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Fluctuation phenomena in chaotic Dirac quantum dots: Artificial atoms on graphene flakes
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We develop the stub model for the Dirac quantum dot, an electron confining device on a grapheme surface.
Analytical results for the average conductance and the correlation functions are obtained and found in agreement
with those found previously using semiclassical calculation. Comparison with available data is presented. The
results reported here demonstrate the applicability of random matrix theory in the case of Dirac electrons confined
in a stadium.
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I. INTRODUCTION

The electronic transport across a wide class of recently
controlled materials displays relativistic properties, although
at a speed much slower than light. These structures are known
as Dirac materials [1–9] and give rise to intriguing physical
phenomena of interest both experimentally and theoretically
[10–15]. Quite interesting phenomena emerge from the nature
of wave functions of the confined electrons, described by the
massless or massive Dirac equation of relativistic quantum
mechanics [5,9,16–22], instead of the Schrödinger equation.

The Dirac equation is appropriate to describe the electronic
states of two independent sub-lattice components [5,23], which
generate additional constraints known as pseudospins. The
prominent examples of these bipartite systems are square
lattices, such as some topological insulators, and hexagonal
lattices, whose main example are the graphene structures.

Among the different electronic Dirac devices, the chaotic
Dirac quantum dot (DQD), also called chaotic Dirac billiard
(DB), has received a significant highlight [4,18,24–33], due to
its universal characteristics. In the search for such universal
properties, Ref. [4] studied experimentally a DB using a
graphene quantum dot. The authors study a small billiard and
show level statistics distribution best described by Gaussian
unitary or orthogonal ensembles from the random matrix
theory (RMT). Moreover, the authors find evidences of a
time-reversal symmetry (TRS) broken state in the absence
of a magnetic field, raising questions about the possible
origin of such states. In fact, almost 30 years ago, Berry and
Mondragon [34] studied what they called “Neutrino Billiard,”
a stadium where massless spin-1/2 fermions, described by
a Dirac Hamiltonian, are confined. They showed that the
system exhibits time-reversal symmetry (TRS) breaking in the
absence of an external magnetic field. This TRS breaking is
of course not the physical one associated with the presence of
an external magnetic field. It arises in the above reference as a
fictitious single-valley time-reversal symmetry due to the use
of the Weyl equation, that is, not the time-reversal symmetry
of graphene which is governed by the Dirac equation. The
statistics of the energy eigenvalues of the confined fermions
in Ref. [34], were found to be governed by the Gaussian
unitary ensemble (GUE). Motivated by this and other findings,
Ref. [18] uses the tight-binding Dirac Hamiltonian model for

electrons, taking into account massive confinement, to analyze
the conductance and energy level statistics of graphene DB.
In the absence of massive confinement, the authors show that
electronic properties are well described by Gaussian unitary or
orthogonal ensembles, as obtained in Ref. [4]. However, in the
presence of massive confinement, the transmission statistics
follow exclusively from the block unitary structure, while
the spectral statistics exhibits an orthogonal or even Poisson
statistics.

Analytical results for the chaotic graphene quantum dot
(with massive confinement were obtained using semiclassical
theory in Ref. [24]. In the limit of high massive confinement,
the authors predict the average of conductance and the ampli-
tude of the universal fluctuations as a function of magnetic flux
and armchair edges. The authors also analyze how the ratio
between dwell time and the magnetic flux time (Tdwell/TB)
as well as dwell time and armchair edges time (Tdwell/Tac)
affect the weak localization and universal fluctuations in
the crossover regime and compare with standard results of
the Gaussian unitary and orthogonal universal ensembles.
Motivated by that semiclassical theory analysis, Ref. [27]
performs a full analytical study of the DQD through the RMT
chiral ensemble. The authors derived a general expression for
the average conductance and its universal fluctuations for the
three classes of chiral ensembles in the pure regime (in the
absence of crossover fields), which in the semiclassical limit
(large number of open channels) recovers the specific results
of Ref. [24] that are outside the crossover regime.

As previously discussed, there is a theoretical challenge to
construct an RMT formulation for the study of the DQD in
any crossover regime (finite field and/or boundary condition).
In order to solve the problem, we deduce in this work a
generalization of the crossover scattering framework, based
on a diagrammatic method which was proposed in Ref. [35],
to study the crossover regime in the chaotic Dirac billiard
connected to a source and a drain of the conductance electrons.
As a relevant application of our framework, we study the
chaotic graphene quantum dot (chaotic DQD), obtaining gen-
eral analytical expressions for the average of the conductance
and for the correlation functions of conductance as a function
of energy, magnetic flux, straining of the graphene monolayer
[10,17], and confinement by massive, armchair and zigzag
edges [5,36]. In particular, we show the full suppression of
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the weak localization term as a function of the straining, in
full agreement with the experimental findings of Ref. [10].
Moreover, in the limit of high massive confinement, we recover
the results obtained in Ref. [24] which uses semiclassical
theory. However, we emphasize the generality of our RMT
framework, which is applicable to all categories of chaotic
DQD.

The paper is organized as follows: In Sec. II we give a brief
account of the quantum chaotic scattering theory employed in
the RMT treatment of the chaotic Dirac quantum dot (CDQD).
In Sec. III, we introduce the RMT crossover scattering
framework to the chaotic Dirac billiard. In Sec. IV, we include
a brief discussion of the effective graphene Hamiltonian and
apply it to discuss the statistical properties of the CDQD. We
perform calculations and obtain general analytical expressions
for the average of conductance and its correlation functions and
also analyze their relevant limits. The conclusions are given in
Sec. V.

II. QUANTUM CHAOTIC SCATTERING THEORY AND
THE RMT-BASED STUB MODEL

In a general stadium which confines electrons one can
describe the conductance and its universal fluctuations using
known methods of resonant scattering. The electrons inside the
stadium execute confining potential-affected motion governed
by the Schrödinger or the Dirac equation. The electrons suffer
multiple reflections from the boundaries and standing waves
are generated, which represent the eigenstates of the system.
Taking into account the coupling of the interior of the stadium
to the outside region results in transforming the standing waves
into resonances with a width that measures the time it takes
the electrons to be transmitted to the outside and electric
conductance ensues. A convenient way to formalize the above,
is through Feshbach’s projection operator method, commonly
used to treat the compound nucleus resonances in nuclear
reactions [37–40]. Denoting the total wave function of the
system by |�〉, one introduces the projector Q which projects
out the closed channels, namely the states in the interior of the
stadium. The states with electrons outside the stadium, namely
the open channels are projected out by P , with PQ = QP = 0
and P 2 = P , and Q2 = Q. The wave equation of the whole
many-electron system, can then be decomposed into two
coupled equations, one for P |�〉 and the other for Q|�〉. The
exact, full Hamiltonian of the system H , is also decomposed
into four operators, viz QHQ + PHP + PHQ + QHP .
After well-known manipulations one is able to derive a general
exact expression for the scattering matrix S, that describes
resonant scattering,

S = 1 − 2iπPHQ
1

E − QHQ − QHP 1
E−PHP+iε

PHQ

× QHP. (1)

Writing QHP[1/(E − PHP + iε)]PHQ = −iπQHPδ(E −
PHP)PHQ + QHPPr[1/(E − PHP)]PHQ ≡ −i�Q/2 + �Q,
where �Q is the width operator of the resonances, and �Q is
the real energy shift operator which is usually added to QHQ

to define the resonance Hamiltonian. Thus,

S = 1 − 2iπPHQ
1

E − [QHQ + �Q] + i
�Q

2

QHP. (2)

The above expression of the S matrix is exact. For
application to a given physical system, one has to specify the
Hamiltonian QHQ of the isolated closed stadium or quantum
dot, and use a spectral decomposition of δ(E − PHP ). This is
accomplished in [41], and used extensively by [42]. Neglecting
the energy shift operator, and using matrix notation, the
S matrix which constitutes the basic theoretical object in
quantum chaotic scattering theory based on RMT is

S = 1 − 2iπWT 1

E − H + iπWWT
W, (3)

where W is a real nonrandom matrix that represents the
coupling of the internal region with the open channels, and
H is taken as a random Hamiltonian pertaining to one of the
university classes of random matrices, the Gaussian orthogonal
ensemble (GOE) with TRI, the Gaussian unitary ensemble,
with TRI breaking, and the Gaussian symplectic ensemble
(GSE). When using one of these ensembles to calculate
averages of SS† or SSS†S†, the distribution P (H ) is required.
Analytical evaluation of these averages is quite involved as
they require the evaluation of complicated triple integrals.
Only in the case of GUE was it possible to actually obtain
closed form expressions [42]. Generally, researchers rely on
numerical simulations using the random matrix generator [43].
Application of this theory to to microwave resonator physics
is an ongoing program [44].

An alternative method which allows the obtention of
analytical results for any of the ensembles is based on the
distribution of the S matrix itself, P (S) [45]. The ensemble
here is Dyson’s circular unitary ensemble (CUE). The stub
model is based on this approach (see [46]), and it amounts to
attaching a stub (fictitious) to the quantum dot and using it
as a scaffolding to build the S matrix. The size of the stub is
chosen so that the dwell time in it is much larger than the dwell
time in the dot. Further, the permanence time of the electrons
inside the dot + stub system τp is much shorter than the escape
time τesc to the leads and open channels. These conditions
guarantee that all the variables in the system, the Fermi energy
ε, and the magnetic field B, are made to be explicitly present
in the reflection matrix R [of dimension (M − N )] of the
stub, leaving the S matrix of the dot (without the stub), U , of
dimension M × M , be a product of 2 × 2 spin matrix times a
matrix at ε = 0, B = 0, and zero spin-orbit scattering rate. As
such the dot S-matrix U can be chosen from Dyson’s circular
orthogonal ensemble of random matrix theory. It has been
shown [46] that the S matrix of the system (dot plus leads) is

S = PU (1 − Q†RQU )−1P †, (4)

where P and Q are projection matrices of dimensions, N × M

and (M − N ) × M , respectively. It has been proven that owing
to the second condition on the time scales, namely, τp � τesc,
the S matrix above remains unaffected by the stub and in
fact equivalent to the Hamiltonian-based S matrix [Eq. (3)]
[47,48]. Thus the characterization of the stub as a scaffolding
is appropriate. To perform averages of S, one expands in
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powers of U and uses diagrammatic techniques as developed
by [47,48].

We turn now to a Dirac version of the S-matrix distribution
approach and the stub model.

III. CROSSOVER SCATTERING FRAMEWORK FOR THE
GENERAL DIRAC BILLIARD

In this section, to study the crossover regime in the chaotic
Dirac billiard connected to leads, we introduce a generalization
of the crossover scattering framework, which was proposed in
Ref. [35]. We begin by employing quantum chaotic scattering
theory, and introduce the stub model discussed in the previous
section for the chaotic Schrödinger quantum dot. Within the
stub model the scattering matrix as a function of external
parameters such as the energy ε and magnetic flux B, and
an an internal parameter which is the massive mass term m in
the generic Dirac Hamiltonian, is given by

S(ε,B,m) = P[1 − Q†R(ε,B,m)QU]−1UP†. (5)

The matrices S(ε,B,m) and U have dimension NT × NT and
M × M , respectively. The total number of open channels
NT = N1 + N2 is the sum of open channels in the leads 1 and
2, while M is the number of resonances in the chaotic Dirac
quantum dot. The matrix U can be a member of the circular
orthogonal ensemble instead of chiral orthogonal ensemble if
we assume NT � 1. In this limit, Chiral universality classes
give the same results of Wigner-Dyson universality classes
as proved in Ref. [27]. The matrices P and Q are the
projector operators of order NT × M and (M − NT ) × M ,
respectively, with elements given by Qij = δi+NT ,j and Pij =
δij . We intend to incorporate additional degrees of freedom on
the formalism, two for each subspace, with the prominent ex-
ample the structure of the graphene Hamiltonian. Accordingly,
the elements of the matrices U , P , and Q are all proportional
to the σ0 ⊗ τ0, with σ0 and τ0 denoting 2 × 2 identity matrices.
The matrix R(ε,B,m) has dimension (M − NT ) × (M − NT )
and is parametrized as

R(ε,B,m) = exp

{
i

M

[
2π

ε

�
σ0 ⊗ τ0 − H(B,m)

]}
. (6)

In Eq. (6), the universal Hamiltonian H(B,m) is obtained
from the effective Dirac Hamiltonian preserving its intrinsic
symmetries and considering its amplitudes as members of
a Gaussian distribution. We consider the additional degrees
of freedom residing in the elements of matrices H(B,m)
which are all proportional to σi ⊗ τj , with σi and τj denoting
Pauli matrices (i,j = x,y,z) in each subspace of the Dirac
Hamiltonian.

The conductance of the chaotic Dirac quantum dot at zero
temperature can be written as a function of the scattering
matrix, Eq. (5), as follows:

G

e2/h
= 4 × N1N2

NT

+ Tr[S K S† K], (7)

where the elements of the matrix K are Kii = N2/NT , Kii =
−N1/NT and Kij = 0 for i = 1, . . . ,N1, i = N1 + 1, . . . ,NT ,
and i �= j , respectively. The factor 4 arises from the degen-
eracies of the two subspaces represented by σ and τ . The
average of the conductance, Eq. (7), can be obtained using the

FIG. 1. Diffuson (left) and cooperon (right) diagrams for the
average of conductance [Eq. (7)].

relation,

〈Sij ;αβ;ρδ(ε,B,m)S∗
i ′j ′;α′β ′;ρ ′δ′ (ε′,B,m)〉

= δii ′δjj ′Dαβ,ρδ;β ′α′,δ′ρ ′ + δij ′δji ′ (T CT )αβ,ρδ;β ′α′,ρ ′δ′ , (8)

whose validity is over the limit M � NT � 1. The T carries
symmetries as the time reversal of the Dirac Hamiltonian and
is defined as T = σ0 ⊗ τ0 ⊗ Tχ . The indices α,β = 1,2 are
associated with the subspace σ , while ρ,δ = 1,2 with the
subspace τ . The matricesD and C are contributions of diffuson
and cooperon diagrams, which are represented in Fig. 1, and
obtained by following expressions

D−1 = Mσ0 ⊗ τ0 ⊗ σ0 ⊗ τ0 − Tr(R ⊗ R†),
(9)

C−1 = Mσ0 ⊗ τ0 ⊗ σ0 ⊗ τ0 − Tr(R ⊗ R�),

where † designates Hermitian conjugation and �, complex
conjugation. From Eqs. (7) and (8), we can obtain the following
expression for the average conductance:

〈G〉
e2/h

= 4 × N1N2

NT

− N1N2

NT

∑
ρ,δ

[Tr(T CT )]ρσ ;ρδ, (10)

where the trace involves the two subspaces using the following
general cross product:

[Tr(σi ⊗ τj ⊗ σk ⊗ τl)]ρδ;ρ ′δ′

=
⎡
⎣

⎛
⎝∑

αβ

(σi)αβ(σk)βα

⎞
⎠τj ⊗ τl

⎤
⎦

′

ρδ,ρ ′δ′

.

The calculation algebra of Eq. (10) is performed using the
backward multiplication as follows:

(σi ⊗ τj ⊗ σk ⊗ τl) · (σi ′ ⊗ τj ′ ⊗ σk′ ⊗ τl′ )

= (σiσi ′) ⊗ (τj ′τj ) ⊗ (σk′σk) ⊗ (τlτl′ ).

The same algebraic analysis can be applied to the covari-
ance of conductance. We perform the calculation and, after
some algebra, we obtain the following expression:

cov[G(ε,B),G(ε′,B′]
e4/h2

= N2
1 N2

2

N2
T

[VD + VC], (11)

where

VD =
∑
ρ,σ

[TrD]ρσ ;ρ ′σ ′[TrD]σ ′ρ ′;σρ,

VC =
∑
ρ,σ

[Tr(T CT )]ρσ ;ρ ′σ ′[Tr(T CT )]ρ ′σ ′;ρσ .
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To finalize this section, we can conclude that the crossover
scattering model presented above is general and applicable
to any kind of chaotic Dirac quantum dot in the ballistic
regime. It is important to point out here as shown by
Ref. [49], that classical consideration of impurities can be
incorporated through a semiclassical S matrix of the Miller
type which contains a Maslov index. In our formulation, we
can, in principle, introduce a term of this type and study its
consequence on our results. We find this a very interesting line
of research and hope to carry out the development in the future.
This will allow us to study the diffusive regime. As already
stated our present approach only allows us to study the ballistic
regime. We need only to get the matrix H(B,m) from the Dirac
Hamiltonian together with Eqs. (6) and (9)–(11) to obtain the
averages of conductance and covariance. In the next section,
we will apply the framework in the relevant example of a
chaotic graphene quantum dot. We will present general results
and, at specific limits, we recover the results of Ref. [24].

IV. CHAOTIC GRAPHENE QUANTUM DOT

In this section, we apply the crossover scattering model,
which was described in the previous section, to study a general
chaotic graphene quantum dot. First, the effective Hamiltonian
of graphene is presented together with the symmetries of
the problem. Following this, the characteristic and general
effective graphene matrix H(B,m) is introduced and used in
the calculation of the average of conductance and covariance,
Eqs. (10) and (11), respectively.

In fact the Hamiltonian describing the graphene was
obtained for energies (Dirac) close to the Fermi energy. Having
in mind the homogeneity of the spectrum, we have fixed the
Ferm energy to be zero. Close to the Dirac point there exist
many energy levels available for the massive Hamiltonian
used by us. The size of the quantum dot is determined by
the presence of about 105 carbon atoms (size of the lattice is
about 103 a, where the lattice constant a = 0.25 nm).The lattice
is hexagonal and the confining terms are generated by smooth
and quasilocalized interactions at the edges, determined by the
zig-zag or arm-chair symmetry. In this case the quantum dot,
in the universal regime, could furnish about 103 energy levels
close to the Dirac point, as was observed through numerical
simulations by Ref. [18]. The other terms in the Hamiltonian
are also of short range in nature with the Dirac point centered
at the edge of the energy spectrum (Fermi energy) and all
produce results in the universal regime.

A. Effective Hamiltonian of graphene

Following [5,18,36], the effective Hamiltonian of graphene
for low energies and long length scales without spin degree
freedom can be written as

Heff = v[p − eA · σ ] ⊗ τ0 + ev[A(r) · σ ] ⊗ τz

+wac(r)σz ⊗ τy + m(r)σz ⊗ τz + wzz(r)σz ⊗ τz, (12)

where the Pauli matrices σi and τi act on the sublattice and
valley degrees of freedom, respectively. The vector potential A
carries information about the external electromagnetic fields,
and has no role in coupling the two valleys. The two valleys are
coupled by a valley-dependent vector potential A(r) produced

by straining the monolayer [10,17]. The boundary of the
chaotic graphene quantum dot is described by three physically
relevant boundary types, which are known as confinement by
the mass term (m(r)), confinement by the armchair edges term
(wac(r)), and confinement by the zigzag edges term. However,
there are four antiunitary symmetries operating in graphene:
Tχ = σy ⊗ τχC with χ = {0,x,y,z}, with C the operator of
complex conjugation. Ty is the time-reversal operation that
interchanges the valleys, while Tx is the valley symmetry. T0

is called a symplectic symmetry, does not interchange the
valleys, and is broken by massive term and valley-dependent
vector potential.

B. Average of conductance

The central feature responsible for the simplified random-
matrix description of the crossover in the universal regime is
the fact that all relevant time scales are much longer than the
electron transit time Terg, thus TB,Tst ,Tac,Tm,Tzz � Terg. In
fact, for a very small grapheme flake and in the transition from
classical to quantum regimes, the trajectories can be influenced
in different manners by the presence of the magnetic field [50].
In the universal regime, however, when many energy levels are
available (103), all phase space is explored with no preference
to some specific trajectories, as long as the dwell time Tdwell is
greater than the ergodic time Terg. In our approach described
in the current paper, in the universal regime, Tdwell � Terg, our
results are not affected by special trajectories.

The relevance of the crossover effect is guaranteed by the
requirement that T ’s are of the order of the inverse mean
level spacing in the chaotic graphene quantum dot [also called
chaotic Dirac quantum dot (CDQD)]. We may thus introduce
the following dimensionless parameters to characterize the
intensity of symmetry breaking in the system:

x2 = 2π�

�TB
, w2

st = 2π�

�Tst

,

w2
ac = 2π�

�Tac

, m2 = 2π�

�Tm

, w2
zz = 2π�

�Tzz

,

where � is the mean level spacing. From Eq. (12), the random-
matrix models for the effective Hamiltonians of graphene then
follow directly from general symmetry considerations. They
are given by

H = ix A1 σx ⊗ τ0 + ix A2 σy ⊗ τ0 + iwst B1 σx ⊗ τz

+ iwst B2 σy ⊗ τz + iwac Y σz ⊗ τy + imX σz ⊗ τz

+ iwzz Z σz ⊗ τz, (13)

where the matrices Ai , Bi , X, Y e Z are real antisymmet-
ric with 〈Tr(AiA

T
j )〉 = 〈Tr(BiB

T
j )〉 = δijM

2 e 〈Tr(XXT )〉 =
〈Tr(YY T )〉 = 〈Tr(ZZT )〉 = M2.

Now, we can substitute Eq. (13) in Eqs. (6) and (9) and after
some algebraic manipulations, we obtain

D−1 = C−1 = N (σ0 ⊗ τ0 ⊗ σ0 ⊗ τ0)

− x x ′(σx ⊗ τ0 ⊗ σx ⊗ τ0 + σy ⊗ τ0 ⊗ σy ⊗ τ0)

−w2
st (σx ⊗ τz ⊗ σx ⊗ τz + σy ⊗ τz ⊗ σy ⊗ τz)

−w2
ac (σz ⊗ τy ⊗ σz ⊗ τy)

− (
m2 + w2

zz

)
(σz ⊗ τz ⊗ σz ⊗ τz), (14)
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where N = NT − 2πi(ε − ε′) + x2 + x ′2 + 2w2
st + w2

ac +
m2 + w2

zz. Taking the inverse in Eq. (14) we can calculate
the average of the conductance from Eq. (10), with
T = σ0 ⊗ τ0 ⊗ σy ⊗ τ0, and we find the following general
expression:

〈G〉
e2/h

= 4 × N1N2

NT

− 2 × N1N2

NT

×
[

1

NC + 2w2
st

+ 1

NC + 2w2
st + 2m2 + 2w2

zz

+ 1

NC + 2w2
st + 2w2

ac + 2m2 + 2w2
zz

− 1

NC + 2w2
st + 2w2

ac

]
, (15)

where NC = NT + 2x2 with ε = ε′ and x = x ′. Equation (15)
is the first major result of our work. The first term expresses
Ohm’s Law, while the remaining ones are known as the weak
localization part of the average 〈Gwl〉.

Let us analyze some relevant limits of Eq. (15). As expected,
the limit x → ∞ leads to 〈Gwl〉 → 0. A simple expression can
be obtained by taking m = wzz = 0 in Eq. (15):

〈Gwl〉
G0

= − 2

1 + 2X 2 + 2W2
st

, (16)

which was obtained through a change of variables, x2 =
X 2NT , b2 = W2

stNT , and G0 = e2/h × 2 × N1N2/N
2
T . From

Eq. (16), we can conclude that weak localization is not
affected by armchair edge (wac) if there are nonmassive or
zigzag edges present. In the Fig. 2(a) we show Eq. (16) as
a function of magnetic flux (X ) for the following values
of Wst = 0,0.5,1,3 (from top to bottom). Without straining
(Wst = 0), Fig. 2(a) shows a weak localization peak. However,
the peak becomes prominent with the increase in straining in
monolayer CDQD. This result is in complete agreement with
theoretical predictions of Ref. [17] and with the experimental
measurement of Ref. [10], which showed absence of a weak
localization peak in the monolayer of graphene because of
straining [see Fig. 2(a) of [10]].

In order to recover the results of [24], we take the limit
m → ∞ in Eq. (15). We obtain

〈Gwl〉
G0

= − 1

1 + 2X 2 + 2W2
st

+ 1

1 + 2X 2 + 2W2
st + 2W2

ac

, (17)

where w2
ac = W2

acNT . In the case without straining (Wst = 0),
Eq. (17) reduces to Eq. (71) of Ref. [24]. In Fig. 2(b) we show
Eq. (17) as a function of the magnetic flux (X ) through the
system for values of Wac = 0,1,∞ (from bottom to top) and
Wst = 0. For Wac = 0 the weak localization peak is absent,
while it reaches a maximum for Wac → ∞.

In the limit wzz → ∞, Eq. (15) reduces to Eq. (17). This
is interesting, as massive and zigzag edges are physically
different but serve the same purpose as far as weak localization
is concerned [see Eq. (15)]. This fact contributes to our
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FIG. 2. (a) Equation (16) is plotted as a function of the magnetic
flux for Wst = 0,0.5,1,3 (from top to bottom). (b) Equation (17)
is plotted as a function of the magnetic flux for Wac = 0,1,∞
(from bottom to top). (c) Equation (18) is plotted as a function
of the magnetic flux for M = 0,1,∞ (from top to bottom) and
Wzz = Wst = 0.

conclusion that the armchair edge is only relevant in the
presence of massive or zigzag edges.

The last important limit can be obtained from Eq. (15) by
letting wac → ∞,

〈Gwl〉
G0

= − 1

1 + 2X 2 + 2W2
st

− 1

1 + 2X 2 + 2W2
st + 2M2 + 2W2

zz

, (18)

where m2 = M2NT , w2
zz = W2

zzNT . In Fig. 2(c) we show
Eq. (18) as a function of the magnetic flux (X ) forM = 0,1,∞
(from top to bottom) and Wzz = Wst = 0. For M → ∞ the
weak localization peak decreases by a factor of two. The same
conclusions are reached by fixing M = Wst = 0 and varying
Wzz.

C. Covariance of conductance

Here we analyze how the weak localization peak is affected
by the magnetic flux and edges. For this purpose we consider
the covariance of conductance as a function of energy and
magnetic flux using the same method described previously.
From Eqs. (11) and (14), we obtain the following general
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expression:

cov[G(ε,x),G(ε′,x ′)]
e4/h2

= 4 × N2
1 N2

2

N2
T

×
[

1

|ND|2 + 1∣∣ND + 2w2
ac

∣∣2 + 1∣∣ND + 4w2
st + 2m2 + 2w2

zz

∣∣2

+ 1∣∣ND + 4w2
st + 2m2 + 2w2

zz + 2w2
ac

∣∣2 + 1∣∣NC + 2w2
st

∣∣2 + 1∣∣NC + 2w2
st + 2m2 + 2w2

zz

∣∣2

+ 1∣∣NC + 2w2
st + 2w2

ac

∣∣2 + 1∣∣NC + 2w2
st + 2m2 + 2w2

zz + 2w2
ac

∣∣2

]
, (19)

where ND = NT + 2iπ (ε − ε′)/� + (x − x ′)2
/2 e NC =

NT + 2iπ (ε − ε′)/� + (x + x ′)2
/2. Equation (19) is the sec-

ond major result of our work. The first four terms of Eq. (19)
are diffuson diagram contributions that vanish in the presence
of magnetic flux, while the remaining terms are cooperon
diagram contributions, which evanesce in the presence of
magnetic flux (x → ∞).

Next we analyze the same limits of Eq. (19). Taking ε = ε′,
x = x ′, without magnetic flux and setting the others equal to
zero, the variance of the conductance from Eq. (19) is given by
var[G] = G2

0 × [4 × 2], where the factor 4 is the degeneracy
of the sub-lattice and valley symmetries and the factor 2 comes

0
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FIG. 3. (a) Equation (19) was plotted (top to down) for Wst =
0,0.5,∞ (Wac = Wzz = M = 0) beyond Eq. (20) forWac = 0.5,∞.
(b) Equation (19) is plotted (top to down) for M = 0.5,∞
(Wst = Wac = Wzz = 0) and Eq. (21) for Wac = 0.5,∞ (Wst = 0).
(c) Equation (19) was plotted (top to down) for Wac = 0.5,∞ (Wst =
M = Wzz = 0) beyond Eq. (22) for M,Wzz = 0.5,∞ (Wst = 0).

about from time-reversal symmetry. Further, in the presence
of magnetic flux, the variance of the conductance is given
by var[G] = G2

0 × [4 × 1], which indicates that time-reversal
symmetry is broken; see top curve of Fig. 3(a).

Simple expression can been obtained taking wst → ∞ in
Eq. (19):

var[G]

G2
0

=
1∑

i=0

1(
1 + 2iW2

ac

)2 . (20)

Note that two diffuson and all cooperon contributions have
vanished, indicating the breaking time-reverse symmetry.
From Eq. (20), only armchair edges are relevant in the presence
of straining. Moreover, the average of variances are given
by var[G] = G2

0 × [2 × 1] and var[G] = G2
0 × [1 × 1] for

Wac = 0 and Wac → ∞, respectively. In Fig. 3(a) we show
(top to down) Eq. (19) for Wst = 0,0.5,∞ (Wac = Wzz =
M = 0), and Eq. (20) for Wac = 0.5,∞.

Taking m → ∞(or wzz → ∞) in Eq. (19), four terms go
to zero, two diffuson and two cooperon contributions. In this
case, Eq. (19) simplifies to

var[G]

G2
0

=
1∑

i,j=0

1(
1 + 2iX 2 + 2iW2

st + 2jW2
ac

)2 . (21)

In the case without straining (Wst = 0), Eq. (21) reduces to
Eq. (84) of Ref. [24]. Without magnetic flux and setting the
other parameters equal to zero, the variance of the conductance
from Eq. (21) is given by var[G] = G2

0 × [2 × 2], which
means that the degeneracy factor is reduced by a factor of
two and time-reversal symmetry is not broken by the massive
edge. Moreover, with magnetic flux on, the variance of the
conductance is given by var[G] = G2

0 × [2 × 1]. On the other
hand, if Wac → ∞ and Wst = 0 the variance from Eq. (21)
goes to var[G] = G2

0 × [1 × 2] and var[G] = G2
0 × [1 × 1]

without and with magnetic flux, respectively. In Fig. 3(b) we
show (top to down) Eq. (19) for M = 0.5,∞ (Wst = Wac =
Wzz = 0) and Eq. (21) for Wac = 0.5,∞ (Wst = 0).

The last limit we consider, wac → ∞, in Eq. (19), gives

var[G]

G2
0

=
1∑

i=0

1(
1 + 4iW2

st + 2iM2 + 2iW2
zz

)2

+
1∑

i=0

1(
1 + 2X 2 + 2W2

st + 2iM2 + 2iW2
zz

)2 .

(22)
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FIG. 4. Typical Lorentzian (left) and quadratic Lorentzian correlation function from Eq. (23) for (top to down) all parameters null,
{X ,M,Wac,Wzz → ∞} and Wst → ∞.

In this case, the contributions of two diffusons and two
cooperons vanish. FixingWst = 0 and turning off the magnetic
flux, the variance of Eq. (22) becomes var[G] = G2

0 × [2 × 2]
and var[G] = G2

0 × [1 × 2] for M,Wzz = 0 and M,Wac →
∞, respectively, which indicates that time-reversal symmetry
is preserved in both cases. On the other hand, with magnetic
flux turned on, the variance of Eq. (22) goes to var[G] =
G2

0 × [2 × 1] and var[G] = G2
0 × [1 × 1] for M,Wzz = 0

and M,Wac → ∞, respectively, indicating the breaking of
time-reverse symmetry in both cases. In Fig. 3(c) we show (top
to down) Eq. (19) for Wac = 0.5,∞(Wst = M = Wzz = 0)
and Eq. (22) for M,Wzz = 0.5,∞ (Wst = 0).

D. Correlation function

After analyzing in detail the variance of the conductance
of the chaotic Dirac quantum dot from Eq. (19), we briefly
study how the correlation functionCF (δε,δX ), or covariance of
conduction, is affected by straining and boundary parameters.
Substituting ε′ = ε + δε and x ′ = x + δx in Eq. (19), we can
write

CF (δε,δX )

G2
0

= Cλ × 1

|1 + iδε + δX 2|2 , (23)

where Cλ is a constant (λ = {0,X ,Wst ,M,Wac,Wzz}), while
C0 = 4 × 2, with all parameters set to zero, CX = 4 × 1 with
X → ∞ and all other parameters set to zero, Cλ = 2 × 2
with M,Wac,Wzz → ∞ and the other parameters being zero,
and CWst

= 2 × 1 with Wst → ∞ and other parameters set
to zero. For δX = 0, the correlation function is a typical
Lorentzian:

CF (δε)

G2
0

= Cλ × 1

1 + δε2
,

which is in accord with the experiment of Ref. [13]. Moreover,
for δε = 0 the correlation function is a quadratic Lorentzian:

CF (δX )

G2
0

= Cλ × 1

(1 + δX 2)2
,

which is in agreement with the result of analysis in the
experiment of Ref. [12]. Lorentzian and quadratic Lorentzian
shapes of the correlation function are plotted in Fig. 4.

These findings are encouraging as they confirm the premise
of this paper that chaotic Dirac quantum dots containing
relativistic electrons obeying the Dirac equation, exhibit
universal fluctuations describable by RMT.

V. CONCLUSIONS

In this paper the random nature of the conductance in
chaotic Dirac quantum dots is investigated using the RMT-
based stub mode. Analytical results for the average conduc-
tance and the correlation function are obtained and scrutinized
under different limiting stations. The results coincide with
those obtained using the semiclassical approach and, when
available, agree with experimental findings. Accordingly, the
chaotic graphene quantum dot, also called the chaotic Dirac
quantum dot, with the electron motion governed by the Dirac
equation is a mesoscopic system that follows the rules of RMT,
just as the chaotic Schrödinger quantum dot.

Our paper contains several new results of potential use
by experimentalists and theorists alike. These include the
mechanisms of the breakdown of phase coherence and its
impact on the universal fluctuations, and in the quantum
interference terms and their effects. We have considered only
coupling to ideal leads. Generalization to nonideal leads which
effectively modify locally the contact with the quantum dot, is
called for. As a result of such generalization, the conductance is
modified owing to the influence of special classical trajectories
[51]. In our scattering theory approach, this generalization can
be handled through the use of nonvanishing tunneling barriers.
In the context of scattering theory, such barriers would change
the average S matrix, an important ingredient in both the
analytical development as well as in the numerical simulations.
This line of research is in progress.
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F. Schäfer, and H. A. Weidenmüller, Phys. Rev. E 81, 036205
(2010).

[45] P. E. Mello and N. Kumar, Quantum Transport in Meso-
scopic Systems: Complexity and Statistical Fluctuations (Oxford
University Press, Oxford, 2004).

[46] See, e.g., J.-H. Cremers, P. W. Brouwer, and V. I. Fal’ko, Phys.
Rev. B 68, 125329 (2003).

[47] P. W. Brouwer, K. M. Frahm, and C. W. J. Beenakker, Waves in
Random Media 9, 91 (1999).

[48] P. W. Brouwer and C. W. J. Beenakker, J. Math. Phys. 37, 4904
(1997).

[49] G. Wang, L. Ying, and Y.-C. Lai, Phys. Rev. E 92, 022901
(2015).

[50] D. K. Ferry et al., Semicond. Sci. Technol. 26, 043001
(2011); R. Brunner et al., J. Phys.: Condens. Matter 24, 343202
(2012).

[51] R. G. Nazmitdinov, K. N. Pichugin, I. Rotter, and P. Šeba, Phys.
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