 set is able to correctly reproduce
the band structure (in green) up to the two lowest parabolic
bands 1+ and 1−. Our method supersedes parameterized
tight-binding schemes that are only suitable in the vicinity
of the Dirac point. The TB band structure shown here achieves
higher accuracy than even the LCAO-DFT result, and with a
less expensive basis set. We expect that extending the PAO set
with empty-atom functions located off plane will noticeably
increase the projectabilities of the interlayer states 1± and
2+ above the threshold of 0.95. We leave this for future
investigation.

IV. SUMMARY AND CONCLUSIONS

We presented a scheme to extend PAO basis sets to
systematically increase the level of completeness of tight-
binding representations obtained from plane-wave ab initio

calculations. While minimal PAO sets (of SZ or SZP quality)
can be sufficient for generating TB Hamiltonian matrices
accurate up to ∼2 eV above the Fermi level for most materials,
we have shown that enhanced PAO basis sets, containing
both negative and positive energy atomic-orbital functions,
can controllably increase the energy window in which the TB
model is faithfully representing the details of the bands. Results
for graphite and graphene, notably very difficult systems to
represent in a TB scheme, demonstrate the accuracy and
effectiveness of the method.
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